summaryrefslogtreecommitdiff
path: root/arch/mips/kernel/setup.c
blob: 3be0e6ba2797c4c5055982d908c9a277c975651d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1995 Linus Torvalds
 * Copyright (C) 1995 Waldorf Electronics
 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
 * Copyright (C) 1996 Stoned Elipot
 * Copyright (C) 1999 Silicon Graphics, Inc.
 * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
 */
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/screen_info.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
#include <linux/initrd.h>
#include <linux/root_dev.h>
#include <linux/highmem.h>
#include <linux/console.h>
#include <linux/pfn.h>
#include <linux/debugfs.h>
#include <linux/kexec.h>
#include <linux/sizes.h>
#include <linux/device.h>
#include <linux/dma-contiguous.h>
#include <linux/decompress/generic.h>

#include <asm/addrspace.h>
#include <asm/bootinfo.h>
#include <asm/bugs.h>
#include <asm/cache.h>
#include <asm/cdmm.h>
#include <asm/cpu.h>
#include <asm/debug.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp-ops.h>
#include <asm/prom.h>

#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
const char __section(.appended_dtb) __appended_dtb[0x100000];
#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */

struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;

EXPORT_SYMBOL(cpu_data);

#ifdef CONFIG_VT
struct screen_info screen_info;
#endif

/*
 * Setup information
 *
 * These are initialized so they are in the .data section
 */
unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;

EXPORT_SYMBOL(mips_machtype);

struct boot_mem_map boot_mem_map;

static char __initdata command_line[COMMAND_LINE_SIZE];
char __initdata arcs_cmdline[COMMAND_LINE_SIZE];

#ifdef CONFIG_CMDLINE_BOOL
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
#endif

/*
 * mips_io_port_base is the begin of the address space to which x86 style
 * I/O ports are mapped.
 */
const unsigned long mips_io_port_base = -1;
EXPORT_SYMBOL(mips_io_port_base);

static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };

static void *detect_magic __initdata = detect_memory_region;

void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
{
	int x = boot_mem_map.nr_map;
	int i;

	/*
	 * If the region reaches the top of the physical address space, adjust
	 * the size slightly so that (start + size) doesn't overflow
	 */
	if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
		--size;

	/* Sanity check */
	if (start + size < start) {
		pr_warn("Trying to add an invalid memory region, skipped\n");
		return;
	}

	/*
	 * Try to merge with existing entry, if any.
	 */
	for (i = 0; i < boot_mem_map.nr_map; i++) {
		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
		unsigned long top;

		if (entry->type != type)
			continue;

		if (start + size < entry->addr)
			continue;			/* no overlap */

		if (entry->addr + entry->size < start)
			continue;			/* no overlap */

		top = max(entry->addr + entry->size, start + size);
		entry->addr = min(entry->addr, start);
		entry->size = top - entry->addr;

		return;
	}

	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
		pr_err("Ooops! Too many entries in the memory map!\n");
		return;
	}

	boot_mem_map.map[x].addr = start;
	boot_mem_map.map[x].size = size;
	boot_mem_map.map[x].type = type;
	boot_mem_map.nr_map++;
}

void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
{
	void *dm = &detect_magic;
	phys_addr_t size;

	for (size = sz_min; size < sz_max; size <<= 1) {
		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
			break;
	}

	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
		((unsigned long long) size) / SZ_1M,
		(unsigned long long) start,
		((unsigned long long) sz_min) / SZ_1M,
		((unsigned long long) sz_max) / SZ_1M);

	add_memory_region(start, size, BOOT_MEM_RAM);
}

static void __init print_memory_map(void)
{
	int i;
	const int field = 2 * sizeof(unsigned long);

	for (i = 0; i < boot_mem_map.nr_map; i++) {
		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
		       field, (unsigned long long) boot_mem_map.map[i].size,
		       field, (unsigned long long) boot_mem_map.map[i].addr);

		switch (boot_mem_map.map[i].type) {
		case BOOT_MEM_RAM:
			printk(KERN_CONT "(usable)\n");
			break;
		case BOOT_MEM_INIT_RAM:
			printk(KERN_CONT "(usable after init)\n");
			break;
		case BOOT_MEM_ROM_DATA:
			printk(KERN_CONT "(ROM data)\n");
			break;
		case BOOT_MEM_RESERVED:
			printk(KERN_CONT "(reserved)\n");
			break;
		default:
			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
			break;
		}
	}
}

/*
 * Manage initrd
 */
#ifdef CONFIG_BLK_DEV_INITRD

static int __init rd_start_early(char *p)
{
	unsigned long start = memparse(p, &p);

#ifdef CONFIG_64BIT
	/* Guess if the sign extension was forgotten by bootloader */
	if (start < XKPHYS)
		start = (int)start;
#endif
	initrd_start = start;
	initrd_end += start;
	return 0;
}
early_param("rd_start", rd_start_early);

static int __init rd_size_early(char *p)
{
	initrd_end += memparse(p, &p);
	return 0;
}
early_param("rd_size", rd_size_early);

/* it returns the next free pfn after initrd */
static unsigned long __init init_initrd(void)
{
	unsigned long end;

	/*
	 * Board specific code or command line parser should have
	 * already set up initrd_start and initrd_end. In these cases
	 * perfom sanity checks and use them if all looks good.
	 */
	if (!initrd_start || initrd_end <= initrd_start)
		goto disable;

	if (initrd_start & ~PAGE_MASK) {
		pr_err("initrd start must be page aligned\n");
		goto disable;
	}
	if (initrd_start < PAGE_OFFSET) {
		pr_err("initrd start < PAGE_OFFSET\n");
		goto disable;
	}

	/*
	 * Sanitize initrd addresses. For example firmware
	 * can't guess if they need to pass them through
	 * 64-bits values if the kernel has been built in pure
	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
	 * addresses now, so the code can now safely use __pa().
	 */
	end = __pa(initrd_end);
	initrd_end = (unsigned long)__va(end);
	initrd_start = (unsigned long)__va(__pa(initrd_start));

	ROOT_DEV = Root_RAM0;
	return PFN_UP(end);
disable:
	initrd_start = 0;
	initrd_end = 0;
	return 0;
}

/* In some conditions (e.g. big endian bootloader with a little endian
   kernel), the initrd might appear byte swapped.  Try to detect this and
   byte swap it if needed.  */
static void __init maybe_bswap_initrd(void)
{
#if defined(CONFIG_CPU_CAVIUM_OCTEON)
	u64 buf;

	/* Check for CPIO signature */
	if (!memcmp((void *)initrd_start, "070701", 6))
		return;

	/* Check for compressed initrd */
	if (decompress_method((unsigned char *)initrd_start, 8, NULL))
		return;

	/* Try again with a byte swapped header */
	buf = swab64p((u64 *)initrd_start);
	if (!memcmp(&buf, "070701", 6) ||
	    decompress_method((unsigned char *)(&buf), 8, NULL)) {
		unsigned long i;

		pr_info("Byteswapped initrd detected\n");
		for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
			swab64s((u64 *)i);
	}
#endif
}

static void __init finalize_initrd(void)
{
	unsigned long size = initrd_end - initrd_start;

	if (size == 0) {
		printk(KERN_INFO "Initrd not found or empty");
		goto disable;
	}
	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
		printk(KERN_ERR "Initrd extends beyond end of memory");
		goto disable;
	}

	maybe_bswap_initrd();

	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
	initrd_below_start_ok = 1;

	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
		initrd_start, size);
	return;
disable:
	printk(KERN_CONT " - disabling initrd\n");
	initrd_start = 0;
	initrd_end = 0;
}

#else  /* !CONFIG_BLK_DEV_INITRD */

static unsigned long __init init_initrd(void)
{
	return 0;
}

#define finalize_initrd()	do {} while (0)

#endif

/*
 * Initialize the bootmem allocator. It also setup initrd related data
 * if needed.
 */
#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))

static void __init bootmem_init(void)
{
	init_initrd();
	finalize_initrd();
}

#else  /* !CONFIG_SGI_IP27 */

static void __init bootmem_init(void)
{
	unsigned long reserved_end;
	unsigned long mapstart = ~0UL;
	unsigned long bootmap_size;
	int i;

	/*
	 * Sanity check any INITRD first. We don't take it into account
	 * for bootmem setup initially, rely on the end-of-kernel-code
	 * as our memory range starting point. Once bootmem is inited we
	 * will reserve the area used for the initrd.
	 */
	init_initrd();
	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));

	/*
	 * max_low_pfn is not a number of pages. The number of pages
	 * of the system is given by 'max_low_pfn - min_low_pfn'.
	 */
	min_low_pfn = ~0UL;
	max_low_pfn = 0;

	/*
	 * Find the highest page frame number we have available.
	 */
	for (i = 0; i < boot_mem_map.nr_map; i++) {
		unsigned long start, end;

		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
			continue;

		start = PFN_UP(boot_mem_map.map[i].addr);
		end = PFN_DOWN(boot_mem_map.map[i].addr
				+ boot_mem_map.map[i].size);

		if (end > max_low_pfn)
			max_low_pfn = end;
		if (start < min_low_pfn)
			min_low_pfn = start;
		if (end <= reserved_end)
			continue;
#ifdef CONFIG_BLK_DEV_INITRD
		/* Skip zones before initrd and initrd itself */
		if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
			continue;
#endif
		if (start >= mapstart)
			continue;
		mapstart = max(reserved_end, start);
	}

	if (min_low_pfn >= max_low_pfn)
		panic("Incorrect memory mapping !!!");
	if (min_low_pfn > ARCH_PFN_OFFSET) {
		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
			min_low_pfn - ARCH_PFN_OFFSET);
	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
		pr_info("%lu free pages won't be used\n",
			ARCH_PFN_OFFSET - min_low_pfn);
	}
	min_low_pfn = ARCH_PFN_OFFSET;

	/*
	 * Determine low and high memory ranges
	 */
	max_pfn = max_low_pfn;
	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
#ifdef CONFIG_HIGHMEM
		highstart_pfn = PFN_DOWN(HIGHMEM_START);
		highend_pfn = max_low_pfn;
#endif
		max_low_pfn = PFN_DOWN(HIGHMEM_START);
	}

#ifdef CONFIG_BLK_DEV_INITRD
	/*
	 * mapstart should be after initrd_end
	 */
	if (initrd_end)
		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
#endif

	/*
	 * Initialize the boot-time allocator with low memory only.
	 */
	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
					 min_low_pfn, max_low_pfn);


	for (i = 0; i < boot_mem_map.nr_map; i++) {
		unsigned long start, end;

		start = PFN_UP(boot_mem_map.map[i].addr);
		end = PFN_DOWN(boot_mem_map.map[i].addr
				+ boot_mem_map.map[i].size);

		if (start <= min_low_pfn)
			start = min_low_pfn;
		if (start >= end)
			continue;

#ifndef CONFIG_HIGHMEM
		if (end > max_low_pfn)
			end = max_low_pfn;

		/*
		 * ... finally, is the area going away?
		 */
		if (end <= start)
			continue;
#endif

		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
	}

	/*
	 * Register fully available low RAM pages with the bootmem allocator.
	 */
	for (i = 0; i < boot_mem_map.nr_map; i++) {
		unsigned long start, end, size;

		start = PFN_UP(boot_mem_map.map[i].addr);
		end   = PFN_DOWN(boot_mem_map.map[i].addr
				    + boot_mem_map.map[i].size);

		/*
		 * Reserve usable memory.
		 */
		switch (boot_mem_map.map[i].type) {
		case BOOT_MEM_RAM:
			break;
		case BOOT_MEM_INIT_RAM:
			memory_present(0, start, end);
			continue;
		default:
			/* Not usable memory */
			continue;
		}

		/*
		 * We are rounding up the start address of usable memory
		 * and at the end of the usable range downwards.
		 */
		if (start >= max_low_pfn)
			continue;
		if (start < reserved_end)
			start = reserved_end;
		if (end > max_low_pfn)
			end = max_low_pfn;

		/*
		 * ... finally, is the area going away?
		 */
		if (end <= start)
			continue;
		size = end - start;

		/* Register lowmem ranges */
		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
		memory_present(0, start, end);
	}

	/*
	 * Reserve the bootmap memory.
	 */
	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);

#ifdef CONFIG_RELOCATABLE
	/*
	 * The kernel reserves all memory below its _end symbol as bootmem,
	 * but the kernel may now be at a much higher address. The memory
	 * between the original and new locations may be returned to the system.
	 */
	if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
		unsigned long offset;
		extern void show_kernel_relocation(const char *level);

		offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
		free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);

#if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
		/*
		 * This information is necessary when debugging the kernel
		 * But is a security vulnerability otherwise!
		 */
		show_kernel_relocation(KERN_INFO);
#endif
	}
#endif

	/*
	 * Reserve initrd memory if needed.
	 */
	finalize_initrd();
}

#endif	/* CONFIG_SGI_IP27 */

/*
 * arch_mem_init - initialize memory management subsystem
 *
 *  o plat_mem_setup() detects the memory configuration and will record detected
 *    memory areas using add_memory_region.
 *
 * At this stage the memory configuration of the system is known to the
 * kernel but generic memory management system is still entirely uninitialized.
 *
 *  o bootmem_init()
 *  o sparse_init()
 *  o paging_init()
 *  o dma_contiguous_reserve()
 *
 * At this stage the bootmem allocator is ready to use.
 *
 * NOTE: historically plat_mem_setup did the entire platform initialization.
 *	 This was rather impractical because it meant plat_mem_setup had to
 * get away without any kind of memory allocator.  To keep old code from
 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
 * initialization hook for anything else was introduced.
 */

static int usermem __initdata;

static int __init early_parse_mem(char *p)
{
	phys_addr_t start, size;

	/*
	 * If a user specifies memory size, we
	 * blow away any automatically generated
	 * size.
	 */
	if (usermem == 0) {
		boot_mem_map.nr_map = 0;
		usermem = 1;
	}
	start = 0;
	size = memparse(p, &p);
	if (*p == '@')
		start = memparse(p + 1, &p);

	add_memory_region(start, size, BOOT_MEM_RAM);
	return 0;
}
early_param("mem", early_parse_mem);

#ifdef CONFIG_PROC_VMCORE
unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
static int __init early_parse_elfcorehdr(char *p)
{
	int i;

	setup_elfcorehdr = memparse(p, &p);

	for (i = 0; i < boot_mem_map.nr_map; i++) {
		unsigned long start = boot_mem_map.map[i].addr;
		unsigned long end = (boot_mem_map.map[i].addr +
				     boot_mem_map.map[i].size);
		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
			/*
			 * Reserve from the elf core header to the end of
			 * the memory segment, that should all be kdump
			 * reserved memory.
			 */
			setup_elfcorehdr_size = end - setup_elfcorehdr;
			break;
		}
	}
	/*
	 * If we don't find it in the memory map, then we shouldn't
	 * have to worry about it, as the new kernel won't use it.
	 */
	return 0;
}
early_param("elfcorehdr", early_parse_elfcorehdr);
#endif

static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
{
	phys_addr_t size;
	int i;

	size = end - mem;
	if (!size)
		return;

	/* Make sure it is in the boot_mem_map */
	for (i = 0; i < boot_mem_map.nr_map; i++) {
		if (mem >= boot_mem_map.map[i].addr &&
		    mem < (boot_mem_map.map[i].addr +
			   boot_mem_map.map[i].size))
			return;
	}
	add_memory_region(mem, size, type);
}

#ifdef CONFIG_KEXEC
static inline unsigned long long get_total_mem(void)
{
	unsigned long long total;

	total = max_pfn - min_low_pfn;
	return total << PAGE_SHIFT;
}

static void __init mips_parse_crashkernel(void)
{
	unsigned long long total_mem;
	unsigned long long crash_size, crash_base;
	int ret;

	total_mem = get_total_mem();
	ret = parse_crashkernel(boot_command_line, total_mem,
				&crash_size, &crash_base);
	if (ret != 0 || crash_size <= 0)
		return;

	crashk_res.start = crash_base;
	crashk_res.end	 = crash_base + crash_size - 1;
}

static void __init request_crashkernel(struct resource *res)
{
	int ret;

	ret = request_resource(res, &crashk_res);
	if (!ret)
		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
			(unsigned long)((crashk_res.end -
					 crashk_res.start + 1) >> 20),
			(unsigned long)(crashk_res.start  >> 20));
}
#else /* !defined(CONFIG_KEXEC)		*/
static void __init mips_parse_crashkernel(void)
{
}

static void __init request_crashkernel(struct resource *res)
{
}
#endif /* !defined(CONFIG_KEXEC)  */

#define USE_PROM_CMDLINE	IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
#define USE_DTB_CMDLINE		IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
#define EXTEND_WITH_PROM	IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
#define BUILTIN_EXTEND_WITH_PROM	\
	IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)

static void __init arch_mem_init(char **cmdline_p)
{
	struct memblock_region *reg;
	extern void plat_mem_setup(void);

	/* call board setup routine */
	plat_mem_setup();

	/*
	 * Make sure all kernel memory is in the maps.  The "UP" and
	 * "DOWN" are opposite for initdata since if it crosses over
	 * into another memory section you don't want that to be
	 * freed when the initdata is freed.
	 */
	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
			 BOOT_MEM_RAM);
	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
			 BOOT_MEM_INIT_RAM);

	pr_info("Determined physical RAM map:\n");
	print_memory_map();

#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
#else
	if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
	    (USE_DTB_CMDLINE && !boot_command_line[0]))
		strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);

	if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
		if (boot_command_line[0])
			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
	}

#if defined(CONFIG_CMDLINE_BOOL)
	if (builtin_cmdline[0]) {
		if (boot_command_line[0])
			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
		strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
	}

	if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
		if (boot_command_line[0])
			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
	}
#endif
#endif
	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);

	*cmdline_p = command_line;

	parse_early_param();

	if (usermem) {
		pr_info("User-defined physical RAM map:\n");
		print_memory_map();
	}

	bootmem_init();
#ifdef CONFIG_PROC_VMCORE
	if (setup_elfcorehdr && setup_elfcorehdr_size) {
		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
		       setup_elfcorehdr, setup_elfcorehdr_size);
		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
				BOOTMEM_DEFAULT);
	}
#endif

	mips_parse_crashkernel();
#ifdef CONFIG_KEXEC
	if (crashk_res.start != crashk_res.end)
		reserve_bootmem(crashk_res.start,
				crashk_res.end - crashk_res.start + 1,
				BOOTMEM_DEFAULT);
#endif
	device_tree_init();
	sparse_init();
	plat_swiotlb_setup();
	paging_init();

	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
	/* Tell bootmem about cma reserved memblock section */
	for_each_memblock(reserved, reg)
		if (reg->size != 0)
			reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);

	reserve_bootmem_region(__pa_symbol(&__nosave_begin),
			__pa_symbol(&__nosave_end)); /* Reserve for hibernation */
}

static void __init resource_init(void)
{
	int i;

	if (UNCAC_BASE != IO_BASE)
		return;

	code_resource.start = __pa_symbol(&_text);
	code_resource.end = __pa_symbol(&_etext) - 1;
	data_resource.start = __pa_symbol(&_etext);
	data_resource.end = __pa_symbol(&_edata) - 1;

	for (i = 0; i < boot_mem_map.nr_map; i++) {
		struct resource *res;
		unsigned long start, end;

		start = boot_mem_map.map[i].addr;
		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
		if (start >= HIGHMEM_START)
			continue;
		if (end >= HIGHMEM_START)
			end = HIGHMEM_START - 1;

		res = alloc_bootmem(sizeof(struct resource));

		res->start = start;
		res->end = end;
		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;

		switch (boot_mem_map.map[i].type) {
		case BOOT_MEM_RAM:
		case BOOT_MEM_INIT_RAM:
		case BOOT_MEM_ROM_DATA:
			res->name = "System RAM";
			res->flags |= IORESOURCE_SYSRAM;
			break;
		case BOOT_MEM_RESERVED:
		default:
			res->name = "reserved";
		}

		request_resource(&iomem_resource, res);

		/*
		 *  We don't know which RAM region contains kernel data,
		 *  so we try it repeatedly and let the resource manager
		 *  test it.
		 */
		request_resource(res, &code_resource);
		request_resource(res, &data_resource);
		request_crashkernel(res);
	}
}

#ifdef CONFIG_SMP
static void __init prefill_possible_map(void)
{
	int i, possible = num_possible_cpus();

	if (possible > nr_cpu_ids)
		possible = nr_cpu_ids;

	for (i = 0; i < possible; i++)
		set_cpu_possible(i, true);
	for (; i < NR_CPUS; i++)
		set_cpu_possible(i, false);

	nr_cpu_ids = possible;
}
#else
static inline void prefill_possible_map(void) {}
#endif

void __init setup_arch(char **cmdline_p)
{
	cpu_probe();
	mips_cm_probe();
	prom_init();

	setup_early_fdc_console();
#ifdef CONFIG_EARLY_PRINTK
	setup_early_printk();
#endif
	cpu_report();
	check_bugs_early();

#if defined(CONFIG_VT)
#if defined(CONFIG_VGA_CONSOLE)
	conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
	conswitchp = &dummy_con;
#endif
#endif

	arch_mem_init(cmdline_p);

	resource_init();
	plat_smp_setup();
	prefill_possible_map();

	cpu_cache_init();
}

unsigned long kernelsp[NR_CPUS];
unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;

#ifdef CONFIG_USE_OF
unsigned long fw_passed_dtb;
#endif

#ifdef CONFIG_DEBUG_FS
struct dentry *mips_debugfs_dir;
static int __init debugfs_mips(void)
{
	struct dentry *d;

	d = debugfs_create_dir("mips", NULL);
	if (!d)
		return -ENOMEM;
	mips_debugfs_dir = d;
	return 0;
}
arch_initcall(debugfs_mips);
#endif