summaryrefslogtreecommitdiff
path: root/arch/arm/mach-omap2/gpmc-onenand.c
blob: 94a349e4dc966196d763a51f5f719c2fc071a7de (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
/*
 * linux/arch/arm/mach-omap2/gpmc-onenand.c
 *
 * Copyright (C) 2006 - 2009 Nokia Corporation
 * Contacts:	Juha Yrjola
 *		Tony Lindgren
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/mtd/onenand_regs.h>
#include <linux/io.h>
#include <linux/platform_data/mtd-onenand-omap2.h>
#include <linux/err.h>

#include <asm/mach/flash.h>

#include "gpmc.h"
#include "soc.h"
#include "gpmc-onenand.h"

#define	ONENAND_IO_SIZE	SZ_128K

#define	ONENAND_FLAG_SYNCREAD	(1 << 0)
#define	ONENAND_FLAG_SYNCWRITE	(1 << 1)
#define	ONENAND_FLAG_HF		(1 << 2)
#define	ONENAND_FLAG_VHF	(1 << 3)

static unsigned onenand_flags;
static unsigned latency;

static struct omap_onenand_platform_data *gpmc_onenand_data;

static struct resource gpmc_onenand_resource = {
	.flags		= IORESOURCE_MEM,
};

static struct platform_device gpmc_onenand_device = {
	.name		= "omap2-onenand",
	.id		= -1,
	.num_resources	= 1,
	.resource	= &gpmc_onenand_resource,
};

static struct gpmc_timings omap2_onenand_calc_async_timings(void)
{
	struct gpmc_device_timings dev_t;
	struct gpmc_timings t;

	const int t_cer = 15;
	const int t_avdp = 12;
	const int t_aavdh = 7;
	const int t_ce = 76;
	const int t_aa = 76;
	const int t_oe = 20;
	const int t_cez = 20; /* max of t_cez, t_oez */
	const int t_wpl = 40;
	const int t_wph = 30;

	memset(&dev_t, 0, sizeof(dev_t));

	dev_t.mux = true;
	dev_t.t_avdp_r = max_t(int, t_avdp, t_cer) * 1000;
	dev_t.t_avdp_w = dev_t.t_avdp_r;
	dev_t.t_aavdh = t_aavdh * 1000;
	dev_t.t_aa = t_aa * 1000;
	dev_t.t_ce = t_ce * 1000;
	dev_t.t_oe = t_oe * 1000;
	dev_t.t_cez_r = t_cez * 1000;
	dev_t.t_cez_w = dev_t.t_cez_r;
	dev_t.t_wpl = t_wpl * 1000;
	dev_t.t_wph = t_wph * 1000;

	gpmc_calc_timings(&t, &dev_t);

	return t;
}

static int gpmc_set_async_mode(int cs, struct gpmc_timings *t)
{
	/* Configure GPMC for asynchronous read */
	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
			  GPMC_CONFIG1_DEVICESIZE_16 |
			  GPMC_CONFIG1_MUXADDDATA);

	return gpmc_cs_set_timings(cs, t);
}

static void omap2_onenand_set_async_mode(void __iomem *onenand_base)
{
	u32 reg;

	/* Ensure sync read and sync write are disabled */
	reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
	reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
	writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
}

static void set_onenand_cfg(void __iomem *onenand_base)
{
	u32 reg;

	reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
	reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
	reg |=	(latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
		ONENAND_SYS_CFG1_BL_16;
	if (onenand_flags & ONENAND_FLAG_SYNCREAD)
		reg |= ONENAND_SYS_CFG1_SYNC_READ;
	else
		reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
	if (onenand_flags & ONENAND_FLAG_SYNCWRITE)
		reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
	else
		reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
	if (onenand_flags & ONENAND_FLAG_HF)
		reg |= ONENAND_SYS_CFG1_HF;
	else
		reg &= ~ONENAND_SYS_CFG1_HF;
	if (onenand_flags & ONENAND_FLAG_VHF)
		reg |= ONENAND_SYS_CFG1_VHF;
	else
		reg &= ~ONENAND_SYS_CFG1_VHF;
	writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
}

static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
				  void __iomem *onenand_base)
{
	u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
	int freq;

	switch ((ver >> 4) & 0xf) {
	case 0:
		freq = 40;
		break;
	case 1:
		freq = 54;
		break;
	case 2:
		freq = 66;
		break;
	case 3:
		freq = 83;
		break;
	case 4:
		freq = 104;
		break;
	default:
		freq = 54;
		break;
	}

	return freq;
}

static struct gpmc_timings
omap2_onenand_calc_sync_timings(struct omap_onenand_platform_data *cfg,
				int freq)
{
	struct gpmc_device_timings dev_t;
	struct gpmc_timings t;
	const int t_cer  = 15;
	const int t_avdp = 12;
	const int t_cez  = 20; /* max of t_cez, t_oez */
	const int t_wpl  = 40;
	const int t_wph  = 30;
	int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
	int div, gpmc_clk_ns;

	if (cfg->flags & ONENAND_SYNC_READ)
		onenand_flags = ONENAND_FLAG_SYNCREAD;
	else if (cfg->flags & ONENAND_SYNC_READWRITE)
		onenand_flags = ONENAND_FLAG_SYNCREAD | ONENAND_FLAG_SYNCWRITE;

	switch (freq) {
	case 104:
		min_gpmc_clk_period = 9600; /* 104 MHz */
		t_ces   = 3;
		t_avds  = 4;
		t_avdh  = 2;
		t_ach   = 3;
		t_aavdh = 6;
		t_rdyo  = 6;
		break;
	case 83:
		min_gpmc_clk_period = 12000; /* 83 MHz */
		t_ces   = 5;
		t_avds  = 4;
		t_avdh  = 2;
		t_ach   = 6;
		t_aavdh = 6;
		t_rdyo  = 9;
		break;
	case 66:
		min_gpmc_clk_period = 15000; /* 66 MHz */
		t_ces   = 6;
		t_avds  = 5;
		t_avdh  = 2;
		t_ach   = 6;
		t_aavdh = 6;
		t_rdyo  = 11;
		break;
	default:
		min_gpmc_clk_period = 18500; /* 54 MHz */
		t_ces   = 7;
		t_avds  = 7;
		t_avdh  = 7;
		t_ach   = 9;
		t_aavdh = 7;
		t_rdyo  = 15;
		onenand_flags &= ~ONENAND_FLAG_SYNCWRITE;
		break;
	}

	div = gpmc_calc_divider(min_gpmc_clk_period);
	gpmc_clk_ns = gpmc_ticks_to_ns(div);
	if (gpmc_clk_ns < 15) /* >66Mhz */
		onenand_flags |= ONENAND_FLAG_HF;
	else
		onenand_flags &= ~ONENAND_FLAG_HF;
	if (gpmc_clk_ns < 12) /* >83Mhz */
		onenand_flags |= ONENAND_FLAG_VHF;
	else
		onenand_flags &= ~ONENAND_FLAG_VHF;
	if (onenand_flags & ONENAND_FLAG_VHF)
		latency = 8;
	else if (onenand_flags & ONENAND_FLAG_HF)
		latency = 6;
	else if (gpmc_clk_ns >= 25) /* 40 MHz*/
		latency = 3;
	else
		latency = 4;

	/* Set synchronous read timings */
	memset(&dev_t, 0, sizeof(dev_t));

	dev_t.mux = true;
	dev_t.sync_read = true;
	if (onenand_flags & ONENAND_FLAG_SYNCWRITE) {
		dev_t.sync_write = true;
	} else {
		dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
		dev_t.t_wpl = t_wpl * 1000;
		dev_t.t_wph = t_wph * 1000;
		dev_t.t_aavdh = t_aavdh * 1000;
	}
	dev_t.ce_xdelay = true;
	dev_t.avd_xdelay = true;
	dev_t.oe_xdelay = true;
	dev_t.we_xdelay = true;
	dev_t.clk = min_gpmc_clk_period;
	dev_t.t_bacc = dev_t.clk;
	dev_t.t_ces = t_ces * 1000;
	dev_t.t_avds = t_avds * 1000;
	dev_t.t_avdh = t_avdh * 1000;
	dev_t.t_ach = t_ach * 1000;
	dev_t.cyc_iaa = (latency + 1);
	dev_t.t_cez_r = t_cez * 1000;
	dev_t.t_cez_w = dev_t.t_cez_r;
	dev_t.cyc_aavdh_oe = 1;
	dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;

	gpmc_calc_timings(&t, &dev_t);

	return t;
}

static int gpmc_set_sync_mode(int cs, struct gpmc_timings *t)
{
	unsigned sync_read = onenand_flags & ONENAND_FLAG_SYNCREAD;
	unsigned sync_write = onenand_flags & ONENAND_FLAG_SYNCWRITE;

	/* Configure GPMC for synchronous read */
	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
			  GPMC_CONFIG1_WRAPBURST_SUPP |
			  GPMC_CONFIG1_READMULTIPLE_SUPP |
			  (sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
			  (sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
			  (sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
			  GPMC_CONFIG1_PAGE_LEN(2) |
			  (cpu_is_omap34xx() ? 0 :
				(GPMC_CONFIG1_WAIT_READ_MON |
				 GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
			  GPMC_CONFIG1_DEVICESIZE_16 |
			  GPMC_CONFIG1_DEVICETYPE_NOR |
			  GPMC_CONFIG1_MUXADDDATA);

	return gpmc_cs_set_timings(cs, t);
}

static int omap2_onenand_setup_async(void __iomem *onenand_base)
{
	struct gpmc_timings t;
	int ret;

	omap2_onenand_set_async_mode(onenand_base);

	t = omap2_onenand_calc_async_timings();

	ret = gpmc_set_async_mode(gpmc_onenand_data->cs, &t);
	if (IS_ERR_VALUE(ret))
		return ret;

	omap2_onenand_set_async_mode(onenand_base);

	return 0;
}

static int omap2_onenand_setup_sync(void __iomem *onenand_base, int *freq_ptr)
{
	int ret, freq = *freq_ptr;
	struct gpmc_timings t;

	if (!freq) {
		/* Very first call freq is not known */
		freq = omap2_onenand_get_freq(gpmc_onenand_data, onenand_base);
		set_onenand_cfg(onenand_base);
	}

	t = omap2_onenand_calc_sync_timings(gpmc_onenand_data, freq);

	ret = gpmc_set_sync_mode(gpmc_onenand_data->cs, &t);
	if (IS_ERR_VALUE(ret))
		return ret;

	set_onenand_cfg(onenand_base);

	*freq_ptr = freq;

	return 0;
}

static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
{
	struct device *dev = &gpmc_onenand_device.dev;
	unsigned l = ONENAND_SYNC_READ | ONENAND_SYNC_READWRITE;
	int ret;

	ret = omap2_onenand_setup_async(onenand_base);
	if (ret) {
		dev_err(dev, "unable to set to async mode\n");
		return ret;
	}

	if (!(gpmc_onenand_data->flags & l))
		return 0;

	ret = omap2_onenand_setup_sync(onenand_base, freq_ptr);
	if (ret)
		dev_err(dev, "unable to set to sync mode\n");
	return ret;
}

void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
{
	int err;

	gpmc_onenand_data = _onenand_data;
	gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
	gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;

	if (cpu_is_omap24xx() &&
			(gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
		printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
		gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
		gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
	}

	if (cpu_is_omap34xx())
		gpmc_onenand_data->flags |= ONENAND_IN_OMAP34XX;
	else
		gpmc_onenand_data->flags &= ~ONENAND_IN_OMAP34XX;

	err = gpmc_cs_request(gpmc_onenand_data->cs, ONENAND_IO_SIZE,
				(unsigned long *)&gpmc_onenand_resource.start);
	if (err < 0) {
		pr_err("%s: Cannot request GPMC CS\n", __func__);
		return;
	}

	gpmc_onenand_resource.end = gpmc_onenand_resource.start +
							ONENAND_IO_SIZE - 1;

	if (platform_device_register(&gpmc_onenand_device) < 0) {
		pr_err("%s: Unable to register OneNAND device\n", __func__);
		gpmc_cs_free(gpmc_onenand_data->cs);
		return;
	}
}