summaryrefslogtreecommitdiff
path: root/arch/arm/crypto/blake2b-neon-core.S
blob: 0406a186377fb4a93f04568101b138050bece0c8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * BLAKE2b digest algorithm, NEON accelerated
 *
 * Copyright 2020 Google LLC
 *
 * Author: Eric Biggers <ebiggers@google.com>
 */

#include <linux/linkage.h>

	.text
	.fpu		neon

	// The arguments to blake2b_compress_neon()
	STATE		.req	r0
	BLOCK		.req	r1
	NBLOCKS		.req	r2
	INC		.req	r3

	// Pointers to the rotation tables
	ROR24_TABLE	.req	r4
	ROR16_TABLE	.req	r5

	// The original stack pointer
	ORIG_SP		.req	r6

	// NEON registers which contain the message words of the current block.
	// M_0-M_3 are occasionally used for other purposes too.
	M_0		.req	d16
	M_1		.req	d17
	M_2		.req	d18
	M_3		.req	d19
	M_4		.req	d20
	M_5		.req	d21
	M_6		.req	d22
	M_7		.req	d23
	M_8		.req	d24
	M_9		.req	d25
	M_10		.req	d26
	M_11		.req	d27
	M_12		.req	d28
	M_13		.req	d29
	M_14		.req	d30
	M_15		.req	d31

	.align		4
	// Tables for computing ror64(x, 24) and ror64(x, 16) using the vtbl.8
	// instruction.  This is the most efficient way to implement these
	// rotation amounts with NEON.  (On Cortex-A53 it's the same speed as
	// vshr.u64 + vsli.u64, while on Cortex-A7 it's faster.)
.Lror24_table:
	.byte		3, 4, 5, 6, 7, 0, 1, 2
.Lror16_table:
	.byte		2, 3, 4, 5, 6, 7, 0, 1
	// The BLAKE2b initialization vector
.Lblake2b_IV:
	.quad		0x6a09e667f3bcc908, 0xbb67ae8584caa73b
	.quad		0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1
	.quad		0x510e527fade682d1, 0x9b05688c2b3e6c1f
	.quad		0x1f83d9abfb41bd6b, 0x5be0cd19137e2179

// Execute one round of BLAKE2b by updating the state matrix v[0..15] in the
// NEON registers q0-q7.  The message block is in q8..q15 (M_0-M_15).  The stack
// pointer points to a 32-byte aligned buffer containing a copy of q8 and q9
// (M_0-M_3), so that they can be reloaded if they are used as temporary
// registers.  The macro arguments s0-s15 give the order in which the message
// words are used in this round.  'final' is 1 if this is the final round.
.macro	_blake2b_round	s0, s1, s2, s3, s4, s5, s6, s7, \
			s8, s9, s10, s11, s12, s13, s14, s15, final=0

	// Mix the columns:
	// (v[0], v[4], v[8], v[12]), (v[1], v[5], v[9], v[13]),
	// (v[2], v[6], v[10], v[14]), and (v[3], v[7], v[11], v[15]).

	// a += b + m[blake2b_sigma[r][2*i + 0]];
	vadd.u64	q0, q0, q2
	vadd.u64	q1, q1, q3
	vadd.u64	d0, d0, M_\s0
	vadd.u64	d1, d1, M_\s2
	vadd.u64	d2, d2, M_\s4
	vadd.u64	d3, d3, M_\s6

	// d = ror64(d ^ a, 32);
	veor		q6, q6, q0
	veor		q7, q7, q1
	vrev64.32	q6, q6
	vrev64.32	q7, q7

	// c += d;
	vadd.u64	q4, q4, q6
	vadd.u64	q5, q5, q7

	// b = ror64(b ^ c, 24);
	vld1.8		{M_0}, [ROR24_TABLE, :64]
	veor		q2, q2, q4
	veor		q3, q3, q5
	vtbl.8		d4, {d4}, M_0
	vtbl.8		d5, {d5}, M_0
	vtbl.8		d6, {d6}, M_0
	vtbl.8		d7, {d7}, M_0

	// a += b + m[blake2b_sigma[r][2*i + 1]];
	//
	// M_0 got clobbered above, so we have to reload it if any of the four
	// message words this step needs happens to be M_0.  Otherwise we don't
	// need to reload it here, as it will just get clobbered again below.
.if \s1 == 0 || \s3 == 0 || \s5 == 0 || \s7 == 0
	vld1.8		{M_0}, [sp, :64]
.endif
	vadd.u64	q0, q0, q2
	vadd.u64	q1, q1, q3
	vadd.u64	d0, d0, M_\s1
	vadd.u64	d1, d1, M_\s3
	vadd.u64	d2, d2, M_\s5
	vadd.u64	d3, d3, M_\s7

	// d = ror64(d ^ a, 16);
	vld1.8		{M_0}, [ROR16_TABLE, :64]
	veor		q6, q6, q0
	veor		q7, q7, q1
	vtbl.8		d12, {d12}, M_0
	vtbl.8		d13, {d13}, M_0
	vtbl.8		d14, {d14}, M_0
	vtbl.8		d15, {d15}, M_0

	// c += d;
	vadd.u64	q4, q4, q6
	vadd.u64	q5, q5, q7

	// b = ror64(b ^ c, 63);
	//
	// This rotation amount isn't a multiple of 8, so it has to be
	// implemented using a pair of shifts, which requires temporary
	// registers.  Use q8-q9 (M_0-M_3) for this, and reload them afterwards.
	veor		q8, q2, q4
	veor		q9, q3, q5
	vshr.u64	q2, q8, #63
	vshr.u64	q3, q9, #63
	vsli.u64	q2, q8, #1
	vsli.u64	q3, q9, #1
	vld1.8		{q8-q9}, [sp, :256]

	// Mix the diagonals:
	// (v[0], v[5], v[10], v[15]), (v[1], v[6], v[11], v[12]),
	// (v[2], v[7], v[8], v[13]), and (v[3], v[4], v[9], v[14]).
	//
	// There are two possible ways to do this: use 'vext' instructions to
	// shift the rows of the matrix so that the diagonals become columns,
	// and undo it afterwards; or just use 64-bit operations on 'd'
	// registers instead of 128-bit operations on 'q' registers.  We use the
	// latter approach, as it performs much better on Cortex-A7.

	// a += b + m[blake2b_sigma[r][2*i + 0]];
	vadd.u64	d0, d0, d5
	vadd.u64	d1, d1, d6
	vadd.u64	d2, d2, d7
	vadd.u64	d3, d3, d4
	vadd.u64	d0, d0, M_\s8
	vadd.u64	d1, d1, M_\s10
	vadd.u64	d2, d2, M_\s12
	vadd.u64	d3, d3, M_\s14

	// d = ror64(d ^ a, 32);
	veor		d15, d15, d0
	veor		d12, d12, d1
	veor		d13, d13, d2
	veor		d14, d14, d3
	vrev64.32	d15, d15
	vrev64.32	d12, d12
	vrev64.32	d13, d13
	vrev64.32	d14, d14

	// c += d;
	vadd.u64	d10, d10, d15
	vadd.u64	d11, d11, d12
	vadd.u64	d8, d8, d13
	vadd.u64	d9, d9, d14

	// b = ror64(b ^ c, 24);
	vld1.8		{M_0}, [ROR24_TABLE, :64]
	veor		d5, d5, d10
	veor		d6, d6, d11
	veor		d7, d7, d8
	veor		d4, d4, d9
	vtbl.8		d5, {d5}, M_0
	vtbl.8		d6, {d6}, M_0
	vtbl.8		d7, {d7}, M_0
	vtbl.8		d4, {d4}, M_0

	// a += b + m[blake2b_sigma[r][2*i + 1]];
.if \s9 == 0 || \s11 == 0 || \s13 == 0 || \s15 == 0
	vld1.8		{M_0}, [sp, :64]
.endif
	vadd.u64	d0, d0, d5
	vadd.u64	d1, d1, d6
	vadd.u64	d2, d2, d7
	vadd.u64	d3, d3, d4
	vadd.u64	d0, d0, M_\s9
	vadd.u64	d1, d1, M_\s11
	vadd.u64	d2, d2, M_\s13
	vadd.u64	d3, d3, M_\s15

	// d = ror64(d ^ a, 16);
	vld1.8		{M_0}, [ROR16_TABLE, :64]
	veor		d15, d15, d0
	veor		d12, d12, d1
	veor		d13, d13, d2
	veor		d14, d14, d3
	vtbl.8		d12, {d12}, M_0
	vtbl.8		d13, {d13}, M_0
	vtbl.8		d14, {d14}, M_0
	vtbl.8		d15, {d15}, M_0

	// c += d;
	vadd.u64	d10, d10, d15
	vadd.u64	d11, d11, d12
	vadd.u64	d8, d8, d13
	vadd.u64	d9, d9, d14

	// b = ror64(b ^ c, 63);
	veor		d16, d4, d9
	veor		d17, d5, d10
	veor		d18, d6, d11
	veor		d19, d7, d8
	vshr.u64	q2, q8, #63
	vshr.u64	q3, q9, #63
	vsli.u64	q2, q8, #1
	vsli.u64	q3, q9, #1
	// Reloading q8-q9 can be skipped on the final round.
.if ! \final
	vld1.8		{q8-q9}, [sp, :256]
.endif
.endm

//
// void blake2b_compress_neon(struct blake2b_state *state,
//			      const u8 *block, size_t nblocks, u32 inc);
//
// Only the first three fields of struct blake2b_state are used:
//	u64 h[8];	(inout)
//	u64 t[2];	(inout)
//	u64 f[2];	(in)
//
	.align		5
ENTRY(blake2b_compress_neon)
	push		{r4-r10}

	// Allocate a 32-byte stack buffer that is 32-byte aligned.
	mov		ORIG_SP, sp
	sub		ip, sp, #32
	bic		ip, ip, #31
	mov		sp, ip

	adr		ROR24_TABLE, .Lror24_table
	adr		ROR16_TABLE, .Lror16_table

	mov		ip, STATE
	vld1.64		{q0-q1}, [ip]!		// Load h[0..3]
	vld1.64		{q2-q3}, [ip]!		// Load h[4..7]
.Lnext_block:
	  adr		r10, .Lblake2b_IV
	vld1.64		{q14-q15}, [ip]		// Load t[0..1] and f[0..1]
	vld1.64		{q4-q5}, [r10]!		// Load IV[0..3]
	  vmov		r7, r8, d28		// Copy t[0] to (r7, r8)
	vld1.64		{q6-q7}, [r10]		// Load IV[4..7]
	  adds		r7, r7, INC		// Increment counter
	bcs		.Lslow_inc_ctr
	vmov.i32	d28[0], r7
	vst1.64		{d28}, [ip]		// Update t[0]
.Linc_ctr_done:

	// Load the next message block and finish initializing the state matrix
	// 'v'.  Fortunately, there are exactly enough NEON registers to fit the
	// entire state matrix in q0-q7 and the entire message block in q8-15.
	//
	// However, _blake2b_round also needs some extra registers for rotates,
	// so we have to spill some registers.  It's better to spill the message
	// registers than the state registers, as the message doesn't change.
	// Therefore we store a copy of the first 32 bytes of the message block
	// (q8-q9) in an aligned buffer on the stack so that they can be
	// reloaded when needed.  (We could just reload directly from the
	// message buffer, but it's faster to use aligned loads.)
	vld1.8		{q8-q9}, [BLOCK]!
	  veor		q6, q6, q14	// v[12..13] = IV[4..5] ^ t[0..1]
	vld1.8		{q10-q11}, [BLOCK]!
	  veor		q7, q7, q15	// v[14..15] = IV[6..7] ^ f[0..1]
	vld1.8		{q12-q13}, [BLOCK]!
	vst1.8		{q8-q9}, [sp, :256]
	  mov		ip, STATE
	vld1.8		{q14-q15}, [BLOCK]!

	// Execute the rounds.  Each round is provided the order in which it
	// needs to use the message words.
	_blake2b_round	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
	_blake2b_round	14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3
	_blake2b_round	11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4
	_blake2b_round	7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8
	_blake2b_round	9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13
	_blake2b_round	2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9
	_blake2b_round	12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11
	_blake2b_round	13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10
	_blake2b_round	6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5
	_blake2b_round	10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0
	_blake2b_round	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
	_blake2b_round	14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 \
			final=1

	// Fold the final state matrix into the hash chaining value:
	//
	//	for (i = 0; i < 8; i++)
	//		h[i] ^= v[i] ^ v[i + 8];
	//
	  vld1.64	{q8-q9}, [ip]!		// Load old h[0..3]
	veor		q0, q0, q4		// v[0..1] ^= v[8..9]
	veor		q1, q1, q5		// v[2..3] ^= v[10..11]
	  vld1.64	{q10-q11}, [ip]		// Load old h[4..7]
	veor		q2, q2, q6		// v[4..5] ^= v[12..13]
	veor		q3, q3, q7		// v[6..7] ^= v[14..15]
	veor		q0, q0, q8		// v[0..1] ^= h[0..1]
	veor		q1, q1, q9		// v[2..3] ^= h[2..3]
	  mov		ip, STATE
	  subs		NBLOCKS, NBLOCKS, #1	// nblocks--
	  vst1.64	{q0-q1}, [ip]!		// Store new h[0..3]
	veor		q2, q2, q10		// v[4..5] ^= h[4..5]
	veor		q3, q3, q11		// v[6..7] ^= h[6..7]
	  vst1.64	{q2-q3}, [ip]!		// Store new h[4..7]

	// Advance to the next block, if there is one.
	bne		.Lnext_block		// nblocks != 0?

	mov		sp, ORIG_SP
	pop		{r4-r10}
	mov		pc, lr

.Lslow_inc_ctr:
	// Handle the case where the counter overflowed its low 32 bits, by
	// carrying the overflow bit into the full 128-bit counter.
	vmov		r9, r10, d29
	adcs		r8, r8, #0
	adcs		r9, r9, #0
	adc		r10, r10, #0
	vmov		d28, r7, r8
	vmov		d29, r9, r10
	vst1.64		{q14}, [ip]		// Update t[0] and t[1]
	b		.Linc_ctr_done
ENDPROC(blake2b_compress_neon)