summaryrefslogtreecommitdiff
path: root/mm/slub.c
AgeCommit message (Collapse)Author
2024-12-10memcg: slub: fix SUnreclaim for post charged objectsShakeel Butt
Large kmalloc directly allocates from the page allocator and then use lruvec_stat_mod_folio() to increment the unreclaimable slab stats for global and memcg. However when post memcg charging of slab objects was added in commit 9028cdeb38e1 ("memcg: add charging of already allocated slab objects"), it missed to correctly handle the unreclaimable slab stats for memcg. One user visisble effect of that bug is that the node level unreclaimable slab stat will work correctly but the memcg level stat can underflow as kernel correctly handles the free path but the charge path missed to increment the memcg level unreclaimable slab stat. Let's fix by correctly handle in the post charge code path. Fixes: 9028cdeb38e1 ("memcg: add charging of already allocated slab objects") Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: <stable@vger.kernel.org> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-11-16Merge branch 'slab/for-6.13/features' into slab/for-nextVlastimil Babka
Merge the slab feature branch for 6.13: - Add new slab_strict_numa parameter for per-object memory policies (Christoph Lameter)
2024-11-16mm/slab: Allow cache creation to proceed even if sysfs registration failsHyeonggon Yoo
When kobject_init_and_add() fails during cache creation, kobj->name can be leaked because SLUB does not call kobject_put(), which should be invoked per the kobject API documentation. This has a bit of historical context, though; SLUB does not call kobject_put() to avoid double-free for struct kmem_cache because 1) simply calling it would free all resources related to the cache, and 2) struct kmem_cache descriptor is always freed by cache_cache()'s error handling path, causing struct kmem_cache to be freed twice. This issue can be reproduced by creating new slab caches while applying failslab for kernfs_node_cache. This makes kobject_add_varg() succeed, but causes kobject_add_internal() to fail in kobject_init_and_add() during cache creation. Historically, this issue has attracted developers' attention several times. Each time a fix addressed either the leak or the double-free, it caused the other issue. Let's summarize a bit of history here: The leak has existed since the early days of SLUB. Commit 54b6a731025f ("slub: fix leak of 'name' in sysfs_slab_add") introduced a double-free bug while fixing the leak. Commit 80da026a8e5d ("mm/slub: fix slab double-free in case of duplicate sysfs filename") re-introduced the leak while fixing the double-free error. Commit dde3c6b72a16 ("mm/slub: fix a memory leak in sysfs_slab_add()") fixed the memory leak, but it was later reverted by commit 757fed1d0898 ("Revert "mm/slub: fix a memory leak in sysfs_slab_add()"") to avoid the double-free error. This is where we are now: we've chosen a memory leak over a double-free. To resolve this memory leak, skip creating sysfs files if it fails and continue with cache creation regardless (as suggested by Christoph). This resolves the memory leak because both the cache and the kobject remain alive on kobject_init_and_add() failure. If SLUB tries to create an alias for a cache without sysfs files, its symbolic link will not be generated. Since a slab cache might not have associated sysfs files, call kobject_del() only if such files exist. Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-11-16mm/slub: Avoid list corruption when removing a slab from the full listyuan.gao
Boot with slub_debug=UFPZ. If allocated object failed in alloc_consistency_checks, all objects of the slab will be marked as used, and then the slab will be removed from the partial list. When an object belonging to the slab got freed later, the remove_full() function is called. Because the slab is neither on the partial list nor on the full list, it eventually lead to a list corruption (actually a list poison being detected). So we need to mark and isolate the slab page with metadata corruption, do not put it back in circulation. Because the debug caches avoid all the fastpaths, reusing the frozen bit to mark slab page with metadata corruption seems to be fine. [ 4277.385669] list_del corruption, ffffea00044b3e50->next is LIST_POISON1 (dead000000000100) [ 4277.387023] ------------[ cut here ]------------ [ 4277.387880] kernel BUG at lib/list_debug.c:56! [ 4277.388680] invalid opcode: 0000 [#1] PREEMPT SMP PTI [ 4277.389562] CPU: 5 PID: 90 Comm: kworker/5:1 Kdump: loaded Tainted: G OE 6.6.1-1 #1 [ 4277.392113] Workqueue: xfs-inodegc/vda1 xfs_inodegc_worker [xfs] [ 4277.393551] RIP: 0010:__list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.394518] Code: 48 91 82 e8 37 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 28 49 91 82 e8 26 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 58 49 91 [ 4277.397292] RSP: 0018:ffffc90000333b38 EFLAGS: 00010082 [ 4277.398202] RAX: 000000000000004e RBX: ffffea00044b3e50 RCX: 0000000000000000 [ 4277.399340] RDX: 0000000000000002 RSI: ffffffff828f8715 RDI: 00000000ffffffff [ 4277.400545] RBP: ffffea00044b3e40 R08: 0000000000000000 R09: ffffc900003339f0 [ 4277.401710] R10: 0000000000000003 R11: ffffffff82d44088 R12: ffff888112cf9910 [ 4277.402887] R13: 0000000000000001 R14: 0000000000000001 R15: ffff8881000424c0 [ 4277.404049] FS: 0000000000000000(0000) GS:ffff88842fd40000(0000) knlGS:0000000000000000 [ 4277.405357] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4277.406389] CR2: 00007f2ad0b24000 CR3: 0000000102a3a006 CR4: 00000000007706e0 [ 4277.407589] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 4277.408780] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 4277.410000] PKRU: 55555554 [ 4277.410645] Call Trace: [ 4277.411234] <TASK> [ 4277.411777] ? die+0x32/0x80 [ 4277.412439] ? do_trap+0xd6/0x100 [ 4277.413150] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.414158] ? do_error_trap+0x6a/0x90 [ 4277.414948] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.415915] ? exc_invalid_op+0x4c/0x60 [ 4277.416710] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.417675] ? asm_exc_invalid_op+0x16/0x20 [ 4277.418482] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.419466] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.420410] free_to_partial_list+0x515/0x5e0 [ 4277.421242] ? xfs_iext_remove+0x41a/0xa10 [xfs] [ 4277.422298] xfs_iext_remove+0x41a/0xa10 [xfs] [ 4277.423316] ? xfs_inodegc_worker+0xb4/0x1a0 [xfs] [ 4277.424383] xfs_bmap_del_extent_delay+0x4fe/0x7d0 [xfs] [ 4277.425490] __xfs_bunmapi+0x50d/0x840 [xfs] [ 4277.426445] xfs_itruncate_extents_flags+0x13a/0x490 [xfs] [ 4277.427553] xfs_inactive_truncate+0xa3/0x120 [xfs] [ 4277.428567] xfs_inactive+0x22d/0x290 [xfs] [ 4277.429500] xfs_inodegc_worker+0xb4/0x1a0 [xfs] [ 4277.430479] process_one_work+0x171/0x340 [ 4277.431227] worker_thread+0x277/0x390 [ 4277.431962] ? __pfx_worker_thread+0x10/0x10 [ 4277.432752] kthread+0xf0/0x120 [ 4277.433382] ? __pfx_kthread+0x10/0x10 [ 4277.434134] ret_from_fork+0x2d/0x50 [ 4277.434837] ? __pfx_kthread+0x10/0x10 [ 4277.435566] ret_from_fork_asm+0x1b/0x30 [ 4277.436280] </TASK> Fixes: 643b113849d8 ("slub: enable tracking of full slabs") Suggested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: yuan.gao <yuan.gao@ucloud.cn> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-11-16mm/slub: Improve redzone check and zeroing for krealloc()Feng Tang
For current krealloc(), one problem is its caller doesn't pass the old request size, say the object is 64 bytes kmalloc one, but caller may only requested 48 bytes. Then when krealloc() shrinks or grows in the same object, or allocate a new bigger object, it lacks this 'original size' information to do accurate data preserving or zeroing (when __GFP_ZERO is set). Thus with slub debug redzone and object tracking enabled, parts of the object after krealloc() might contain redzone data instead of zeroes, which is violating the __GFP_ZERO guarantees. Good thing is in this case, kmalloc caches do have this 'orig_size' feature. So solve the problem by utilize 'org_size' to do accurate data zeroing and preserving. [Thanks to syzbot and V, Narasimhan for discovering kfence and big kmalloc related issues in early patch version] Suggested-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-11-16mm/slub: Consider kfence case for get_orig_size()Feng Tang
When 'orig_size' of kmalloc object is enabled by debug option, it should either contains the actual requested size or the cache's 'object_size'. But it's not true if that object is a kfence-allocated one, and the data at 'orig_size' offset of metadata could be zero or other values. This is not a big issue for current 'orig_size' usage, as init_object() and check_object() during alloc/free process will be skipped for kfence addresses. But it could cause trouble for other usage in future. Use the existing kfence helper kfence_ksize() which can return the real original request size. Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-10-29SLUB: Add support for per object memory policiesChristoph Lameter
The old SLAB allocator used to support memory policies on a per allocation bases. In SLUB the memory policies are applied on a per page frame / folio bases. Doing so avoids having to check memory policies in critical code paths for kmalloc and friends. This worked on general well on Intel/AMD/PowerPC because the interconnect technology is mature and can minimize the latencies through intelligent caching even if a small object is not placed optimally. However, on ARM we have an emergence of new NUMA interconnect technology based more on embedded devices. Caching of remote content can currently be ineffective using the standard building blocks / mesh available on that platform. Such architectures benefit if each slab object is individually placed according to memory policies and other restrictions. This patch adds another kernel parameter slab_strict_numa If that is set then a static branch is activated that will cause the hotpaths of the allocator to evaluate the current memory allocation policy. Each object will be properly placed by paying the price of extra processing and SLUB will no longer defer to the page allocator to apply memory policies at the folio level. This patch improves performance of memcached running on Ampere Altra 2P system (ARM Neoverse N1 processor) by 3.6% due to accurate placement of small kernel objects. Tested-by: Huang Shijie <shijie@os.amperecomputing.com> Signed-off-by: Christoph Lameter (Ampere) <cl@gentwo.org> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-10-29mm/slub: Move krealloc() and related code to slub.cFeng Tang
This is a preparation for the following refactoring of krealloc(), for more efficient function calling as it will call some internal functions defined in slub.c. Signed-off-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-10-29mm/kasan: Don't store metadata inside kmalloc object when ↵Feng Tang
slub_debug_orig_size is on For a kmalloc object, when both kasan and slub redzone sanity check are enabled, they could both manipulate its data space like storing kasan free meta data and setting up kmalloc redzone, and may affect accuracy of that object's 'orig_size'. As an accurate 'orig_size' will be needed by some function like krealloc() soon, save kasan's free meta data in slub's metadata area instead of inside object when 'orig_size' is enabled. This will make it easier to maintain/understand the code. Size wise, when these two options are both enabled, the slub meta data space is already huge, and this just slightly increase the overall size. Signed-off-by: Feng Tang <feng.tang@intel.com> Acked-by: Andrey Konovalov <andreyknvl@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-10-02mm, slab: suppress warnings in test_leak_destroy kunit testVlastimil Babka
The test_leak_destroy kunit test intends to test the detection of stray objects in kmem_cache_destroy(), which normally produces a warning. The other slab kunit tests suppress the warnings in the kunit test context, so suppress warnings and related printk output in this test as well. Automated test running environments then don't need to learn to filter the warnings. Also rename the test's kmem_cache, the name was wrongly copy-pasted from test_kfree_rcu. Fixes: 4e1c44b3db79 ("kunit, slub: add test_kfree_rcu() and test_leak_destroy()") Reported-by: kernel test robot <oliver.sang@intel.com> Closes: https://lore.kernel.org/oe-lkp/202408251723.42f3d902-oliver.sang@intel.com Reported-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Closes: https://lore.kernel.org/all/CAB=+i9RHHbfSkmUuLshXGY_ifEZg9vCZi3fqr99+kmmnpDus7Q@mail.gmail.com/ Reported-by: Guenter Roeck <linux@roeck-us.net> Closes: https://lore.kernel.org/all/6fcb1252-7990-4f0d-8027-5e83f0fb9409@roeck-us.net/ Tested-by: Guenter Roeck <linux@roeck-us.net> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-09-18Merge tag 'slab-for-6.12' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab Pull slab updates from Vlastimil Babka: "This time it's mostly refactoring and improving APIs for slab users in the kernel, along with some debugging improvements. - kmem_cache_create() refactoring (Christian Brauner) Over the years have been growing new parameters to kmem_cache_create() where most of them are needed only for a small number of caches - most recently the rcu_freeptr_offset parameter. To avoid adding new parameters to kmem_cache_create() and adjusting all its callers, or creating new wrappers such as kmem_cache_create_rcu(), we can now pass extra parameters using the new struct kmem_cache_args. Not explicitly initialized fields default to values interpreted as unused. kmem_cache_create() is for now a wrapper that works both with the new form: kmem_cache_create(name, object_size, args, flags) and the legacy form: kmem_cache_create(name, object_size, align, flags, ctor) - kmem_cache_destroy() waits for kfree_rcu()'s in flight (Vlastimil Babka, Uladislau Rezki) Since SLOB removal, kfree() is allowed for freeing objects allocated by kmem_cache_create(). By extension kfree_rcu() as allowed as well, which can allow converting simple call_rcu() callbacks that only do kmem_cache_free(), as there was never a kmem_cache_free_rcu() variant. However, for caches that can be destroyed e.g. on module removal, the cache owners knew to issue rcu_barrier() first to wait for the pending call_rcu()'s, and this is not sufficient for pending kfree_rcu()'s due to its internal batching optimizations. Ulad has provided a new kvfree_rcu_barrier() and to make the usage less error-prone, kmem_cache_destroy() calls it. Additionally, destroying SLAB_TYPESAFE_BY_RCU caches now again issues rcu_barrier() synchronously instead of using an async work, because the past motivation for async work no longer applies. Users of custom call_rcu() callbacks should however keep calling rcu_barrier() before cache destruction. - Debugging use-after-free in SLAB_TYPESAFE_BY_RCU caches (Jann Horn) Currently, KASAN cannot catch UAFs in such caches as it is legal to access them within a grace period, and we only track the grace period when trying to free the underlying slab page. The new CONFIG_SLUB_RCU_DEBUG option changes the freeing of individual object to be RCU-delayed, after which KASAN can poison them. - Delayed memcg charging (Shakeel Butt) In some cases, the memcg is uknown at allocation time, such as receiving network packets in softirq context. With kmem_cache_charge() these may be now charged later when the user and its memcg is known. - Misc fixes and improvements (Pedro Falcato, Axel Rasmussen, Christoph Lameter, Yan Zhen, Peng Fan, Xavier)" * tag 'slab-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (34 commits) mm, slab: restore kerneldoc for kmem_cache_create() io_uring: port to struct kmem_cache_args slab: make __kmem_cache_create() static inline slab: make kmem_cache_create_usercopy() static inline slab: remove kmem_cache_create_rcu() file: port to struct kmem_cache_args slab: create kmem_cache_create() compatibility layer slab: port KMEM_CACHE_USERCOPY() to struct kmem_cache_args slab: port KMEM_CACHE() to struct kmem_cache_args slab: remove rcu_freeptr_offset from struct kmem_cache slab: pass struct kmem_cache_args to do_kmem_cache_create() slab: pull kmem_cache_open() into do_kmem_cache_create() slab: pass struct kmem_cache_args to create_cache() slab: port kmem_cache_create_usercopy() to struct kmem_cache_args slab: port kmem_cache_create_rcu() to struct kmem_cache_args slab: port kmem_cache_create() to struct kmem_cache_args slab: add struct kmem_cache_args slab: s/__kmem_cache_create/do_kmem_cache_create/g memcg: add charging of already allocated slab objects mm/slab: Optimize the code logic in find_mergeable() ...
2024-09-16Merge tag 'vfs-6.12.file' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull vfs file updates from Christian Brauner: "This is the work to cleanup and shrink struct file significantly. Right now, (focusing on x86) struct file is 232 bytes. After this series struct file will be 184 bytes aka 3 cacheline and a spare 8 bytes for future extensions at the end of the struct. With struct file being as ubiquitous as it is this should make a difference for file heavy workloads and allow further optimizations in the future. - struct fown_struct was embedded into struct file letting it take up 32 bytes in total when really it shouldn't even be embedded in struct file in the first place. Instead, actual users of struct fown_struct now allocate the struct on demand. This frees up 24 bytes. - Move struct file_ra_state into the union containg the cleanup hooks and move f_iocb_flags out of the union. This closes a 4 byte hole we created earlier and brings struct file to 192 bytes. Which means struct file is 3 cachelines and we managed to shrink it by 40 bytes. - Reorder struct file so that nothing crosses a cacheline. I suspect that in the future we will end up reordering some members to mitigate false sharing issues or just because someone does actually provide really good perf data. - Shrinking struct file to 192 bytes is only part of the work. Files use a slab that is SLAB_TYPESAFE_BY_RCU and when a kmem cache is created with SLAB_TYPESAFE_BY_RCU the free pointer must be located outside of the object because the cache doesn't know what part of the memory can safely be overwritten as it may be needed to prevent object recycling. That has the consequence that SLAB_TYPESAFE_BY_RCU may end up adding a new cacheline. So this also contains work to add a new kmem_cache_create_rcu() function that allows the caller to specify an offset where the freelist pointer is supposed to be placed. Thus avoiding the implicit addition of a fourth cacheline. - And finally this removes the f_version member in struct file. The f_version member isn't particularly well-defined. It is mainly used as a cookie to detect concurrent seeks when iterating directories. But it is also abused by some subsystems for completely unrelated things. It is mostly a directory and filesystem specific thing that doesn't really need to live in struct file and with its wonky semantics it really lacks a specific function. For pipes, f_version is (ab)used to defer poll notifications until a write has happened. And struct pipe_inode_info is used by multiple struct files in their ->private_data so there's no chance of pushing that down into file->private_data without introducing another pointer indirection. But pipes don't rely on f_pos_lock so this adds a union into struct file encompassing f_pos_lock and a pipe specific f_pipe member that pipes can use. This union of course can be extended to other file types and is similar to what we do in struct inode already" * tag 'vfs-6.12.file' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (26 commits) fs: remove f_version pipe: use f_pipe fs: add f_pipe ubifs: store cookie in private data ufs: store cookie in private data udf: store cookie in private data proc: store cookie in private data ocfs2: store cookie in private data input: remove f_version abuse ext4: store cookie in private data ext2: store cookie in private data affs: store cookie in private data fs: add generic_llseek_cookie() fs: use must_set_pos() fs: add must_set_pos() fs: add vfs_setpos_cookie() s390: remove unused f_version ceph: remove unused f_version adi: remove unused f_version mm: Removed @freeptr_offset to prevent doc warning ...
2024-09-13Merge branch 'slab/for-6.12/kmem_cache_args' into slab/for-nextVlastimil Babka
Merge kmem_cache_create() refactoring by Christian Brauner. Note this includes a merge of the vfs.file tree that contains the prerequisity kmem_cache_create_rcu() work.
2024-09-13Merge branch 'slab/for-6.12/rcu_barriers' into slab/for-nextVlastimil Babka
Merge most of SLUB feature work for 6.12: - Barrier for pending kfree_rcu() in kmem_cache_destroy() and associated refactoring of the destroy path (Vlastimil Babka) - CONFIG_SLUB_RCU_DEBUG to allow KASAN catching UAF bugs in SLAB_TYPESAFE_BY_RCU caches (Jann Horn) - kmem_cache_charge() for delayed kmemcg charging (Shakeel Butt)
2024-09-10slab: remove rcu_freeptr_offset from struct kmem_cacheChristian Brauner
Pass down struct kmem_cache_args to calculate_sizes() so we can use args->{use}_freeptr_offset directly. This allows us to remove ->rcu_freeptr_offset from struct kmem_cache. Reviewed-by: Kees Cook <kees@kernel.org> Reviewed-by: Jens Axboe <axboe@kernel.dk> Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Christian Brauner <brauner@kernel.org> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-09-10slab: pass struct kmem_cache_args to do_kmem_cache_create()Christian Brauner
and initialize most things in do_kmem_cache_create(). In a follow-up patch we'll remove rcu_freeptr_offset from struct kmem_cache. Reviewed-by: Kees Cook <kees@kernel.org> Reviewed-by: Jens Axboe <axboe@kernel.dk> Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Christian Brauner <brauner@kernel.org> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-09-10slab: pull kmem_cache_open() into do_kmem_cache_create()Christian Brauner
do_kmem_cache_create() is the only caller and we're going to pass down struct kmem_cache_args in a follow-up patch. Reviewed-by: Kees Cook <kees@kernel.org> Reviewed-by: Jens Axboe <axboe@kernel.dk> Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Christian Brauner <brauner@kernel.org> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-09-10slab: s/__kmem_cache_create/do_kmem_cache_create/gChristian Brauner
Free up reusing the double-underscore variant for follow-up patches. Reviewed-by: Kees Cook <kees@kernel.org> Reviewed-by: Jens Axboe <axboe@kernel.dk> Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Christian Brauner <brauner@kernel.org> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-09-10memcg: add charging of already allocated slab objectsShakeel Butt
At the moment, the slab objects are charged to the memcg at the allocation time. However there are cases where slab objects are allocated at the time where the right target memcg to charge it to is not known. One such case is the network sockets for the incoming connection which are allocated in the softirq context. Couple hundred thousand connections are very normal on large loaded server and almost all of those sockets underlying those connections get allocated in the softirq context and thus not charged to any memcg. However later at the accept() time we know the right target memcg to charge. Let's add new API to charge already allocated objects, so we can have better accounting of the memory usage. To measure the performance impact of this change, tcp_crr is used from the neper [1] performance suite. Basically it is a network ping pong test with new connection for each ping pong. The server and the client are run inside 3 level of cgroup hierarchy using the following commands: Server: $ tcp_crr -6 Client: $ tcp_crr -6 -c -H ${server_ip} If the client and server run on different machines with 50 GBPS NIC, there is no visible impact of the change. For the same machine experiment with v6.11-rc5 as base. base (throughput) with-patch tcp_crr 14545 (+- 80) 14463 (+- 56) It seems like the performance impact is within the noise. Link: https://github.com/google/neper [1] Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Paolo Abeni <pabeni@redhat.com> # net Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-09-03mm, slub: avoid zeroing kmalloc redzonePeng Fan
Since commit 946fa0dbf2d8 ("mm/slub: extend redzone check to extra allocated kmalloc space than requested"), setting orig_size treats the wasted space (object_size - orig_size) as a redzone. However with init_on_free=1 we clear the full object->size, including the redzone. Additionally we clear the object metadata, including the stored orig_size, making it zero, which makes check_object() treat the whole object as a redzone. These issues lead to the following BUG report with "slub_debug=FUZ init_on_free=1": [ 0.000000] ============================================================================= [ 0.000000] BUG kmalloc-8 (Not tainted): kmalloc Redzone overwritten [ 0.000000] ----------------------------------------------------------------------------- [ 0.000000] [ 0.000000] 0xffff000010032858-0xffff00001003285f @offset=2136. First byte 0x0 instead of 0xcc [ 0.000000] FIX kmalloc-8: Restoring kmalloc Redzone 0xffff000010032858-0xffff00001003285f=0xcc [ 0.000000] Slab 0xfffffdffc0400c80 objects=36 used=23 fp=0xffff000010032a18 flags=0x3fffe0000000200(workingset|node=0|zone=0|lastcpupid=0x1ffff) [ 0.000000] Object 0xffff000010032858 @offset=2136 fp=0xffff0000100328c8 [ 0.000000] [ 0.000000] Redzone ffff000010032850: cc cc cc cc cc cc cc cc ........ [ 0.000000] Object ffff000010032858: cc cc cc cc cc cc cc cc ........ [ 0.000000] Redzone ffff000010032860: cc cc cc cc cc cc cc cc ........ [ 0.000000] Padding ffff0000100328b4: 00 00 00 00 00 00 00 00 00 00 00 00 ............ [ 0.000000] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.11.0-rc3-next-20240814-00004-g61844c55c3f4 #144 [ 0.000000] Hardware name: NXP i.MX95 19X19 board (DT) [ 0.000000] Call trace: [ 0.000000] dump_backtrace+0x90/0xe8 [ 0.000000] show_stack+0x18/0x24 [ 0.000000] dump_stack_lvl+0x74/0x8c [ 0.000000] dump_stack+0x18/0x24 [ 0.000000] print_trailer+0x150/0x218 [ 0.000000] check_object+0xe4/0x454 [ 0.000000] free_to_partial_list+0x2f8/0x5ec To address the issue, use orig_size to clear the used area. And restore the value of orig_size after clear the remaining area. When CONFIG_SLUB_DEBUG not defined, (get_orig_size()' directly returns s->object_size. So when using memset to init the area, the size can simply be orig_size, as orig_size returns object_size when CONFIG_SLUB_DEBUG not enabled. And orig_size can never be bigger than object_size. Fixes: 946fa0dbf2d8 ("mm/slub: extend redzone check to extra allocated kmalloc space than requested") Cc: <stable@vger.kernel.org> Reviewed-by: Feng Tang <feng.tang@intel.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Peng Fan <peng.fan@nxp.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-09-01mm/slub: add check for s->flags in the alloc_tagging_slab_free_hookHao Ge
When enable CONFIG_MEMCG & CONFIG_KFENCE & CONFIG_KMEMLEAK, the following warning always occurs,This is because the following call stack occurred: mem_pool_alloc kmem_cache_alloc_noprof slab_alloc_node kfence_alloc Once the kfence allocation is successful,slab->obj_exts will not be empty, because it has already been assigned a value in kfence_init_pool. Since in the prepare_slab_obj_exts_hook function,we perform a check for s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE),the alloc_tag_add function will not be called as a result.Therefore,ref->ct remains NULL. However,when we call mem_pool_free,since obj_ext is not empty, it eventually leads to the alloc_tag_sub scenario being invoked. This is where the warning occurs. So we should add corresponding checks in the alloc_tagging_slab_free_hook. For __GFP_NO_OBJ_EXT case,I didn't see the specific case where it's using kfence,so I won't add the corresponding check in alloc_tagging_slab_free_hook for now. [ 3.734349] ------------[ cut here ]------------ [ 3.734807] alloc_tag was not set [ 3.735129] WARNING: CPU: 4 PID: 40 at ./include/linux/alloc_tag.h:130 kmem_cache_free+0x444/0x574 [ 3.735866] Modules linked in: autofs4 [ 3.736211] CPU: 4 UID: 0 PID: 40 Comm: ksoftirqd/4 Tainted: G W 6.11.0-rc3-dirty #1 [ 3.736969] Tainted: [W]=WARN [ 3.737258] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 [ 3.737875] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 3.738501] pc : kmem_cache_free+0x444/0x574 [ 3.738951] lr : kmem_cache_free+0x444/0x574 [ 3.739361] sp : ffff80008357bb60 [ 3.739693] x29: ffff80008357bb70 x28: 0000000000000000 x27: 0000000000000000 [ 3.740338] x26: ffff80008207f000 x25: ffff000b2eb2fd60 x24: ffff0000c0005700 [ 3.740982] x23: ffff8000804229e4 x22: ffff800082080000 x21: ffff800081756000 [ 3.741630] x20: fffffd7ff8253360 x19: 00000000000000a8 x18: ffffffffffffffff [ 3.742274] x17: ffff800ab327f000 x16: ffff800083398000 x15: ffff800081756df0 [ 3.742919] x14: 0000000000000000 x13: 205d344320202020 x12: 5b5d373038343337 [ 3.743560] x11: ffff80008357b650 x10: 000000000000005d x9 : 00000000ffffffd0 [ 3.744231] x8 : 7f7f7f7f7f7f7f7f x7 : ffff80008237bad0 x6 : c0000000ffff7fff [ 3.744907] x5 : ffff80008237ba78 x4 : ffff8000820bbad0 x3 : 0000000000000001 [ 3.745580] x2 : 68d66547c09f7800 x1 : 68d66547c09f7800 x0 : 0000000000000000 [ 3.746255] Call trace: [ 3.746530] kmem_cache_free+0x444/0x574 [ 3.746931] mem_pool_free+0x44/0xf4 [ 3.747306] free_object_rcu+0xc8/0xdc [ 3.747693] rcu_do_batch+0x234/0x8a4 [ 3.748075] rcu_core+0x230/0x3e4 [ 3.748424] rcu_core_si+0x14/0x1c [ 3.748780] handle_softirqs+0x134/0x378 [ 3.749189] run_ksoftirqd+0x70/0x9c [ 3.749560] smpboot_thread_fn+0x148/0x22c [ 3.749978] kthread+0x10c/0x118 [ 3.750323] ret_from_fork+0x10/0x20 [ 3.750696] ---[ end trace 0000000000000000 ]--- Link: https://lkml.kernel.org/r/20240816013336.17505-1-hao.ge@linux.dev Fixes: 4b8736964640 ("mm/slab: add allocation accounting into slab allocation and free paths") Signed-off-by: Hao Ge <gehao@kylinos.cn> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <kees@kernel.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-29mm: add kmem_cache_create_rcu()Christian Brauner
When a kmem cache is created with SLAB_TYPESAFE_BY_RCU the free pointer must be located outside of the object because we don't know what part of the memory can safely be overwritten as it may be needed to prevent object recycling. That has the consequence that SLAB_TYPESAFE_BY_RCU may end up adding a new cacheline. This is the case for e.g., struct file. After having it shrunk down by 40 bytes and having it fit in three cachelines we still have SLAB_TYPESAFE_BY_RCU adding a fourth cacheline because it needs to accommodate the free pointer. Add a new kmem_cache_create_rcu() function that allows the caller to specify an offset where the free pointer is supposed to be placed. Link: https://lore.kernel.org/r/20240828-work-kmem_cache-rcu-v3-2-5460bc1f09f6@kernel.org Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-08-27slub: Introduce CONFIG_SLUB_RCU_DEBUGJann Horn
Currently, KASAN is unable to catch use-after-free in SLAB_TYPESAFE_BY_RCU slabs because use-after-free is allowed within the RCU grace period by design. Add a SLUB debugging feature which RCU-delays every individual kmem_cache_free() before either actually freeing the object or handing it off to KASAN, and change KASAN to poison freed objects as normal when this option is enabled. For now I've configured Kconfig.debug to default-enable this feature in the KASAN GENERIC and SW_TAGS modes; I'm not enabling it by default in HW_TAGS mode because I'm not sure if it might have unwanted performance degradation effects there. Note that this is mostly useful with KASAN in the quarantine-based GENERIC mode; SLAB_TYPESAFE_BY_RCU slabs are basically always also slabs with a ->ctor, and KASAN's assign_tag() currently has to assign fixed tags for those, reducing the effectiveness of SW_TAGS/HW_TAGS mode. (A possible future extension of this work would be to also let SLUB call the ->ctor() on every allocation instead of only when the slab page is allocated; then tag-based modes would be able to assign new tags on every reallocation.) Tested-by: syzbot+263726e59eab6b442723@syzkaller.appspotmail.com Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Acked-by: Marco Elver <elver@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> #slab Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-08-27kasan: catch invalid free before SLUB reinitializes the objectJann Horn
Currently, when KASAN is combined with init-on-free behavior, the initialization happens before KASAN's "invalid free" checks. More importantly, a subsequent commit will want to RCU-delay the actual SLUB freeing of an object, and we'd like KASAN to still validate synchronously that freeing the object is permitted. (Otherwise this change will make the existing testcase kmem_cache_invalid_free fail.) So add a new KASAN hook that allows KASAN to pre-validate a kmem_cache_free() operation before SLUB actually starts modifying the object or its metadata. Inside KASAN, this: - moves checks from poison_slab_object() into check_slab_allocation() - moves kasan_arch_is_ready() up into callers of poison_slab_object() - removes "ip" argument of poison_slab_object() and __kasan_slab_free() (since those functions no longer do any reporting) Acked-by: Vlastimil Babka <vbabka@suse.cz> #slub Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-08-26Reenable NUMA policy support in the slab allocatorChristoph Lameter
Revert commit 8014c46ad991 ("slub: use alloc_pages_node() in alloc_slab_page()"). The patch disabled the numa policy support in the slab allocator. It did not consider that alloc_pages() uses memory policies but alloc_pages_node() does not. As a result of this patch slab memory allocations are no longer spread via interleave policy across all available NUMA nodes on bootup. Instead all slab memory is allocated close to the boot processor. This leads to an imbalance of memory accesses on NUMA systems. Also applications using MPOL_INTERLEAVE as a memory policy will no longer spread slab allocations over all nodes in the interleave set but allocate memory locally. This may also result in unbalanced allocations on a single numa node. SLUB does not apply memory policies to individual object allocations. However, it relies on the page allocators support of memory policies through alloc_pages() to do the NUMA memory allocations on a per folio or page level. SLUB also applies memory policies when retrieving partial allocated slab pages from the partial list. Fixes: 8014c46ad991 ("slub: use alloc_pages_node() in alloc_slab_page()") Signed-off-by: Christoph Lameter <cl@gentwo.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-08-26mm, slub: print CPU id (and its node) on slab OOMAxel Rasmussen
Depending on how remote_node_defrag_ratio is configured, allocations can end up in this path as a result of the local node being OOM, despite the allocation overall being unconstrained (node == -1). When we print a warning, printing the current CPU makes that situation more clear (i.e., you can immediately see which node's OOM status matters for the allocation at hand). Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-07-30mm, slub: do not call do_slab_free for kfence objectRik van Riel
In 782f8906f805 the freeing of kfence objects was moved from deep inside do_slab_free to the wrapper functions outside. This is a nice change, but unfortunately it missed one spot in __kmem_cache_free_bulk. This results in a crash like this: BUG skbuff_head_cache (Tainted: G S B E ): Padding overwritten. 0xffff88907fea0f00-0xffff88907fea0fff @offset=3840 slab_err (mm/slub.c:1129) free_to_partial_list (mm/slub.c:? mm/slub.c:4036) slab_pad_check (mm/slub.c:864 mm/slub.c:1290) check_slab (mm/slub.c:?) free_to_partial_list (mm/slub.c:3171 mm/slub.c:4036) kmem_cache_alloc_bulk (mm/slub.c:? mm/slub.c:4495 mm/slub.c:4586 mm/slub.c:4635) napi_build_skb (net/core/skbuff.c:348 net/core/skbuff.c:527 net/core/skbuff.c:549) All the other callers to do_slab_free appear to be ok. Add a kfence_free check in __kmem_cache_free_bulk to avoid the crash. Reported-by: Chris Mason <clm@meta.com> Fixes: 782f8906f805 ("mm/slub: free KFENCE objects in slab_free_hook()") Cc: stable@kernel.org Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-07-21Merge tag 'mm-stable-2024-07-21-14-50' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - In the series "mm: Avoid possible overflows in dirty throttling" Jan Kara addresses a couple of issues in the writeback throttling code. These fixes are also targetted at -stable kernels. - Ryusuke Konishi's series "nilfs2: fix potential issues related to reserved inodes" does that. This should actually be in the mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad. - More folio conversions from Kefeng Wang in the series "mm: convert to folio_alloc_mpol()" - Kemeng Shi has sent some cleanups to the writeback code in the series "Add helper functions to remove repeated code and improve readability of cgroup writeback" - Kairui Song has made the swap code a little smaller and a little faster in the series "mm/swap: clean up and optimize swap cache index". - In the series "mm/memory: cleanly support zeropage in vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David Hildenbrand has reworked the rather sketchy handling of the use of the zeropage in MAP_SHARED mappings. I don't see any runtime effects here - more a cleanup/understandability/maintainablity thing. - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of higher addresses, for aarch64. The (poorly named) series is "Restructure va_high_addr_switch". - The core TLB handling code gets some cleanups and possible slight optimizations in Bang Li's series "Add update_mmu_tlb_range() to simplify code". - Jane Chu has improved the handling of our fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the series "Enhance soft hwpoison handling and injection". - Jeff Johnson has sent a billion patches everywhere to add MODULE_DESCRIPTION() to everything. Some landed in this pull. - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has simplified migration's use of hardware-offload memory copying. - Yosry Ahmed performs more folio API conversions in his series "mm: zswap: trivial folio conversions". - In the series "large folios swap-in: handle refault cases first", Chuanhua Han inches us forward in the handling of large pages in the swap code. This is a cleanup and optimization, working toward the end objective of full support of large folio swapin/out. - In the series "mm,swap: cleanup VMA based swap readahead window calculation", Huang Ying has contributed some cleanups and a possible fixlet to his VMA based swap readahead code. - In the series "add mTHP support for anonymous shmem" Baolin Wang has taught anonymous shmem mappings to use multisize THP. By default this is a no-op - users must opt in vis sysfs controls. Dramatic improvements in pagefault latency are realized. - David Hildenbrand has some cleanups to our remaining use of page_mapcount() in the series "fs/proc: move page_mapcount() to fs/proc/internal.h". - David also has some highmem accounting cleanups in the series "mm/highmem: don't track highmem pages manually". - Build-time fixes and cleanups from John Hubbard in the series "cleanups, fixes, and progress towards avoiding "make headers"". - Cleanups and consolidation of the core pagemap handling from Barry Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them". - Lance Yang's series "Reclaim lazyfree THP without splitting" has reduced the latency of the reclaim of pmd-mapped THPs under fairly common circumstances. A 10x speedup is seen in a microbenchmark. It does this by punting to aother CPU but I guess that's a win unless all CPUs are pegged. - hugetlb_cgroup cleanups from Xiu Jianfeng in the series "mm/hugetlb_cgroup: rework on cftypes". - Miaohe Lin's series "Some cleanups for memory-failure" does just that thing. - Someone other than SeongJae has developed a DAMON feature in Honggyu Kim's series "DAMON based tiered memory management for CXL memory". This adds DAMON features which may be used to help determine the efficiency of our placement of CXL/PCIe attached DRAM. - DAMON user API centralization and simplificatio work in SeongJae Park's series "mm/damon: introduce DAMON parameters online commit function". - In the series "mm: page_type, zsmalloc and page_mapcount_reset()" David Hildenbrand does some maintenance work on zsmalloc - partially modernizing its use of pageframe fields. - Kefeng Wang provides more folio conversions in the series "mm: remove page_maybe_dma_pinned() and page_mkclean()". - More cleanup from David Hildenbrand, this time in the series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline() pages" and permits the removal of some virtio-mem hacks. - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()" is a cleanup to the anon folio handling in preparation for mTHP (multisize THP) swapin. - Kefeng Wang's series "mm: improve clear and copy user folio" implements more folio conversions, this time in the area of large folio userspace copying. - The series "Docs/mm/damon/maintaier-profile: document a mailing tool and community meetup series" tells people how to get better involved with other DAMON developers. From SeongJae Park. - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does that. - David Hildenbrand sends along more cleanups, this time against the migration code. The series is "mm/migrate: move NUMA hinting fault folio isolation + checks under PTL". - Jan Kara has found quite a lot of strangenesses and minor errors in the readahead code. He addresses this in the series "mm: Fix various readahead quirks". - SeongJae Park's series "selftests/damon: test DAMOS tried regions and {min,max}_nr_regions" adds features and addresses errors in DAMON's self testing code. - Gavin Shan has found a userspace-triggerable WARN in the pagecache code. The series "mm/filemap: Limit page cache size to that supported by xarray" addresses this. The series is marked cc:stable. - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations and cleanup" cleans up and slightly optimizes KSM. - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of code motion. The series (which also makes the memcg-v1 code Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put under config option" and "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1" - Dan Schatzberg's series "Add swappiness argument to memory.reclaim" adds an additional feature to this cgroup-v2 control file. - The series "Userspace controls soft-offline pages" from Jiaqi Yan permits userspace to stop the kernel's automatic treatment of excessive correctable memory errors. In order to permit userspace to monitor and handle this situation. - Kefeng Wang's series "mm: migrate: support poison recover from migrate folio" teaches the kernel to appropriately handle migration from poisoned source folios rather than simply panicing. - SeongJae Park's series "Docs/damon: minor fixups and improvements" does those things. - In the series "mm/zsmalloc: change back to per-size_class lock" Chengming Zhou improves zsmalloc's scalability and memory utilization. - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare refcount increments. So these paes can first be moved aside if they reside in the movable zone or a CMA block. - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps for much faster reading of vma information. The series is "query VMAs from /proc/<pid>/maps". - In the series "mm: introduce per-order mTHP split counters" Lance Yang improves the kernel's presentation of developer information related to multisize THP splitting. - Michael Ellerman has developed the series "Reimplement huge pages without hugepd on powerpc (8xx, e500, book3s/64)". This permits userspace to use all available huge page sizes. - In the series "revert unconditional slab and page allocator fault injection calls" Vlastimil Babka removes a performance-affecting and not very useful feature from slab fault injection. * tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits) mm/mglru: fix ineffective protection calculation mm/zswap: fix a white space issue mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio mm/hugetlb: fix possible recursive locking detected warning mm/gup: clear the LRU flag of a page before adding to LRU batch mm/numa_balancing: teach mpol_to_str about the balancing mode mm: memcg1: convert charge move flags to unsigned long long alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting lib: reuse page_ext_data() to obtain codetag_ref lib: add missing newline character in the warning message mm/mglru: fix overshooting shrinker memory mm/mglru: fix div-by-zero in vmpressure_calc_level() mm/kmemleak: replace strncpy() with strscpy() mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB mm: ignore data-race in __swap_writepage hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr mm: shmem: rename mTHP shmem counters mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async() mm/migrate: putback split folios when numa hint migration fails ...
2024-07-17mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLABVlastimil Babka
Patch series "revert unconditional slab and page allocator fault injection calls". These two patches largely revert commits that added function call overhead into slab and page allocation hotpaths and that cannot be currently disabled even though related CONFIG_ options do exist. A much more involved solution that can keep the callsites always existing but hidden behind a static key if unused, is possible [1] and can be pursued by anyone who believes it's necessary. Meanwhile the fact the should_failslab() error injection is already not functional on kernels built with current gcc without anyone noticing [2], and lukewarm response to [1] suggests the need is not there. I believe it will be more fair to have the state after this series as a baseline for possible further optimisation, instead of the unconditional overhead. For example a possible compromise for anyone who's fine with an empty function call overhead but not the full CONFIG_FAILSLAB / CONFIG_FAIL_PAGE_ALLOC overhead is to reuse patch 1 from [1] but insert a static key check only inside should_failslab() and should_fail_alloc_page() before performing the more expensive checks. [1] https://lore.kernel.org/all/20240620-fault-injection-statickeys-v2-0-e23947d3d84b@suse.cz/#t [2] https://github.com/bpftrace/bpftrace/issues/3258 This patch (of 2): This mostly reverts commit 4f6923fbb352 ("mm: make should_failslab always available for fault injection"). The commit made should_failslab() a noinline function that's always called from the slab allocation hotpath, even if it's empty because CONFIG_SHOULD_FAILSLAB is not enabled, and there is no option to disable that call. This is visible in profiles and the function call overhead can be noticeable especially with cpu mitigations. Meanwhile the bpftrace program example in the commit silently does not work without CONFIG_SHOULD_FAILSLAB anyway with a recent gcc, because the empty function gets a .constprop clone that is actually being called (uselessly) from the slab hotpath, while the error injection is hooked to the original function that's not being called at all [1]. Thus put the whole should_failslab() function back behind CONFIG_SHOULD_FAILSLAB. It's not a complete revert of 4f6923fbb352 - the int return type that returns -ENOMEM on failure is preserved, as well ALLOW_ERROR_INJECTION annotation. The BTF_ID() record that was meanwhile added is also guarded by CONFIG_SHOULD_FAILSLAB. [1] https://github.com/bpftrace/bpftrace/issues/3258 Link: https://lkml.kernel.org/r/20240711-b4-fault-injection-reverts-v1-0-9e2651945d68@suse.cz Link: https://lkml.kernel.org/r/20240711-b4-fault-injection-reverts-v1-1-9e2651945d68@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Rientjes <rientjes@google.com> Cc: Eduard Zingerman <eddyz87@gmail.com> Cc: Hao Luo <haoluo@google.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Fastabend <john.fastabend@gmail.com> Cc: KP Singh <kpsingh@kernel.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Song Liu <song@kernel.org> Cc: Stanislav Fomichev <sdf@fomichev.me> Cc: Yonghong Song <yonghong.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-15Merge branch 'slab/for-6.11/buckets' into slab/for-nextVlastimil Babka
Merge all the slab patches previously collected on top of v6.10-rc1, over cleanups/fixes that had to be based on rc6.
2024-07-11mm, slab: move prepare_slab_obj_exts_hook under CONFIG_MEM_ALLOC_PROFILINGSuren Baghdasaryan
The only place prepare_slab_obj_exts_hook() is currently being used is from alloc_tagging_slab_alloc_hook() when CONFIG_MEM_ALLOC_PROFILING=y. Move its definition under CONFIG_MEM_ALLOC_PROFILING to prevent unused function warning for CONFIG_SLAB_OBJ_EXT=n case. Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202407050845.zNONqauD-lkp@intel.com/ Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Xiongwei Song <xiongwei.song@linux.dev> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-07-10mm: remove CONFIG_MEMCG_KMEMJohannes Weiner
CONFIG_MEMCG_KMEM used to be a user-visible option for whether slab tracking is enabled. It has been default-enabled and equivalent to CONFIG_MEMCG for almost a decade. We've only grown more kernel memory accounting sites since, and there is no imaginable cgroup usecase going forward that wants to track user pages but not the multitude of user-drivable kernel allocations. Link: https://lkml.kernel.org/r/20240701153148.452230-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: David Hildenbrand <david@redhat.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04mm, slab: move allocation tagging code in the alloc path into a hookSuren Baghdasaryan
Move allocation tagging specific code in the allocation path into alloc_tagging_slab_alloc_hook, similar to how freeing path uses alloc_tagging_slab_free_hook. No functional changes, just code cleanup. Suggested-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-07-03mm: slub: disable KMSAN when checking the padding bytesIlya Leoshkevich
Even though the KMSAN warnings generated by memchr_inv() are suppressed by metadata_access_enable(), its return value may still be poisoned. The reason is that the last iteration of memchr_inv() returns `*start != value ? start : NULL`, where *start is poisoned. Because of this, somewhat counterintuitively, the shadow value computed by visitSelectInst() is equal to `(uintptr_t)start`. One possibility to fix this, since the intention behind guarding memchr_inv() behind metadata_access_enable() is to touch poisoned metadata without triggering KMSAN, is to unpoison its return value. However, this approach is too fragile. So simply disable the KMSAN checks in the respective functions. Link: https://lkml.kernel.org/r/20240621113706.315500-19-iii@linux.ibm.com Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <kasan-dev@googlegroups.com> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm: slub: let KMSAN access metadataIlya Leoshkevich
Building the kernel with CONFIG_SLUB_DEBUG and CONFIG_KMSAN causes KMSAN to complain about touching redzones in kfree(). Fix by extending the existing KASAN-related metadata_access_enable() and metadata_access_disable() functions to KMSAN. Link: https://lkml.kernel.org/r/20240621113706.315500-18-iii@linux.ibm.com Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <kasan-dev@googlegroups.com> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03kmsan: support SLAB_POISONIlya Leoshkevich
Avoid false KMSAN negatives with SLUB_DEBUG by allowing kmsan_slab_free() to poison the freed memory, and by preventing init_object() from unpoisoning new allocations by using __memset(). There are two alternatives to this approach. First, init_object() can be marked with __no_sanitize_memory. This annotation should be used with great care, because it drops all instrumentation from the function, and any shadow writes will be lost. Even though this is not a concern with the current init_object() implementation, this may change in the future. Second, kmsan_poison_memory() calls may be added after memset() calls. The downside is that init_object() is called from free_debug_processing(), in which case poisoning will erase the distinction between simply uninitialized memory and UAF. Link: https://lkml.kernel.org/r/20240621113706.315500-14-iii@linux.ibm.com Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <kasan-dev@googlegroups.com> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/slab: Plumb kmem_buckets into __do_kmalloc_node()Kees Cook
Introduce CONFIG_SLAB_BUCKETS which provides the infrastructure to support separated kmalloc buckets (in the following kmem_buckets_create() patches and future codetag-based separation). Since this will provide a mitigation for a very common case of exploits, it is recommended to enable this feature for general purpose distros. By default, the new Kconfig will be enabled if CONFIG_SLAB_FREELIST_HARDENED is enabled (and it is added to the hardening.config Kconfig fragment). To be able to choose which buckets to allocate from, make the buckets available to the internal kmalloc interfaces by adding them as the second argument, rather than depending on the buckets being chosen from the fixed set of global buckets. Where the bucket is not available, pass NULL, which means "use the default system kmalloc bucket set" (the prior existing behavior), as implemented in kmalloc_slab(). To avoid adding the extra argument when !CONFIG_SLAB_BUCKETS, only the top-level macros and static inlines use the buckets argument (where they are stripped out and compiled out respectively). The actual extern functions can then be built without the argument, and the internals fall back to the global kmalloc buckets unconditionally. Co-developed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Kees Cook <kees@kernel.org> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-06-24mm/slab: fix 'variable obj_exts set but not used' warningSuren Baghdasaryan
slab_post_alloc_hook() uses prepare_slab_obj_exts_hook() to obtain slabobj_ext object. Currently the only user of slabobj_ext object in this path is memory allocation profiling, therefore when it's not enabled this object is not needed. This also generates a warning when compiling with CONFIG_MEM_ALLOC_PROFILING=n. Move the code under this configuration to fix the warning. If more slabobj_ext users appear in the future, the code will have to be changed back to call prepare_slab_obj_exts_hook(). Link: https://lkml.kernel.org/r/20240614225951.3845577-1-surenb@google.com Fixes: 4b8736964640 ("mm/slab: add allocation accounting into slab allocation and free paths") Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202406150444.F6neSaiy-lkp@intel.com/ Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Kees Cook <keescook@chromium.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-24slab: delete useless RED_INACTIVE and RED_ACTIVEChengming Zhou
These seem useless since we use the SLUB_RED_INACTIVE and SLUB_RED_ACTIVE, so just delete them, no functional change. Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Chengming Zhou <chengming.zhou@linux.dev> Reviewed-by: Christoph Lameter (Ampere) <cl@linux.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-06-07slab: don't put freepointer outside of object if only orig_sizeChengming Zhou
The commit 946fa0dbf2d8 ("mm/slub: extend redzone check to extra allocated kmalloc space than requested") will extend right redzone when allocating for orig_size < object_size. So we can't overlay the freepointer in the object space in this case. But the code looks like it forgot to check SLAB_RED_ZONE, since there won't be extended right redzone if only orig_size enabled. As we are here, make this complex conditional expressions a little prettier and add some comments about extending right redzone when slub_debug_orig_size() enabled. Reviewed-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Chengming Zhou <chengming.zhou@linux.dev> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-06-07slab: make check_object() more consistentChengming Zhou
Now check_object() calls check_bytes_and_report() multiple times to check every section of the object it cares about, like left and right redzones, object poison, paddings poison and freepointer. It will abort the checking process and return 0 once it finds an error. There are two inconsistencies in check_object(), which are alignment padding checking and object padding checking. We only print the error messages but don't return 0 to tell callers that something is wrong and needs to be handled. Please see alloc_debug_processing() and free_debug_processing() for details. We want to do all checks without skipping, so use a local variable "ret" to save each check result and change check_bytes_and_report() to only report specific error findings. Then at end of check_object(), print the trailer once if any found an error. Suggested-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Chengming Zhou <chengming.zhou@linux.dev> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-06-05codetag: avoid race at alloc_slab_obj_extsThadeu Lima de Souza Cascardo
When CONFIG_MEM_ALLOC_PROFILING_DEBUG is enabled, the following warning may be noticed: [ 48.299584] ------------[ cut here ]------------ [ 48.300092] alloc_tag was not set [ 48.300528] WARNING: CPU: 2 PID: 1361 at include/linux/alloc_tag.h:130 alloc_tagging_slab_free_hook+0x84/0xc7 [ 48.301305] Modules linked in: [ 48.301553] CPU: 2 PID: 1361 Comm: systemd-udevd Not tainted 6.10.0-rc1-00003-gac8755535862 #176 [ 48.302196] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [ 48.302752] RIP: 0010:alloc_tagging_slab_free_hook+0x84/0xc7 [ 48.303169] Code: 8d 1c c4 48 85 db 74 4d 48 83 3b 00 75 1e 80 3d 65 02 86 04 00 75 15 48 c7 c7 11 48 1d 85 c6 05 55 02 86 04 01 e8 64 44 a5 ff <0f> 0b 48 8b 03 48 85 c0 74 21 48 83 f8 01 74 14 48 8b 50 20 48 f7 [ 48.304411] RSP: 0018:ffff8880111b7d40 EFLAGS: 00010282 [ 48.304916] RAX: 0000000000000000 RBX: ffff88800fcc9008 RCX: 0000000000000000 [ 48.305455] RDX: 0000000080000000 RSI: ffff888014060000 RDI: ffffed1002236f97 [ 48.305979] RBP: 0000000000001100 R08: fffffbfff0aa73a1 R09: 0000000000000000 [ 48.306473] R10: ffffffff814515e5 R11: 0000000000000003 R12: ffff88800fcc9000 [ 48.306943] R13: ffff88800b2e5cc0 R14: ffff8880111b7d90 R15: 0000000000000000 [ 48.307529] FS: 00007faf5d1908c0(0000) GS:ffff88806cf00000(0000) knlGS:0000000000000000 [ 48.308223] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 48.308710] CR2: 000058fb220c9118 CR3: 00000000110cc000 CR4: 0000000000750ef0 [ 48.309274] PKRU: 55555554 [ 48.309804] Call Trace: [ 48.310029] <TASK> [ 48.310290] ? show_regs+0x84/0x8d [ 48.310722] ? alloc_tagging_slab_free_hook+0x84/0xc7 [ 48.311298] ? __warn+0x13b/0x2ff [ 48.311580] ? alloc_tagging_slab_free_hook+0x84/0xc7 [ 48.311987] ? report_bug+0x2ce/0x3ab [ 48.312292] ? handle_bug+0x8c/0x107 [ 48.312563] ? exc_invalid_op+0x34/0x6f [ 48.312842] ? asm_exc_invalid_op+0x1a/0x20 [ 48.313173] ? this_cpu_in_panic+0x1c/0x72 [ 48.313503] ? alloc_tagging_slab_free_hook+0x84/0xc7 [ 48.313880] ? putname+0x143/0x14e [ 48.314152] kmem_cache_free+0xe9/0x214 [ 48.314454] putname+0x143/0x14e [ 48.314712] do_unlinkat+0x413/0x45e [ 48.315001] ? __pfx_do_unlinkat+0x10/0x10 [ 48.315388] ? __check_object_size+0x4d7/0x525 [ 48.315744] ? __sanitizer_cov_trace_pc+0x20/0x4a [ 48.316167] ? __sanitizer_cov_trace_pc+0x20/0x4a [ 48.316757] ? getname_flags+0x4ed/0x500 [ 48.317261] __x64_sys_unlink+0x42/0x4a [ 48.317741] do_syscall_64+0xe2/0x149 [ 48.318171] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 48.318602] RIP: 0033:0x7faf5d8850ab [ 48.318891] Code: fd ff ff e8 27 dd 01 00 0f 1f 80 00 00 00 00 f3 0f 1e fa b8 5f 00 00 00 0f 05 c3 0f 1f 40 00 f3 0f 1e fa b8 57 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 05 c3 0f 1f 40 00 48 8b 15 41 2d 0e 00 f7 d8 [ 48.320649] RSP: 002b:00007ffc44982b38 EFLAGS: 00000246 ORIG_RAX: 0000000000000057 [ 48.321182] RAX: ffffffffffffffda RBX: 00005ba344a44680 RCX: 00007faf5d8850ab [ 48.321667] RDX: 0000000000000000 RSI: 00005ba344a44430 RDI: 00007ffc44982b40 [ 48.322139] RBP: 00007ffc44982c00 R08: 0000000000000000 R09: 0000000000000007 [ 48.322598] R10: 00005ba344a44430 R11: 0000000000000246 R12: 0000000000000000 [ 48.323071] R13: 00007ffc44982b40 R14: 0000000000000000 R15: 0000000000000000 [ 48.323596] </TASK> This is due to a race when two objects are allocated from the same slab, which did not have an obj_exts allocated for. In such a case, the two threads will notice the NULL obj_exts and after one assigns slab->obj_exts, the second one will happily do the exchange if it reads this new assigned value. In order to avoid that, verify that the read obj_exts does not point to an allocated obj_exts before doing the exchange. Link: https://lkml.kernel.org/r/20240527183007.1595037-1-cascardo@igalia.com Fixes: 09c46563ff6d ("codetag: debug: introduce OBJEXTS_ALLOC_FAIL to mark failed slab_ext allocations") Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Gustavo A. R. Silva <gustavoars@kernel.org> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Thadeu Lima de Souza Cascardo <cascardo@igalia.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-31mm: Reduce the number of slab->folio castsMatthew Wilcox (Oracle)
Mark a few more folio functions as taking a const folio pointer, which allows us to remove a few places in slab which cast away the const. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-05-28mm, slab: don't wrap internal functions with alloc_hooks()Vlastimil Babka
The functions __kmalloc_noprof(), kmalloc_large_noprof(), kmalloc_trace_noprof() and their _node variants are all internal to the implementations of kmalloc_noprof() and kmalloc_node_noprof() and are only declared in the "public" slab.h and exported so that those implementations can be static inline and distinguish the build-time constant size variants. The only other users for some of the internal functions are slub_kunit and fortify_kunit tests which make very short-lived allocations. Therefore we can stop wrapping them with the alloc_hooks() macro. Instead add a __ prefix to all of them and a comment documenting these as internal. Also rename __kmalloc_trace() to __kmalloc_cache() which is more descriptive - it is a variant of __kmalloc() where the exact kmalloc cache has been already determined. The usage in fortify_kunit can be removed completely, as the internal functions should be tested already through kmalloc() tests in the test variant that passes non-constant allocation size. Reported-by: Kent Overstreet <kent.overstreet@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Kees Cook <keescook@chromium.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-05-19Merge tag 'mm-stable-2024-05-17-19-19' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: "The usual shower of singleton fixes and minor series all over MM, documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/ maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series: "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking"" * tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits) memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault selftests: cgroup: add tests to verify the zswap writeback path mm: memcg: make alloc_mem_cgroup_per_node_info() return bool mm/damon/core: fix return value from damos_wmark_metric_value mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED selftests: cgroup: remove redundant enabling of memory controller Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT Docs/mm/damon/design: use a list for supported filters Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file selftests/damon: classify tests for functionalities and regressions selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None' selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts selftests/damon/_damon_sysfs: check errors from nr_schemes file reads mm/damon/core: initialize ->esz_bp from damos_quota_init_priv() selftests/damon: add a test for DAMOS quota goal ...
2024-05-13Merge tag 'slab-for-6.10' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab Pull slab updates from Vlastimil Babka: "This time it's mostly random cleanups and fixes, with two performance fixes that might have significant impact, but limited to systems experiencing particular bad corner case scenarios rather than general performance improvements. The memcg hook changes are going through the mm tree due to dependencies. - Prevent stalls when reading /proc/slabinfo (Jianfeng Wang) This fixes the long-standing problem that can happen with workloads that have alloc/free patterns resulting in many partially used slabs (in e.g. dentry cache). Reading /proc/slabinfo will traverse the long partial slab list under spinlock with disabled irqs and thus can stall other processes or even trigger the lockup detection. The traversal is only done to count free objects so that <active_objs> column can be reported along with <num_objs>. To avoid affecting fast paths with another shared counter (attempted in the past) or complex partial list traversal schemes that allow rescheduling, the chosen solution resorts to approximation - when the partial list is over 10000 slabs long, we will only traverse first 5000 slabs from head and tail each and use the average of those to estimate the whole list. Both head and tail are used as the slabs near head to tend to have more free objects than the slabs towards the tail. It is expected the approximation should not break existing /proc/slabinfo consumers. The <num_objs> field is still accurate and reflects the overall kmem_cache footprint. The <active_objs> was already imprecise due to cpu and percpu-partial slabs, so can't be relied upon to determine exact cache usage. The difference between <active_objs> and <num_objs> is mainly useful to determine the slab fragmentation, and that will be possible even with the approximation in place. - Prevent allocating many slabs when a NUMA node is full (Chen Jun) Currently, on NUMA systems with a node under significantly bigger pressure than other nodes, the fallback strategy may result in each kmalloc_node() that can't be safisfied from the preferred node, to allocate a new slab on a fallback node, and not reuse the slabs already on that node's partial list. This is now fixed and partial lists of fallback nodes are checked even for kmalloc_node() allocations. It's still preferred to allocate a new slab on the requested node before a fallback, but only with a GFP_NOWAIT attempt, which will fail quickly when the node is under a significant memory pressure. - More SLAB removal related cleanups (Xiu Jianfeng, Hyunmin Lee) - Fix slub_kunit self-test with hardened freelists (Guenter Roeck) - Mark racy accesses for KCSAN (linke li) - Misc cleanups (Xiongwei Song, Haifeng Xu, Sangyun Kim)" * tag 'slab-for-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: mm/slub: remove the check for NULL kmalloc_caches mm/slub: create kmalloc 96 and 192 caches regardless cache size order mm/slub: mark racy access on slab->freelist slub: use count_partial_free_approx() in slab_out_of_memory() slub: introduce count_partial_free_approx() slub: Set __GFP_COMP in kmem_cache by default mm/slub: remove duplicate initialization for early_kmem_cache_node_alloc() mm/slub: correct comment in do_slab_free() mm/slub, kunit: Use inverted data to corrupt kmem cache mm/slub: simplify get_partial_node() mm/slub: add slub_get_cpu_partial() helper mm/slub: remove the check of !kmem_cache_has_cpu_partial() mm/slub: Reduce memory consumption in extreme scenarios mm/slub: mark racy accesses on slab->slabs mm/slub: remove dummy slabinfo functions
2024-05-02mm/slub: mark racy access on slab->freelistlinke li
In deactivate_slab(), slab->freelist can be changed concurrently. Mark data race on slab->freelist as benign using READ_ONCE. This patch is aimed at reducing the number of benign races reported by KCSAN in order to focus future debugging effort on harmful races. Signed-off-by: linke li <lilinke99@qq.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-05-01mm/slub: avoid zeroing outside-object freepointer for single freeNicolas Bouchinet
Commit 284f17ac13fe ("mm/slub: handle bulk and single object freeing separately") splits single and bulk object freeing in two functions slab_free() and slab_free_bulk() which leads slab_free() to call slab_free_hook() directly instead of slab_free_freelist_hook(). If `init_on_free` is set, slab_free_hook() zeroes the object. Afterward, if `slub_debug=F` and `CONFIG_SLAB_FREELIST_HARDENED` are set, the do_slab_free() slowpath executes freelist consistency checks and try to decode a zeroed freepointer which leads to a "Freepointer corrupt" detection in check_object(). During bulk free, slab_free_freelist_hook() isn't affected as it always sets it objects freepointer using set_freepointer() to maintain its reconstructed freelist after `init_on_free`. For single free, object's freepointer thus needs to be avoided when stored outside the object if `init_on_free` is set. The freepointer left as is, check_object() may later detect an invalid pointer value due to objects overflow. To reproduce, set `slub_debug=FU init_on_free=1 log_level=7` on the command line of a kernel build with `CONFIG_SLAB_FREELIST_HARDENED=y`. dmesg sample log: [ 10.708715] ============================================================================= [ 10.710323] BUG kmalloc-rnd-05-32 (Tainted: G B T ): Freepointer corrupt [ 10.712695] ----------------------------------------------------------------------------- [ 10.712695] [ 10.712695] Slab 0xffffd8bdc400d580 objects=32 used=4 fp=0xffff9d9a80356f80 flags=0x200000000000a00(workingset|slab|node=0|zone=2) [ 10.716698] Object 0xffff9d9a80356600 @offset=1536 fp=0x7ee4f480ce0ecd7c [ 10.716698] [ 10.716698] Bytes b4 ffff9d9a803565f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ [ 10.720703] Object ffff9d9a80356600: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ [ 10.720703] Object ffff9d9a80356610: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ [ 10.724696] Padding ffff9d9a8035666c: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ [ 10.724696] Padding ffff9d9a8035667c: 00 00 00 00 .... [ 10.724696] FIX kmalloc-rnd-05-32: Object at 0xffff9d9a80356600 not freed Fixes: 284f17ac13fe ("mm/slub: handle bulk and single object freeing separately") Cc: <stable@vger.kernel.org> Co-developed-by: Chengming Zhou <chengming.zhou@linux.dev> Signed-off-by: Chengming Zhou <chengming.zhou@linux.dev> Signed-off-by: Nicolas Bouchinet <nicolas.bouchinet@ssi.gouv.fr> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-04-25mm, slab: move slab_memcg hooks to mm/memcontrol.cVlastimil Babka
The hooks make multiple calls to functions in mm/memcontrol.c, including to th current_obj_cgroup() marked __always_inline. It might be faster to make a single call to the hook in mm/memcontrol.c instead. The hooks also don't use almost anything from mm/slub.c. obj_full_size() can move with the hooks and cache_vmstat_idx() to the internal mm/slab.h Link: https://lkml.kernel.org/r/20240326-slab-memcg-v3-2-d85d2563287a@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Chengming Zhou <chengming.zhou@linux.dev> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Layton <jlayton@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Kees Cook <kees@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Pekka Enberg <penberg@kernel.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm, slab: move memcg charging to post-alloc hookVlastimil Babka
Patch series "memcg_kmem hooks refactoring", v3. This patch (of 2): The MEMCG_KMEM integration with slab currently relies on two hooks during allocation. memcg_slab_pre_alloc_hook() determines the objcg and charges it, and memcg_slab_post_alloc_hook() assigns the objcg pointer to the allocated object(s). As Linus pointed out, this is unnecessarily complex. Failing to charge due to memcg limits should be rare, so we can optimistically allocate the object(s) and do the charging together with assigning the objcg pointer in a single post_alloc hook. In the rare case the charging fails, we can free the object(s) back. This simplifies the code (no need to pass around the objcg pointer) and potentially allows to separate charging from allocation in cases where it's common that the allocation would be immediately freed, and the memcg handling overhead could be saved. [vbabka@suse.cz: fix call to memcg_alloc_abort_single()] Link: https://lkml.kernel.org/r/4af50be2-4109-45e5-8a36-2136252a635e@suse.cz [roman.gushchin@linux.dev: comment fixup] Link: https://lkml.kernel.org/r/Zg2LsNm6twOmG69l@P9FQF9L96D.corp.robot.car Link: https://lkml.kernel.org/r/20240326-slab-memcg-v3-0-d85d2563287a@suse.cz Link: https://lkml.kernel.org/r/20240326-slab-memcg-v3-1-d85d2563287a@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/all/CAHk-=whYOOdM7jWy5jdrAm8LxcgCMFyk2bt8fYYvZzM4U-zAQA@mail.gmail.com/ Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Layton <jlayton@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Kees Cook <kees@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Pekka Enberg <penberg@kernel.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Aishwarya TCV <aishwarya.tcv@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>