summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_inode_item_recover.c
AgeCommit message (Collapse)Author
2024-12-23xfs: wire up a new metafile type for the realtime refcountDarrick J. Wong
Plumb in the pieces we need to embed the root of the realtime refcount btree in an inode's data fork, complete with metafile type and on-disk interpretation functions. Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-12-23xfs: wire up a new metafile type for the realtime rmapDarrick J. Wong
Plumb in the pieces we need to embed the root of the realtime rmap btree in an inode's data fork, complete with new metafile type and on-disk interpretation functions. Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-12-23xfs: support file data forks containing metadata btreesDarrick J. Wong
Create a new fork format type for metadata btrees. This fork type requires that the inode is in the metadata directory tree, and only applies to the data fork. The actual type of the metadata btree itself is determined by the di_metatype field. Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05xfs: define the on-disk format for the metadir featureDarrick J. Wong
Define the on-disk layout and feature flags for the metadata inode directory feature. Add a xfs_sb_version_hasmetadir for benefit of xfs_repair, which needs to know where the new end of the superblock lies. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-13xfs: convert remaining kmem_free() to kfree()Dave Chinner
The remaining callers of kmem_free() are freeing heap memory, so we can convert them directly to kfree() and get rid of kmem_free() altogether. This conversion was done with: $ for f in `git grep -l kmem_free fs/xfs`; do > sed -i s/kmem_free/kfree/ $f > done $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13xfs: convert kmem_alloc() to kmalloc()Dave Chinner
kmem_alloc() is just a thin wrapper around kmalloc() these days. Convert everything to use kmalloc() so we can get rid of the wrapper. Note: the transaction region allocation in xlog_add_to_transaction() can be a high order allocation. Converting it to use kmalloc(__GFP_NOFAIL) results in warnings in the page allocation code being triggered because the mm subsystem does not want us to use __GFP_NOFAIL with high order allocations like we've been doing with the kmem_alloc() wrapper for a couple of decades. Hence this specific case gets converted to xlog_kvmalloc() rather than kmalloc() to avoid this issue. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-11-13xfs: recovery should not clear di_flushiter unconditionallyDave Chinner
Because on v3 inodes, di_flushiter doesn't exist. It overlaps with zero padding in the inode, except when NREXT64=1 configurations are in use and the zero padding is no longer padding but holds the 64 bit extent counter. This manifests obviously on big endian platforms (e.g. s390) because the log dinode is in host order and the overlap is the LSBs of the extent count field. It is not noticed on little endian machines because the overlap is at the MSB end of the extent count field and we need to get more than 2^^48 extents in the inode before it manifests. i.e. the heat death of the universe will occur before we see the problem in little endian machines. This is a zero-day issue for NREXT64=1 configuraitons on big endian machines. Fix it by only clearing di_flushiter on v2 inodes during recovery. Fixes: 9b7d16e34bbe ("xfs: Introduce XFS_DIFLAG2_NREXT64 and associated helpers") cc: stable@kernel.org # 5.19+ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-11-13xfs: inode recovery does not validate the recovered inodeDave Chinner
Discovered when trying to track down a weird recovery corruption issue that wasn't detected at recovery time. The specific corruption was a zero extent count field when big extent counts are in use, and it turns out the dinode verifier doesn't detect that specific corruption case, either. So fix it too. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2022-09-19xfs: clean up "%Ld/%Lu" which doesn't meet C standardZeng Heng
The "%Ld" specifier, which represents long long unsigned, doesn't meet C language standard, and even more, it makes people easily mistake with "%ld", which represent long unsigned. So replace "%Ld" with "lld". Do the same with "%Lu". Signed-off-by: Zeng Heng <zengheng4@huawei.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04xfs: hide log iovec alignment constraintsDave Chinner
Callers currently have to round out the size of buffers to match the aligment constraints of log iovecs and xlog_write(). They should not need to know this detail, so introduce a new function to calculate the iovec length (for use in ->iop_size implementations). Also modify xlog_finish_iovec() to round up the length to the correct alignment so the callers don't need to do this, either. Convert the only user - inode forks - of this alignment rounding to use the new interface. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-11xfs: Introduce per-inode 64-bit extent countersChandan Babu R
This commit introduces new fields in the on-disk inode format to support 64-bit data fork extent counters and 32-bit attribute fork extent counters. The new fields will be used only when an inode has XFS_DIFLAG2_NREXT64 flag set. Otherwise we continue to use the regular 32-bit data fork extent counters and 16-bit attribute fork extent counters. Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Chandan Babu R <chandan.babu@oracle.com> Suggested-by: Dave Chinner <dchinner@redhat.com>
2022-04-11xfs: Replace numbered inode recovery error messages with descriptive onesChandan Babu R
This commit also prints inode fields with invalid values instead of printing addresses of inode and buffer instances. Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandan.babu@oracle.com> Suggested-by: Dave Chinner <dchinner@redhat.com>
2022-04-11xfs: Introduce XFS_DIFLAG2_NREXT64 and associated helpersChandan Babu R
This commit adds the new per-inode flag XFS_DIFLAG2_NREXT64 to indicate that an inode supports 64-bit extent counters. This flag is also enabled by default on newly created inodes when the corresponding filesystem has large extent counter feature bit (i.e. XFS_FEAT_NREXT64) set. Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2021-08-19xfs: replace xfs_sb_version checks with feature flag checksDave Chinner
Convert the xfs_sb_version_hasfoo() to checks against mp->m_features. Checks of the superblock itself during disk operations (e.g. in the read/write verifiers and the to/from disk formatters) are not converted - they operate purely on the superblock state. Everything else should use the mount features. Large parts of this conversion were done with sed with commands like this: for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f done With manual cleanups for things like "xfs_has_extflgbit" and other little inconsistencies in naming. The result is ia lot less typing to check features and an XFS binary size reduced by a bit over 3kB: $ size -t fs/xfs/built-in.a text data bss dec hex filenam before 1130866 311352 484 1442702 16038e (TOTALS) after 1127727 311352 484 1439563 15f74b (TOTALS) Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-07-29xfs: logging the on disk inode LSN can make it go backwardsDave Chinner
When we log an inode, we format the "log inode" core and set an LSN in that inode core. We do that via xfs_inode_item_format_core(), which calls: xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); to format the log inode. It writes the LSN from the inode item into the log inode, and if recovery decides the inode item needs to be replayed, it recovers the log inode LSN field and writes it into the on disk inode LSN field. Now this might seem like a reasonable thing to do, but it is wrong on multiple levels. Firstly, if the item is not yet in the AIL, item->li_lsn is zero. i.e. the first time the inode it is logged and formatted, the LSN we write into the log inode will be zero. If we only log it once, recovery will run and can write this zero LSN into the inode. This means that the next time the inode is logged and log recovery runs, it will *always* replay changes to the inode regardless of whether the inode is newer on disk than the version in the log and that violates the entire purpose of recording the LSN in the inode at writeback time (i.e. to stop it going backwards in time on disk during recovery). Secondly, if we commit the CIL to the journal so the inode item moves to the AIL, and then relog the inode, the LSN that gets stamped into the log inode will be the LSN of the inode's current location in the AIL, not it's age on disk. And it's not the LSN that will be associated with the current change. That means when log recovery replays this inode item, the LSN that ends up on disk is the LSN for the previous changes in the log, not the current changes being replayed. IOWs, after recovery the LSN on disk is not in sync with the LSN of the modifications that were replayed into the inode. This, again, violates the recovery ordering semantics that on-disk writeback LSNs provide. Hence the inode LSN in the log dinode is -always- invalid. Thirdly, recovery actually has the LSN of the log transaction it is replaying right at hand - it uses it to determine if it should replay the inode by comparing it to the on-disk inode's LSN. But it doesn't use that LSN to stamp the LSN into the inode which will be written back when the transaction is fully replayed. It uses the one in the log dinode, which we know is always going to be incorrect. Looking back at the change history, the inode logging was broken by commit 93f958f9c41f ("xfs: cull unnecessary icdinode fields") way back in 2016 by a stupid idiot who thought he knew how this code worked. i.e. me. That commit replaced an in memory di_lsn field that was updated only at inode writeback time from the inode item.li_lsn value - and hence always contained the same LSN that appeared in the on-disk inode - with a read of the inode item LSN at inode format time. CLearly these are not the same thing. Before 93f958f9c41f, the log recovery behaviour was irrelevant, because the LSN in the log inode always matched the on-disk LSN at the time the inode was logged, hence recovery of the transaction would never make the on-disk LSN in the inode go backwards or get out of sync. A symptom of the problem is this, caught from a failure of generic/482. Before log recovery, the inode has been allocated but never used: xfs_db> inode 393388 xfs_db> p core.magic = 0x494e core.mode = 0 .... v3.crc = 0x99126961 (correct) v3.change_count = 0 v3.lsn = 0 v3.flags2 = 0 v3.cowextsize = 0 v3.crtime.sec = Thu Jan 1 10:00:00 1970 v3.crtime.nsec = 0 After log recovery: xfs_db> p core.magic = 0x494e core.mode = 020444 .... v3.crc = 0x23e68f23 (correct) v3.change_count = 2 v3.lsn = 0 v3.flags2 = 0 v3.cowextsize = 0 v3.crtime.sec = Thu Jul 22 17:03:03 2021 v3.crtime.nsec = 751000000 ... You can see that the LSN of the on-disk inode is 0, even though it clearly has been written to disk. I point out this inode, because the generic/482 failure occurred because several adjacent inodes in this specific inode cluster were not replayed correctly and still appeared to be zero on disk when all the other metadata (inobt, finobt, directories, etc) indicated they should be allocated and written back. The fix for this is two-fold. The first is that we need to either revert the LSN changes in 93f958f9c41f or stop logging the inode LSN altogether. If we do the former, log recovery does not need to change but we add 8 bytes of memory per inode to store what is largely a write-only inode field. If we do the latter, log recovery needs to stamp the on-disk inode in the same manner that inode writeback does. I prefer the latter, because we shouldn't really be trying to log and replay changes to the on disk LSN as the on-disk value is the canonical source of the on-disk version of the inode. It also matches the way we recover buffer items - we create a buf_log_item that carries the current recovery transaction LSN that gets stamped into the buffer by the write verifier when it gets written back when the transaction is fully recovered. However, this might break log recovery on older kernels even more, so I'm going to simply ignore the logged value in recovery and stamp the on-disk inode with the LSN of the transaction being recovered that will trigger writeback on transaction recovery completion. This will ensure that the on-disk inode LSN always reflects the LSN of the last change that was written to disk, regardless of whether it comes from log recovery or runtime writeback. Fixes: 93f958f9c41f ("xfs: cull unnecessary icdinode fields") Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-04-22xfs: rename struct xfs_legacy_ictimestampChristoph Hellwig
Rename struct xfs_legacy_ictimestamp to struct xfs_log_legacy_timestamp as it is a type used for logging timestamps with no relationship to the in-core inode. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-04-22xfs: rename xfs_ictimestamp_tChristoph Hellwig
Rename xfs_ictimestamp_t to xfs_log_timestamp_t as it is a type used for logging timestamps with no relationship to the in-core inode. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2020-09-15xfs: widen ondisk inode timestamps to deal with y2038+Darrick J. Wong
Redesign the ondisk inode timestamps to be a simple unsigned 64-bit counter of nanoseconds since 14 Dec 1901 (i.e. the minimum time in the 32-bit unix time epoch). This enables us to handle dates up to 2486, which solves the y2038 problem. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2020-09-15xfs: redefine xfs_ictimestamp_tDarrick J. Wong
Redefine xfs_ictimestamp_t as a uint64_t typedef in preparation for the bigtime functionality. Preserve the legacy structure format so that we can let the compiler take care of the masking and shifting. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2020-09-15xfs: redefine xfs_timestamp_tDarrick J. Wong
Redefine xfs_timestamp_t as a __be64 typedef in preparation for the bigtime functionality. Preserve the legacy structure format so that we can let the compiler take care of masking and shifting. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2020-09-15xfs: move xfs_log_dinode_to_disk to the log recovery codeDarrick J. Wong
Move this function to xfs_inode_item_recover.c since there's only one caller of it. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Allison Collins <allison.henderson@oracle.com> Reviewed-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2020-07-06xfs: mark log recovery buffers for completionDave Chinner
Log recovery has it's own buffer write completion handler for buffers that it directly recovers. Convert these to direct calls by flagging these buffers as being log recovery buffers. The flag will get cleared by the log recovery IO completion routine, so it will never leak out of log recovery. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-19xfs: improve local fork verificationChristoph Hellwig
Call the data/attr local fork verifiers as soon as we are ready for them. This keeps them close to the code setting up the forks, and avoids a few branches later on. Also open code xfs_inode_verify_forks in the only remaining caller. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-19xfs: call xfs_iformat_fork from xfs_inode_from_diskChristoph Hellwig
We always need to fill out the fork structures when reading the inode, so call xfs_iformat_fork from the tail of xfs_inode_from_disk. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-08xfs: refactor log recovery inode item dispatch for pass2 commit functionsDarrick J. Wong
Move the log inode item pass2 commit code into the per-item source code files and use the dispatch function to call it. We do these one at a time because there's a lot of code to move. No functional changes. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-05-08xfs: refactor log recovery item dispatch for pass2 readhead functionsDarrick J. Wong
Move the pass2 readhead code into the per-item source code files and use the dispatch function to call them. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-05-08xfs: refactor log recovery item sorting into a generic dispatch structureDarrick J. Wong
Create a generic dispatch structure to delegate recovery of different log item types into various code modules. This will enable us to move code specific to a particular log item type out of xfs_log_recover.c and into the log item source. The first operation we virtualize is the log item sorting. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>