Age | Commit message (Collapse) | Author |
|
Remove kvm_arch_sync_events() now that x86 no longer uses it (no other
arch has ever used it).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Bibo Mao <maobibo@loongson.cn>
Message-ID: <20250224235542.2562848-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Commit e1f288d2f9c69 ("KVM: PPC: Book3S HV nestedv2: Add support
for reading VPA counters for pseries guests") introduced support for new
Virtual Process Area(VPA) based software counters. These counters are
useful when observing context switch latency of L1 <-> L2. It also
added access to counters in lppaca, which is good enough to understand
latency details per-cpu level. But to extend and aggregate
per-process level(qemu) or per-pid/tid level(vcpu), these
counters also needs to be added as part of kvm_vcpu_arch struct.
Additional code added to update these new kvm_vcpu_arch variables
in do_trace_nested_cs_time function.
Signed-off-by: Kajol Jain <kjain@linux.ibm.com>
Co-developed-by: Madhavan Srinivasan <maddy@linux.ibm.com>
Signed-off-by: Madhavan Srinivasan <maddy@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://patch.msgid.link/20241118114114.208964-3-kjain@linux.ibm.com
|
|
Pull kvm updates from Paolo Bonzini:
"ARM:
- Initial infrastructure for shadow stage-2 MMUs, as part of nested
virtualization enablement
- Support for userspace changes to the guest CTR_EL0 value, enabling
(in part) migration of VMs between heterogenous hardware
- Fixes + improvements to pKVM's FF-A proxy, adding support for v1.1
of the protocol
- FPSIMD/SVE support for nested, including merged trap configuration
and exception routing
- New command-line parameter to control the WFx trap behavior under
KVM
- Introduce kCFI hardening in the EL2 hypervisor
- Fixes + cleanups for handling presence/absence of FEAT_TCRX
- Miscellaneous fixes + documentation updates
LoongArch:
- Add paravirt steal time support
- Add support for KVM_DIRTY_LOG_INITIALLY_SET
- Add perf kvm-stat support for loongarch
RISC-V:
- Redirect AMO load/store access fault traps to guest
- perf kvm stat support
- Use guest files for IMSIC virtualization, when available
s390:
- Assortment of tiny fixes which are not time critical
x86:
- Fixes for Xen emulation
- Add a global struct to consolidate tracking of host values, e.g.
EFER
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the
effective APIC bus frequency, because TDX
- Print the name of the APICv/AVIC inhibits in the relevant
tracepoint
- Clean up KVM's handling of vendor specific emulation to
consistently act on "compatible with Intel/AMD", versus checking
for a specific vendor
- Drop MTRR virtualization, and instead always honor guest PAT on
CPUs that support self-snoop
- Update to the newfangled Intel CPU FMS infrastructure
- Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as
it reads '0' and writes from userspace are ignored
- Misc cleanups
x86 - MMU:
- Small cleanups, renames and refactoring extracted from the upcoming
Intel TDX support
- Don't allocate kvm_mmu_page.shadowed_translation for shadow pages
that can't hold leafs SPTEs
- Unconditionally drop mmu_lock when allocating TDP MMU page tables
for eager page splitting, to avoid stalling vCPUs when splitting
huge pages
- Bug the VM instead of simply warning if KVM tries to split a SPTE
that is non-present or not-huge. KVM is guaranteed to end up in a
broken state because the callers fully expect a valid SPTE, it's
all but dangerous to let more MMU changes happen afterwards
x86 - AMD:
- Make per-CPU save_area allocations NUMA-aware
- Force sev_es_host_save_area() to be inlined to avoid calling into
an instrumentable function from noinstr code
- Base support for running SEV-SNP guests. API-wise, this includes a
new KVM_X86_SNP_VM type, encrypting/measure the initial image into
guest memory, and finalizing it before launching it. Internally,
there are some gmem/mmu hooks needed to prepare gmem-allocated
pages before mapping them into guest private memory ranges
This includes basic support for attestation guest requests, enough
to say that KVM supports the GHCB 2.0 specification
There is no support yet for loading into the firmware those signing
keys to be used for attestation requests, and therefore no need yet
for the host to provide certificate data for those keys.
To support fetching certificate data from userspace, a new KVM exit
type will be needed to handle fetching the certificate from
userspace.
An attempt to define a new KVM_EXIT_COCO / KVM_EXIT_COCO_REQ_CERTS
exit type to handle this was introduced in v1 of this patchset, but
is still being discussed by community, so for now this patchset
only implements a stub version of SNP Extended Guest Requests that
does not provide certificate data
x86 - Intel:
- Remove an unnecessary EPT TLB flush when enabling hardware
- Fix a series of bugs that cause KVM to fail to detect nested
pending posted interrupts as valid wake eents for a vCPU executing
HLT in L2 (with HLT-exiting disable by L1)
- KVM: x86: Suppress MMIO that is triggered during task switch
emulation
Explicitly suppress userspace emulated MMIO exits that are
triggered when emulating a task switch as KVM doesn't support
userspace MMIO during complex (multi-step) emulation
Silently ignoring the exit request can result in the
WARN_ON_ONCE(vcpu->mmio_needed) firing if KVM exits to userspace
for some other reason prior to purging mmio_needed
See commit 0dc902267cb3 ("KVM: x86: Suppress pending MMIO write
exits if emulator detects exception") for more details on KVM's
limitations with respect to emulated MMIO during complex emulator
flows
Generic:
- Rename the AS_UNMOVABLE flag that was introduced for KVM to
AS_INACCESSIBLE, because the special casing needed by these pages
is not due to just unmovability (and in fact they are only
unmovable because the CPU cannot access them)
- New ioctl to populate the KVM page tables in advance, which is
useful to mitigate KVM page faults during guest boot or after live
migration. The code will also be used by TDX, but (probably) not
through the ioctl
- Enable halt poll shrinking by default, as Intel found it to be a
clear win
- Setup empty IRQ routing when creating a VM to avoid having to
synchronize SRCU when creating a split IRQCHIP on x86
- Rework the sched_in/out() paths to replace kvm_arch_sched_in() with
a flag that arch code can use for hooking both sched_in() and
sched_out()
- Take the vCPU @id as an "unsigned long" instead of "u32" to avoid
truncating a bogus value from userspace, e.g. to help userspace
detect bugs
- Mark a vCPU as preempted if and only if it's scheduled out while in
the KVM_RUN loop, e.g. to avoid marking it preempted and thus
writing guest memory when retrieving guest state during live
migration blackout
Selftests:
- Remove dead code in the memslot modification stress test
- Treat "branch instructions retired" as supported on all AMD Family
17h+ CPUs
- Print the guest pseudo-RNG seed only when it changes, to avoid
spamming the log for tests that create lots of VMs
- Make the PMU counters test less flaky when counting LLC cache
misses by doing CLFLUSH{OPT} in every loop iteration"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
crypto: ccp: Add the SNP_VLEK_LOAD command
KVM: x86/pmu: Add kvm_pmu_call() to simplify static calls of kvm_pmu_ops
KVM: x86: Introduce kvm_x86_call() to simplify static calls of kvm_x86_ops
KVM: x86: Replace static_call_cond() with static_call()
KVM: SEV: Provide support for SNP_EXTENDED_GUEST_REQUEST NAE event
x86/sev: Move sev_guest.h into common SEV header
KVM: SEV: Provide support for SNP_GUEST_REQUEST NAE event
KVM: x86: Suppress MMIO that is triggered during task switch emulation
KVM: x86/mmu: Clean up make_huge_page_split_spte() definition and intro
KVM: x86/mmu: Bug the VM if KVM tries to split a !hugepage SPTE
KVM: selftests: x86: Add test for KVM_PRE_FAULT_MEMORY
KVM: x86: Implement kvm_arch_vcpu_pre_fault_memory()
KVM: x86/mmu: Make kvm_mmu_do_page_fault() return mapped level
KVM: x86/mmu: Account pf_{fixed,emulate,spurious} in callers of "do page fault"
KVM: x86/mmu: Bump pf_taken stat only in the "real" page fault handler
KVM: Add KVM_PRE_FAULT_MEMORY vcpu ioctl to pre-populate guest memory
KVM: Document KVM_PRE_FAULT_MEMORY ioctl
mm, virt: merge AS_UNMOVABLE and AS_INACCESSIBLE
perf kvm: Add kvm-stat for loongarch64
LoongArch: KVM: Add PV steal time support in guest side
...
|
|
Delete kvm_arch_sched_in() now that all implementations are nops.
Reviewed-by: Bibo Mao <maobibo@loongson.cn>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240522014013.1672962-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The patch adds a one-reg register identifier which can be used to
read and set the virtual HASHPKEYR for the guest during enter/exit
with KVM_REG_PPC_HASHPKEYR. The specific SPR KVM API documentation
too updated.
Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/171759285547.1480.12374595786792346073.stgit@linux.ibm.com
|
|
The patch adds a one-reg register identifier which can be used to
read and set the virtual HASHKEYR for the guest during enter/exit
with KVM_REG_PPC_HASHKEYR. The specific SPR KVM API documentation
too updated.
Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/171759283170.1480.12904332463112769129.stgit@linux.ibm.com
|
|
The patch adds a one-reg register identifier which can be used to
read and set the DEXCR for the guest during enter/exit with
KVM_REG_PPC_DEXCR. The specific SPR KVM API documentation
too updated.
Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/171759279613.1480.12873911783530175699.stgit@linux.ibm.com
|
|
Introduce several new KVM uAPIs to ultimately create a guest-first memory
subsystem within KVM, a.k.a. guest_memfd. Guest-first memory allows KVM
to provide features, enhancements, and optimizations that are kludgly
or outright impossible to implement in a generic memory subsystem.
The core KVM ioctl() for guest_memfd is KVM_CREATE_GUEST_MEMFD, which
similar to the generic memfd_create(), creates an anonymous file and
returns a file descriptor that refers to it. Again like "regular"
memfd files, guest_memfd files live in RAM, have volatile storage,
and are automatically released when the last reference is dropped.
The key differences between memfd files (and every other memory subystem)
is that guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
convert a guest memory area between the shared and guest-private states.
A second KVM ioctl(), KVM_SET_MEMORY_ATTRIBUTES, allows userspace to
specify attributes for a given page of guest memory. In the long term,
it will likely be extended to allow userspace to specify per-gfn RWX
protections, including allowing memory to be writable in the guest
without it also being writable in host userspace.
The immediate and driving use case for guest_memfd are Confidential
(CoCo) VMs, specifically AMD's SEV-SNP, Intel's TDX, and KVM's own pKVM.
For such use cases, being able to map memory into KVM guests without
requiring said memory to be mapped into the host is a hard requirement.
While SEV+ and TDX prevent untrusted software from reading guest private
data by encrypting guest memory, pKVM provides confidentiality and
integrity *without* relying on memory encryption. In addition, with
SEV-SNP and especially TDX, accessing guest private memory can be fatal
to the host, i.e. KVM must be prevent host userspace from accessing
guest memory irrespective of hardware behavior.
Long term, guest_memfd may be useful for use cases beyond CoCo VMs,
for example hardening userspace against unintentional accesses to guest
memory. As mentioned earlier, KVM's ABI uses userspace VMA protections to
define the allow guest protection (with an exception granted to mapping
guest memory executable), and similarly KVM currently requires the guest
mapping size to be a strict subset of the host userspace mapping size.
Decoupling the mappings sizes would allow userspace to precisely map
only what is needed and with the required permissions, without impacting
guest performance.
A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to DMA from or into guest memory).
guest_memfd is the result of 3+ years of development and exploration;
taking on memory management responsibilities in KVM was not the first,
second, or even third choice for supporting CoCo VMs. But after many
failed attempts to avoid KVM-specific backing memory, and looking at
where things ended up, it is quite clear that of all approaches tried,
guest_memfd is the simplest, most robust, and most extensible, and the
right thing to do for KVM and the kernel at-large.
The "development cycle" for this version is going to be very short;
ideally, next week I will merge it as is in kvm/next, taking this through
the KVM tree for 6.8 immediately after the end of the merge window.
The series is still based on 6.6 (plus KVM changes for 6.7) so it
will require a small fixup for changes to get_file_rcu() introduced in
6.7 by commit 0ede61d8589c ("file: convert to SLAB_TYPESAFE_BY_RCU").
The fixup will be done as part of the merge commit, and most of the text
above will become the commit message for the merge.
Pending post-merge work includes:
- hugepage support
- looking into using the restrictedmem framework for guest memory
- introducing a testing mechanism to poison memory, possibly using
the same memory attributes introduced here
- SNP and TDX support
There are two non-KVM patches buried in the middle of this series:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
|
|
Convert KVM_ARCH_WANT_MMU_NOTIFIER into a Kconfig and select it where
appropriate to effectively maintain existing behavior. Using a proper
Kconfig will simplify building more functionality on top of KVM's
mmu_notifier infrastructure.
Add a forward declaration of kvm_gfn_range to kvm_types.h so that
including arch/powerpc/include/asm/kvm_ppc.h's with CONFIG_KVM=n doesn't
generate warnings due to kvm_gfn_range being undeclared. PPC defines
hooks for PR vs. HV without guarding them via #ifdeffery, e.g.
bool (*unmap_gfn_range)(struct kvm *kvm, struct kvm_gfn_range *range);
bool (*age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
bool (*test_age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
bool (*set_spte_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
Alternatively, PPC could forward declare kvm_gfn_range, but there's no
good reason not to define it in common KVM.
Acked-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A series of hcalls have been added to the PAPR which allow a regular
guest partition to create and manage guest partitions of its own. KVM
already had an interface that allowed this on powernv platforms. This
existing interface will now be called "nestedv1". The newly added PAPR
interface will be called "nestedv2". PHYP will support the nestedv2
interface. At this time the host side of the nestedv2 interface has not
been implemented on powernv but there is no technical reason why it
could not be added.
The nestedv1 interface is still supported.
Add support to KVM to utilize these hcalls to enable running nested
guests as a pseries guest on PHYP.
Overview of the new hcall usage:
- L1 and L0 negotiate capabilities with
H_GUEST_{G,S}ET_CAPABILITIES()
- L1 requests the L0 create a L2 with
H_GUEST_CREATE() and receives a handle to use in future hcalls
- L1 requests the L0 create a L2 vCPU with
H_GUEST_CREATE_VCPU()
- L1 sets up the L2 using H_GUEST_SET and the
H_GUEST_VCPU_RUN input buffer
- L1 requests the L0 runs the L2 vCPU using H_GUEST_VCPU_RUN()
- L2 returns to L1 with an exit reason and L1 reads the
H_GUEST_VCPU_RUN output buffer populated by the L0
- L1 handles the exit using H_GET_STATE if necessary
- L1 reruns L2 vCPU with H_GUEST_VCPU_RUN
- L1 frees the L2 in the L0 with H_GUEST_DELETE()
Support for the new API is determined by trying
H_GUEST_GET_CAPABILITIES. On a successful return, use the nestedv2
interface.
Use the vcpu register state setters for tracking modified guest state
elements and copy the thread wide values into the H_GUEST_VCPU_RUN input
buffer immediately before running a L2. The guest wide
elements can not be added to the input buffer so send them with a
separate H_GUEST_SET call if necessary.
Make the vcpu register getter load the corresponding value from the real
host with H_GUEST_GET. To avoid unnecessarily calling H_GUEST_GET, track
which values have already been loaded between H_GUEST_VCPU_RUN calls. If
an element is present in the H_GUEST_VCPU_RUN output buffer it also does
not need to be loaded again.
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Signed-off-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Signed-off-by: Gautam Menghani <gautam@linux.ibm.com>
Signed-off-by: Kautuk Consul <kconsul@linux.vnet.ibm.com>
Signed-off-by: Amit Machhiwal <amachhiw@linux.vnet.ibm.com>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-11-jniethe5@gmail.com
|
|
The LPID register is 32 bits long. The host keeps the lpids for each
guest in an unsigned word struct kvm_arch. Currently, LPIDs are already
limited by mmu_lpid_bits and KVM_MAX_NESTED_GUESTS_SHIFT.
The nestedv2 API returns a 64 bit "Guest ID" to be used be the L1 host
for each L2 guest. This value is used as an lpid, e.g. it is the
parameter used by H_RPT_INVALIDATE. To minimize needless special casing
it makes sense to keep this "Guest ID" in struct kvm_arch::lpid.
This means that struct kvm_arch::lpid is too small so prepare for this
and make it an unsigned long. This is not a problem for the KVM-HV and
nestedv1 cases as their lpid values are already limited to valid ranges
so in those contexts the lpid can be used as an unsigned word safely as
needed.
In the PAPR, the H_RPT_INVALIDATE pid/lpid parameter is already
specified as an unsigned long so change pseries_rpt_invalidate() to
match that. Update the callers of pseries_rpt_invalidate() to also take
an unsigned long if they take an lpid value.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-10-jniethe5@gmail.com
|
|
In order to handle emulation of prefixed instructions in the guest,
this first makes vcpu->arch.last_inst be an unsigned long, i.e. 64
bits on 64-bit platforms. For prefixed instructions, the upper 32
bits are used for the prefix and the lower 32 bits for the suffix, and
both halves are byte-swapped if the guest endianness differs from the
host.
Next, vcpu->arch.emul_inst is now 64 bits wide, to match the HEIR
register on POWER10. Like HEIR, for a prefixed instruction it is
defined to have the prefix is in the top 32 bits and the suffix in the
bottom 32 bits, with both halves in the correct byte order.
kvmppc_get_last_inst is extended on 64-bit machines to put the prefix
and suffix in the right places in the ppc_inst_t being returned.
kvmppc_load_last_inst now returns the instruction in an unsigned long
in the same format as vcpu->arch.last_inst. It makes the decision
about whether to fetch a suffix based on the SRR1_PREFIXED bit in the
MSR image stored in the vcpu struct, which generally comes from SRR1
or HSRR1 on an interrupt. This bit is defined in Power ISA v3.1B to
be set if the interrupt occurred due to a prefixed instruction and
cleared otherwise for all interrupts except for instruction storage
interrupt, which does not come to the hypervisor. It is set to zero
for asynchronous interrupts such as external interrupts. In previous
ISA versions it was always set to 0 for all interrupts except
instruction storage interrupt.
The code in book3s_hv_rmhandlers.S that loads the faulting instruction
on a HDSI is only used on POWER8 and therefore doesn't ever need to
load a suffix.
[npiggin@gmail.com - check that the is-prefixed bit in SRR1 matches the
type of instruction that was fetched.]
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Tested-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/ZAgsq9h1CCzouQuV@cleo
|
|
Allow architectures to opt out of the generic hardware enabling logic,
and opt out on both s390 and PPC, which don't need to manually enable
virtualization as it's always on (when available).
In addition to letting s390 and PPC drop a bit of dead code, this will
hopefully also allow ARM to clean up its related code, e.g. ARM has its
own per-CPU flag to track which CPUs have enable hardware due to the
need to keep hardware enabled indefinitely when pKVM is enabled.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20221130230934.1014142-50-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop kvm_arch_init() and kvm_arch_exit() now that all implementations
are nops.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Eric Farman <farman@linux.ibm.com> # s390
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20221130230934.1014142-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop kvm_arch_hardware_setup() and kvm_arch_hardware_unsetup() now that
all implementations are nops.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Eric Farman <farman@linux.ibm.com> # s390
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20221130230934.1014142-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
CONFIG_PPC_FSL_BOOK3E is redundant with CONFIG_PPC_E500.
Remove it.
And rename five files accordingly.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Rename include guards to match new file names]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/795cb93b88c9a0279289712e674f39e3b108a1b4.1663606876.git.christophe.leroy@csgroup.eu
|
|
The H_ENTER_NESTED hypercall receives as second parameter the address
of a region of memory containing the values for the nested guest
privileged registers. We currently use the pt_regs structure contained
within kvm_vcpu_arch for that end.
Most hypercalls that receive a memory address expect that region to
not cross a 4K page boundary. We would want H_ENTER_NESTED to follow
the same pattern so this patch ensures the pt_regs structure sits
within a page.
Note: the pt_regs structure is currently 384 bytes in size, so
aligning to 512 is sufficient to ensure it will not cross a 4K page
and avoids punching too big a hole in struct kvm_vcpu_arch.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Murilo Opsfelder Araújo <muriloo@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220624142712.790491-1-farosas@linux.ibm.com
|
|
Alter the data collection points for the debug timing code in the P9
path to be more in line with what the code does. The points where we
accumulate time are now the following:
vcpu_entry: From vcpu_run_hv entry until the start of the inner loop;
guest_entry: From the start of the inner loop until the guest entry in
asm;
in_guest: From the guest entry in asm until the return to KVM C code;
guest_exit: From the return into KVM C code until the corresponding
hypercall/page fault handling or re-entry into the guest;
hypercall: Time spent handling hcalls in the kernel (hcalls can go to
QEMU, not accounted here);
page_fault: Time spent handling page faults;
vcpu_exit: vcpu_run_hv exit (almost no code here currently).
Like before, these are exposed in debugfs in a file called
"timings". There are four values:
- number of occurrences of the accumulation point;
- total time the vcpu spent in the phase in ns;
- shortest time the vcpu spent in the phase in ns;
- longest time the vcpu spent in the phase in ns;
===
Before:
rm_entry: 53132 16793518 256 4060
rm_intr: 53132 2125914 22 340
rm_exit: 53132 24108344 374 2180
guest: 53132 40980507996 404 9997650
cede: 0 0 0 0
After:
vcpu_entry: 34637 7716108 178 4416
guest_entry: 52414 49365608 324 747542
in_guest: 52411 40828715840 258 9997480
guest_exit: 52410 19681717182 826 102496674
vcpu_exit: 34636 1744462 38 182
hypercall: 45712 22878288 38 1307962
page_fault: 992 111104034 568 168688
With just one instruction (hcall):
vcpu_entry: 1 942 942 942
guest_entry: 1 4044 4044 4044
in_guest: 1 1540 1540 1540
guest_exit: 1 3542 3542 3542
vcpu_exit: 1 80 80 80
hypercall: 0 0 0 0
page_fault: 0 0 0 0
===
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220525130554.2614394-6-farosas@linux.ibm.com
|
|
We are currently doing the timing for debug purposes of the P9 entry
path using the accumulators and terminology defined by the old entry
path for P8 machines.
Not only the "real-mode" and "napping" mentions are out of place for
the P9 Radix entry path but also we cannot change them because the
timing code is coupled to the structures defined in struct
kvm_vcpu_arch.
Add a new CONFIG_KVM_BOOK3S_HV_P9_TIMING to enable the timing code for
the P9 entry path. For now, just add the new CONFIG and duplicate the
structures. A subsequent patch will add the P9 changes.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220525130554.2614394-4-farosas@linux.ibm.com
|
|
Rather than tie this to KVMPPC_NR_LPIDS which is becoming more dynamic,
fix it to 4096 (12-bits) explicitly for now.
kvmhv_get_nested() does not have to check against KVM_MAX_NESTED_GUESTS
because the L1 partition table registration hcall already did that, and
it checks against the partition table size.
This patch also puts all the partition table size calculations into the
same form, using 12 for the architected size field shift and 4 for the
shift corresponding to the partition table entry size.
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-of-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220123120043.3586018-6-npiggin@gmail.com
|
|
This removes the fixed sized kvm->arch.nested_guests array.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220123120043.3586018-5-npiggin@gmail.com
|
|
At the moment KVM on PPC creates 4 types of entries under the kvm debugfs:
1) "%pid-%fd" per a KVM instance (for all platforms);
2) "vm%pid" (for PPC Book3s HV KVM);
3) "vm%u_vcpu%u_timing" (for PPC Book3e KVM);
4) "kvm-xive-%p" (for XIVE PPC Book3s KVM, the same for XICS);
The problem with this is that multiple VMs per process is not allowed for
2) and 3) which makes it possible for userspace to trigger errors when
creating duplicated debugfs entries.
This merges all these into 1).
This defines kvm_arch_create_kvm_debugfs() similar to
kvm_arch_create_vcpu_debugfs().
This defines 2 hooks in kvmppc_ops that allow specific KVM implementations
add necessary entries, this adds the _e500 suffix to
kvmppc_create_vcpu_debugfs_e500() to make it clear what platform it is for.
This makes use of already existing kvm_arch_create_vcpu_debugfs() on PPC.
This removes no more used debugfs_dir pointers from PPC kvm_arch structs.
This stops removing vcpu entries as once created vcpus stay around
for the entire life of a VM and removed when the KVM instance is closed,
see commit d56f5136b010 ("KVM: let kvm_destroy_vm_debugfs clean up vCPU
debugfs directories").
Suggested-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220111005404.162219-1-aik@ozlabs.ru
|
|
The L0 is storing HFSCR requested by the L1 for the L2 in struct
kvm_nested_guest when the L1 requests a vCPU enter L2. kvm_nested_guest
is not a per-vCPU structure. Hilarity ensues.
Fix it by moving the nested hfscr into the vCPU structure together with
the other per-vCPU nested fields.
Fixes: 8b210a880b35 ("KVM: PPC: Book3S HV Nested: Make nested HFSCR state accessible")
Cc: stable@vger.kernel.org # v5.15+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220122105530.3477250-1-npiggin@gmail.com
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux into HEAD
Fix conflicts between memslot overhaul and commit 511d25d6b789f ("KVM:
PPC: Book3S: Suppress warnings when allocating too big memory slots")
from the powerpc tree.
|
|
Drop kvm_arch_vcpu_block_finish() now that all arch implementations are
nops.
No functional change intended.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Do not define/reference kvm_vcpu.wait if __KVM_HAVE_ARCH_WQP is true, and
instead force the architecture (PPC) to define its own rcuwait object.
Allowing common KVM to directly access vcpu->wait without a guard makes
it all too easy to introduce potential bugs, e.g. kvm_vcpu_block(),
kvm_vcpu_on_spin(), and async_pf_execute() all operate on vcpu->wait, not
the result of kvm_arch_vcpu_get_wait(), and so may do the wrong thing for
PPC.
Due to PPC's shenanigans with respect to callbacks and waits (it switches
to the virtual core's wait object at KVM_RUN!?!?), it's not clear whether
or not this fixes any bugs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
cpu_in_guest is set to determine if a CPU needs to be IPI'ed to exit
the guest and notice the need_tlb_flush bit.
This can be implemented as a global per-CPU pointer to the currently
running guest instead of per-guest cpumasks, saving 2 atomics per
entry/exit. P7/8 doesn't require cpu_in_guest, nor does a nested HV
(only the L0 does), so move it to the P9 HV path.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211123095231.1036501-50-npiggin@gmail.com
|
|
Use HFSCR facility disabling to implement demand faulting for TM, with
a hysteresis counter similar to the load_fp etc counters in context
switching that implement the equivalent demand faulting for userspace
facilities.
This speeds up guest entry/exit by avoiding the register save/restore
when a guest is not frequently using them. When a guest does use them
often, there will be some additional demand fault overhead, but these
are not commonly used facilities.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211123095231.1036501-38-npiggin@gmail.com
|
|
Use HFSCR facility disabling to implement demand faulting for EBB, with
a hysteresis counter similar to the load_fp etc counters in context
switching that implement the equivalent demand faulting for userspace
facilities.
This speeds up guest entry/exit by avoiding the register save/restore
when a guest is not frequently using them. When a guest does use them
often, there will be some additional demand fault overhead, but these
are not commonly used facilities.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211123095231.1036501-37-npiggin@gmail.com
|
|
Change dec_expires to be relative to the guest timebase, and allow
it to be moved into low level P9 guest entry functions, to improve
SPR access scheduling.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211123095231.1036501-23-npiggin@gmail.com
|
|
Pull KVM updates from Paolo Bonzini:
"ARM:
- More progress on the protected VM front, now with the full fixed
feature set as well as the limitation of some hypercalls after
initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
RISC-V:
- New KVM port.
x86:
- New API to control TSC offset from userspace
- TSC scaling for nested hypervisors on SVM
- Switch masterclock protection from raw_spin_lock to seqcount
- Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
- Convey the exit reason to userspace on emulation failure
- Configure time between NX page recovery iterations
- Expose Predictive Store Forwarding Disable CPUID leaf
- Allocate page tracking data structures lazily (if the i915 KVM-GT
functionality is not compiled in)
- Cleanups, fixes and optimizations for the shadow MMU code
s390:
- SIGP Fixes
- initial preparations for lazy destroy of secure VMs
- storage key improvements/fixes
- Log the guest CPNC
Starting from this release, KVM-PPC patches will come from Michael
Ellerman's PPC tree"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
RISC-V: KVM: fix boolreturn.cocci warnings
RISC-V: KVM: remove unneeded semicolon
RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
RISC-V: KVM: Factor-out FP virtualization into separate sources
KVM: s390: add debug statement for diag 318 CPNC data
KVM: s390: pv: properly handle page flags for protected guests
KVM: s390: Fix handle_sske page fault handling
KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
KVM: x86: Clarify the kvm_run.emulation_failure structure layout
KVM: s390: Add a routine for setting userspace CPU state
KVM: s390: Simplify SIGP Set Arch handling
KVM: s390: pv: avoid stalls when making pages secure
KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
KVM: s390: pv: avoid double free of sida page
KVM: s390: pv: add macros for UVC CC values
s390/mm: optimize reset_guest_reference_bit()
s390/mm: optimize set_guest_storage_key()
s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
...
|
|
There is a regular need in the kernel to provide a way to declare having
a dynamically sized set of trailing elements in a structure. Kernel code
should always use "flexible array members" [1] for these cases. The
older style of one-element or zero-length arrays should no longer be
used[2].
Also, make use of the struct_size() helper in kzalloc().
[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://www.kernel.org/doc/html/latest/process/deprecated.html#zero-length-and-one-element-arrays
Signed-off-by: Len Baker <len.baker@gmx.com>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
|
|
KVM_MAX_VCPU_ID is not specifying the highest allowed vcpu-id, but the
number of allowed vcpu-ids. This has already led to confusion, so
rename KVM_MAX_VCPU_ID to KVM_MAX_VCPU_IDS to make its semantics more
clear
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210913135745.13944-3-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull KVM updates from Paolo Bonzini:
"ARM:
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual
PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as
they do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized
LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is
disabled
- bugfixes and cleanups, especially with respect to vCPU reset and
choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless
necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (210 commits)
KVM: Drop unused kvm_dirty_gfn_invalid()
KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is adjusted
KVM: MMU: mark role_regs and role accessors as maybe unused
KVM: MIPS: Remove a "set but not used" variable
x86/kvm: Don't enable IRQ when IRQ enabled in kvm_wait
KVM: stats: Add VM stat for remote tlb flush requests
KVM: Remove unnecessary export of kvm_{inc,dec}_notifier_count()
KVM: x86/mmu: Move lpage_disallowed_link further "down" in kvm_mmu_page
KVM: x86/mmu: Relocate kvm_mmu_page.tdp_mmu_page for better cache locality
Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
KVM: x86/mmu: Remove unused field mmio_cached in struct kvm_mmu_page
kvm: x86: Increase KVM_SOFT_MAX_VCPUS to 710
kvm: x86: Increase MAX_VCPUS to 1024
kvm: x86: Set KVM_MAX_VCPU_ID to 4*KVM_MAX_VCPUS
KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
KVM: s390: index kvm->arch.idle_mask by vcpu_idx
KVM: s390: Enable specification exception interpretation
KVM: arm64: Trim guest debug exception handling
KVM: SVM: Add 5-level page table support for SVM
...
|
|
When the L0 runs a nested L2, there are several permutations of HFSCR
that can be relevant. The HFSCR that the L1 vcpu L1 requested, the
HFSCR that the L1 vcpu may use, and the HFSCR that is actually being
used to run the L2.
The L1 requested HFSCR is not accessible outside the nested hcall
handler, so copy that into a new kvm_nested_guest.hfscr field.
The permitted HFSCR is taken from the HFSCR that the L1 runs with,
which is also not accessible while the hcall is being made. Move
this into a new kvm_vcpu_arch.hfscr_permitted field.
These will be used by the next patch to improve facility handling
for nested guests, and later by facility demand faulting patches.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210811160134.904987-7-npiggin@gmail.com
|
|
Add simple stats halt_wait_ns to record the time a VCPU has spent on
waiting for all architectures (not just powerpc).
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210802165633.1866976-5-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Generic KVM stats are those collected in architecture independent code
or those supported by all architectures; put all generic statistics in
a separate structure. This ensures that they are defined the same way
in the statistics API which is being added, removing duplication among
different architectures in the declaration of the descriptors.
No functional change intended.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210618222709.1858088-2-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux into HEAD
- Support for the H_RPT_INVALIDATE hypercall
- Conversion of Book3S entry/exit to C
- Bug fixes
|
|
Make them the same type as vCPU stats. There is no reason
to limit the counters to unsigned long.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Dependent-threads mode is the normal KVM mode for pre-POWER9 SMT
processors, where all threads in a core (or subcore) would run the same
partition at the same time, or they would run the host.
This design was mandated by MMU state that is shared between threads in
a processor, so the synchronisation point is in hypervisor real-mode
that has essentially no shared state, so it's safe for multiple threads
to gather and switch to the correct mode.
It is implemented by having the host unplug all secondary threads and
always run in SMT1 mode, and host QEMU threads essentially represent
virtual cores that wake these secondary threads out of unplug when the
ioctl is called to run the guest. This happens via a side-path that is
mostly invisible to the rest of the Linux host and the secondary threads
still appear to be unplugged.
POWER9 / ISA v3.0 has a more flexible MMU design that is independent
per-thread and allows a much simpler KVM implementation. Before the new
"P9 fast path" was added that began to take advantage of this, POWER9
support was implemented in the existing path which has support to run
in the dependent threads mode. So it was not much work to add support to
run POWER9 in this dependent threads mode.
The mode is not required by the POWER9 MMU (although "mixed-mode" hash /
radix MMU limitations of early processors were worked around using this
mode). But it is one way to run SMT guests without running different
guests or guest and host on different threads of the same core, so it
could avoid or reduce some SMT attack surfaces without turning off SMT
entirely.
This security feature has some real, if indeterminate, value. However
the old path is lagging in features (nested HV), and with this series
the new P9 path adds remaining missing features (radix prefetch bug
and hash support, in later patches), so POWER9 dependent threads mode
support would be the only remaining reason to keep that code in and keep
supporting POWER9/POWER10 in the old path. So here we make the call to
drop this feature.
Remove dependent threads mode support for POWER9 and above processors.
Systems can still achieve this security by disabling SMT entirely, but
that would generally come at a larger performance cost for guests.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-23-npiggin@gmail.com
|
|
Almost all logic is moved to C, by introducing a new in_guest mode for
the P9 path that branches very early in the KVM interrupt handler to P9
exit code.
The main P9 entry and exit assembly is now only about 160 lines of low
level stack setup and register save/restore, plus a bad-interrupt
handler.
There are two motivations for this, the first is just make the code more
maintainable being in C. The second is to reduce the amount of code
running in a special KVM mode, "realmode". In quotes because with radix
it is no longer necessarily real-mode in the MMU, but it still has to be
treated specially because it may be in real-mode, and has various
important registers like PID, DEC, TB, etc set to guest. This is hostile
to the rest of Linux and can't use arbitrary kernel functionality or be
instrumented well.
This initial patch is a reasonably faithful conversion of the asm code,
but it does lack any loop to return quickly back into the guest without
switching out of realmode in the case of unimportant or easily handled
interrupts. As explained in previous changes, handling HV interrupts
very quickly in this low level realmode is not so important for P9
performance, and are important to avoid for security, observability,
debugability reasons.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-15-npiggin@gmail.com
|
|
KVM_REQ_UNBLOCK will be used to exit a vcpu from
its inner vcpu halt emulation loop.
Rename KVM_REQ_PENDING_TIMER to KVM_REQ_UNBLOCK, switch
PowerPC to arch specific request bit.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20210525134321.303768132@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Yank out the hva-based MMU notifier APIs now that all architectures that
use the notifiers have moved to the gfn-based APIs.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move PPC to the gfn-base MMU notifier APIs, and update all 15 bajillion
PPC-internal hooks to work with gfns instead of hvas.
No meaningful functional change intended, though the exact order of
operations is slightly different since the memslot lookups occur before
calling into arch code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the prototypes for the MMU notifier callbacks out of arch code and
into common code. There is no benefit to having each arch replicate the
prototypes since any deviation from the invocation in common code will
explode.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM code assumes single DAWR everywhere. Add code to support 2nd DAWR.
DAWR is a hypervisor resource and thus H_SET_MODE hcall is used to set/
unset it. Introduce new case H_SET_MODE_RESOURCE_SET_DAWR1 for 2nd DAWR.
Also, KVM will support 2nd DAWR only if CPU_FTR_DAWR1 is set.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
Power10 is introducing a second DAWR (Data Address Watchpoint
Register). Use real register names (with suffix 0) from ISA for
current macros and variables used by kvm. One exception is
KVM_REG_PPC_DAWR. Keep it as it is because it's uapi so changing it
will break userspace.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
Current KVM_USER_MEM_SLOTS limits are arch specific (512 on Power, 509 on x86,
32 on s390, 16 on MIPS) but they don't really need to be. Memory slots are
allocated dynamically in KVM when added so the only real limitation is
'id_to_index' array which is 'short'. We don't have any other
KVM_MEM_SLOTS_NUM/KVM_USER_MEM_SLOTS-sized statically defined structures.
Low KVM_USER_MEM_SLOTS can be a limiting factor for some configurations.
In particular, when QEMU tries to start a Windows guest with Hyper-V SynIC
enabled and e.g. 256 vCPUs the limit is hit as SynIC requires two pages per
vCPU and the guest is free to pick any GFN for each of them, this fragments
memslots as QEMU wants to have a separate memslot for each of these pages
(which are supposed to act as 'overlay' pages).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210127175731.2020089-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Similarly to what was done with XICS-on-XIVE and XIVE native KVM devices
with commit 5422e95103cf ("KVM: PPC: Book3S HV: XIVE: Replace the 'destroy'
method by a 'release' method"), convert the historical XICS KVM device to
implement the 'release' method. This is needed to run nested guests with
an in-kernel IRQ chip. A typical POWER9 guest can select XICS or XIVE
during boot, which requires to be able to destroy and to re-create the
KVM device. Only the historical XICS KVM device is available under pseries
at the current time and it still uses the legacy 'destroy' method.
Switching to 'release' means that vCPUs might still be running when the
device is destroyed. In order to avoid potential use-after-free, the
kvmppc_xics structure is allocated on first usage and kept around until
the VM exits. The same pointer is used each time a KVM XICS device is
being created, but this is okay since we only have one per VM.
Clear the ICP of each vCPU with vcpu->mutex held. This ensures that the
next time the vCPU resumes execution, it won't be going into the XICS
code anymore.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
The 'flags' field of 'struct mmu_notifier_range' is used to indicate
whether invalidate_range_{start,end}() are permitted to block. In the
case of kvm_mmu_notifier_invalidate_range_start(), this field is not
forwarded on to the architecture-specific implementation of
kvm_unmap_hva_range() and therefore the backend cannot sensibly decide
whether or not to block.
Add an extra 'flags' parameter to kvm_unmap_hva_range() so that
architectures are aware as to whether or not they are permitted to block.
Cc: <stable@vger.kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Message-Id: <20200811102725.7121-2-will@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|