diff options
Diffstat (limited to 'include')
-rw-r--r-- | include/linux/mod_devicetable.h | 9 | ||||
-rw-r--r-- | include/linux/remoteproc.h | 478 | ||||
-rw-r--r-- | include/linux/rpmsg.h | 326 | ||||
-rw-r--r-- | include/linux/virtio_ids.h | 1 |
4 files changed, 814 insertions, 0 deletions
diff --git a/include/linux/mod_devicetable.h b/include/linux/mod_devicetable.h index fb69ad191ad7..501da4cb8a6d 100644 --- a/include/linux/mod_devicetable.h +++ b/include/linux/mod_devicetable.h @@ -414,6 +414,15 @@ struct hv_vmbus_device_id { __attribute__((aligned(sizeof(kernel_ulong_t)))); }; +/* rpmsg */ + +#define RPMSG_NAME_SIZE 32 +#define RPMSG_DEVICE_MODALIAS_FMT "rpmsg:%s" + +struct rpmsg_device_id { + char name[RPMSG_NAME_SIZE]; +}; + /* i2c */ #define I2C_NAME_SIZE 20 diff --git a/include/linux/remoteproc.h b/include/linux/remoteproc.h new file mode 100644 index 000000000000..f1ffabb978d3 --- /dev/null +++ b/include/linux/remoteproc.h @@ -0,0 +1,478 @@ +/* + * Remote Processor Framework + * + * Copyright(c) 2011 Texas Instruments, Inc. + * Copyright(c) 2011 Google, Inc. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name Texas Instruments nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef REMOTEPROC_H +#define REMOTEPROC_H + +#include <linux/types.h> +#include <linux/kref.h> +#include <linux/klist.h> +#include <linux/mutex.h> +#include <linux/virtio.h> +#include <linux/completion.h> +#include <linux/idr.h> + +/** + * struct resource_table - firmware resource table header + * @ver: version number + * @num: number of resource entries + * @reserved: reserved (must be zero) + * @offset: array of offsets pointing at the various resource entries + * + * A resource table is essentially a list of system resources required + * by the remote processor. It may also include configuration entries. + * If needed, the remote processor firmware should contain this table + * as a dedicated ".resource_table" ELF section. + * + * Some resources entries are mere announcements, where the host is informed + * of specific remoteproc configuration. Other entries require the host to + * do something (e.g. allocate a system resource). Sometimes a negotiation + * is expected, where the firmware requests a resource, and once allocated, + * the host should provide back its details (e.g. address of an allocated + * memory region). + * + * The header of the resource table, as expressed by this structure, + * contains a version number (should we need to change this format in the + * future), the number of available resource entries, and their offsets + * in the table. + * + * Immediately following this header are the resource entries themselves, + * each of which begins with a resource entry header (as described below). + */ +struct resource_table { + u32 ver; + u32 num; + u32 reserved[2]; + u32 offset[0]; +} __packed; + +/** + * struct fw_rsc_hdr - firmware resource entry header + * @type: resource type + * @data: resource data + * + * Every resource entry begins with a 'struct fw_rsc_hdr' header providing + * its @type. The content of the entry itself will immediately follow + * this header, and it should be parsed according to the resource type. + */ +struct fw_rsc_hdr { + u32 type; + u8 data[0]; +} __packed; + +/** + * enum fw_resource_type - types of resource entries + * + * @RSC_CARVEOUT: request for allocation of a physically contiguous + * memory region. + * @RSC_DEVMEM: request to iommu_map a memory-based peripheral. + * @RSC_TRACE: announces the availability of a trace buffer into which + * the remote processor will be writing logs. + * @RSC_VDEV: declare support for a virtio device, and serve as its + * virtio header. + * @RSC_LAST: just keep this one at the end + * + * For more details regarding a specific resource type, please see its + * dedicated structure below. + * + * Please note that these values are used as indices to the rproc_handle_rsc + * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to + * check the validity of an index before the lookup table is accessed, so + * please update it as needed. + */ +enum fw_resource_type { + RSC_CARVEOUT = 0, + RSC_DEVMEM = 1, + RSC_TRACE = 2, + RSC_VDEV = 3, + RSC_LAST = 4, +}; + +#define FW_RSC_ADDR_ANY (0xFFFFFFFFFFFFFFFF) + +/** + * struct fw_rsc_carveout - physically contiguous memory request + * @da: device address + * @pa: physical address + * @len: length (in bytes) + * @flags: iommu protection flags + * @reserved: reserved (must be zero) + * @name: human-readable name of the requested memory region + * + * This resource entry requests the host to allocate a physically contiguous + * memory region. + * + * These request entries should precede other firmware resource entries, + * as other entries might request placing other data objects inside + * these memory regions (e.g. data/code segments, trace resource entries, ...). + * + * Allocating memory this way helps utilizing the reserved physical memory + * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries + * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB + * pressure is important; it may have a substantial impact on performance. + * + * If the firmware is compiled with static addresses, then @da should specify + * the expected device address of this memory region. If @da is set to + * FW_RSC_ADDR_ANY, then the host will dynamically allocate it, and then + * overwrite @da with the dynamically allocated address. + * + * We will always use @da to negotiate the device addresses, even if it + * isn't using an iommu. In that case, though, it will obviously contain + * physical addresses. + * + * Some remote processors needs to know the allocated physical address + * even if they do use an iommu. This is needed, e.g., if they control + * hardware accelerators which access the physical memory directly (this + * is the case with OMAP4 for instance). In that case, the host will + * overwrite @pa with the dynamically allocated physical address. + * Generally we don't want to expose physical addresses if we don't have to + * (remote processors are generally _not_ trusted), so we might want to + * change this to happen _only_ when explicitly required by the hardware. + * + * @flags is used to provide IOMMU protection flags, and @name should + * (optionally) contain a human readable name of this carveout region + * (mainly for debugging purposes). + */ +struct fw_rsc_carveout { + u32 da; + u32 pa; + u32 len; + u32 flags; + u32 reserved; + u8 name[32]; +} __packed; + +/** + * struct fw_rsc_devmem - iommu mapping request + * @da: device address + * @pa: physical address + * @len: length (in bytes) + * @flags: iommu protection flags + * @reserved: reserved (must be zero) + * @name: human-readable name of the requested region to be mapped + * + * This resource entry requests the host to iommu map a physically contiguous + * memory region. This is needed in case the remote processor requires + * access to certain memory-based peripherals; _never_ use it to access + * regular memory. + * + * This is obviously only needed if the remote processor is accessing memory + * via an iommu. + * + * @da should specify the required device address, @pa should specify + * the physical address we want to map, @len should specify the size of + * the mapping and @flags is the IOMMU protection flags. As always, @name may + * (optionally) contain a human readable name of this mapping (mainly for + * debugging purposes). + * + * Note: at this point we just "trust" those devmem entries to contain valid + * physical addresses, but this isn't safe and will be changed: eventually we + * want remoteproc implementations to provide us ranges of physical addresses + * the firmware is allowed to request, and not allow firmwares to request + * access to physical addresses that are outside those ranges. + */ +struct fw_rsc_devmem { + u32 da; + u32 pa; + u32 len; + u32 flags; + u32 reserved; + u8 name[32]; +} __packed; + +/** + * struct fw_rsc_trace - trace buffer declaration + * @da: device address + * @len: length (in bytes) + * @reserved: reserved (must be zero) + * @name: human-readable name of the trace buffer + * + * This resource entry provides the host information about a trace buffer + * into which the remote processor will write log messages. + * + * @da specifies the device address of the buffer, @len specifies + * its size, and @name may contain a human readable name of the trace buffer. + * + * After booting the remote processor, the trace buffers are exposed to the + * user via debugfs entries (called trace0, trace1, etc..). + */ +struct fw_rsc_trace { + u32 da; + u32 len; + u32 reserved; + u8 name[32]; +} __packed; + +/** + * struct fw_rsc_vdev_vring - vring descriptor entry + * @da: device address + * @align: the alignment between the consumer and producer parts of the vring + * @num: num of buffers supported by this vring (must be power of two) + * @notifyid is a unique rproc-wide notify index for this vring. This notify + * index is used when kicking a remote processor, to let it know that this + * vring is triggered. + * @reserved: reserved (must be zero) + * + * This descriptor is not a resource entry by itself; it is part of the + * vdev resource type (see below). + * + * Note that @da should either contain the device address where + * the remote processor is expecting the vring, or indicate that + * dynamically allocation of the vring's device address is supported. + */ +struct fw_rsc_vdev_vring { + u32 da; + u32 align; + u32 num; + u32 notifyid; + u32 reserved; +} __packed; + +/** + * struct fw_rsc_vdev - virtio device header + * @id: virtio device id (as in virtio_ids.h) + * @notifyid is a unique rproc-wide notify index for this vdev. This notify + * index is used when kicking a remote processor, to let it know that the + * status/features of this vdev have changes. + * @dfeatures specifies the virtio device features supported by the firmware + * @gfeatures is a place holder used by the host to write back the + * negotiated features that are supported by both sides. + * @config_len is the size of the virtio config space of this vdev. The config + * space lies in the resource table immediate after this vdev header. + * @status is a place holder where the host will indicate its virtio progress. + * @num_of_vrings indicates how many vrings are described in this vdev header + * @reserved: reserved (must be zero) + * @vring is an array of @num_of_vrings entries of 'struct fw_rsc_vdev_vring'. + * + * This resource is a virtio device header: it provides information about + * the vdev, and is then used by the host and its peer remote processors + * to negotiate and share certain virtio properties. + * + * By providing this resource entry, the firmware essentially asks remoteproc + * to statically allocate a vdev upon registration of the rproc (dynamic vdev + * allocation is not yet supported). + * + * Note: unlike virtualization systems, the term 'host' here means + * the Linux side which is running remoteproc to control the remote + * processors. We use the name 'gfeatures' to comply with virtio's terms, + * though there isn't really any virtualized guest OS here: it's the host + * which is responsible for negotiating the final features. + * Yeah, it's a bit confusing. + * + * Note: immediately following this structure is the virtio config space for + * this vdev (which is specific to the vdev; for more info, read the virtio + * spec). the size of the config space is specified by @config_len. + */ +struct fw_rsc_vdev { + u32 id; + u32 notifyid; + u32 dfeatures; + u32 gfeatures; + u32 config_len; + u8 status; + u8 num_of_vrings; + u8 reserved[2]; + struct fw_rsc_vdev_vring vring[0]; +} __packed; + +/** + * struct rproc_mem_entry - memory entry descriptor + * @va: virtual address + * @dma: dma address + * @len: length, in bytes + * @da: device address + * @priv: associated data + * @node: list node + */ +struct rproc_mem_entry { + void *va; + dma_addr_t dma; + int len; + u32 da; + void *priv; + struct list_head node; +}; + +struct rproc; + +/** + * struct rproc_ops - platform-specific device handlers + * @start: power on the device and boot it + * @stop: power off the device + * @kick: kick a virtqueue (virtqueue id given as a parameter) + */ +struct rproc_ops { + int (*start)(struct rproc *rproc); + int (*stop)(struct rproc *rproc); + void (*kick)(struct rproc *rproc, int vqid); +}; + +/** + * enum rproc_state - remote processor states + * @RPROC_OFFLINE: device is powered off + * @RPROC_SUSPENDED: device is suspended; needs to be woken up to receive + * a message. + * @RPROC_RUNNING: device is up and running + * @RPROC_CRASHED: device has crashed; need to start recovery + * @RPROC_LAST: just keep this one at the end + * + * Please note that the values of these states are used as indices + * to rproc_state_string, a state-to-name lookup table, + * so please keep the two synchronized. @RPROC_LAST is used to check + * the validity of an index before the lookup table is accessed, so + * please update it as needed too. + */ +enum rproc_state { + RPROC_OFFLINE = 0, + RPROC_SUSPENDED = 1, + RPROC_RUNNING = 2, + RPROC_CRASHED = 3, + RPROC_LAST = 4, +}; + +/** + * struct rproc - represents a physical remote processor device + * @node: klist node of this rproc object + * @domain: iommu domain + * @name: human readable name of the rproc + * @firmware: name of firmware file to be loaded + * @priv: private data which belongs to the platform-specific rproc module + * @ops: platform-specific start/stop rproc handlers + * @dev: underlying device + * @refcount: refcount of users that have a valid pointer to this rproc + * @power: refcount of users who need this rproc powered up + * @state: state of the device + * @lock: lock which protects concurrent manipulations of the rproc + * @dbg_dir: debugfs directory of this rproc device + * @traces: list of trace buffers + * @num_traces: number of trace buffers + * @carveouts: list of physically contiguous memory allocations + * @mappings: list of iommu mappings we initiated, needed on shutdown + * @firmware_loading_complete: marks e/o asynchronous firmware loading + * @bootaddr: address of first instruction to boot rproc with (optional) + * @rvdevs: list of remote virtio devices + * @notifyids: idr for dynamically assigning rproc-wide unique notify ids + */ +struct rproc { + struct klist_node node; + struct iommu_domain *domain; + const char *name; + const char *firmware; + void *priv; + const struct rproc_ops *ops; + struct device *dev; + struct kref refcount; + atomic_t power; + unsigned int state; + struct mutex lock; + struct dentry *dbg_dir; + struct list_head traces; + int num_traces; + struct list_head carveouts; + struct list_head mappings; + struct completion firmware_loading_complete; + u32 bootaddr; + struct list_head rvdevs; + struct idr notifyids; +}; + +/* we currently support only two vrings per rvdev */ +#define RVDEV_NUM_VRINGS 2 + +/** + * struct rproc_vring - remoteproc vring state + * @va: virtual address + * @dma: dma address + * @len: length, in bytes + * @da: device address + * @align: vring alignment + * @notifyid: rproc-specific unique vring index + * @rvdev: remote vdev + * @vq: the virtqueue of this vring + */ +struct rproc_vring { + void *va; + dma_addr_t dma; + int len; + u32 da; + u32 align; + int notifyid; + struct rproc_vdev *rvdev; + struct virtqueue *vq; +}; + +/** + * struct rproc_vdev - remoteproc state for a supported virtio device + * @node: list node + * @rproc: the rproc handle + * @vdev: the virio device + * @vring: the vrings for this vdev + * @dfeatures: virtio device features + * @gfeatures: virtio guest features + */ +struct rproc_vdev { + struct list_head node; + struct rproc *rproc; + struct virtio_device vdev; + struct rproc_vring vring[RVDEV_NUM_VRINGS]; + unsigned long dfeatures; + unsigned long gfeatures; +}; + +struct rproc *rproc_get_by_name(const char *name); +void rproc_put(struct rproc *rproc); + +struct rproc *rproc_alloc(struct device *dev, const char *name, + const struct rproc_ops *ops, + const char *firmware, int len); +void rproc_free(struct rproc *rproc); +int rproc_register(struct rproc *rproc); +int rproc_unregister(struct rproc *rproc); + +int rproc_boot(struct rproc *rproc); +void rproc_shutdown(struct rproc *rproc); + +static inline struct rproc_vdev *vdev_to_rvdev(struct virtio_device *vdev) +{ + return container_of(vdev, struct rproc_vdev, vdev); +} + +static inline struct rproc *vdev_to_rproc(struct virtio_device *vdev) +{ + struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); + + return rvdev->rproc; +} + +#endif /* REMOTEPROC_H */ diff --git a/include/linux/rpmsg.h b/include/linux/rpmsg.h new file mode 100644 index 000000000000..a8e50e44203c --- /dev/null +++ b/include/linux/rpmsg.h @@ -0,0 +1,326 @@ +/* + * Remote processor messaging + * + * Copyright (C) 2011 Texas Instruments, Inc. + * Copyright (C) 2011 Google, Inc. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name Texas Instruments nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _LINUX_RPMSG_H +#define _LINUX_RPMSG_H + +#include <linux/types.h> +#include <linux/device.h> +#include <linux/mod_devicetable.h> + +/* The feature bitmap for virtio rpmsg */ +#define VIRTIO_RPMSG_F_NS 0 /* RP supports name service notifications */ + +/** + * struct rpmsg_hdr - common header for all rpmsg messages + * @src: source address + * @dst: destination address + * @reserved: reserved for future use + * @len: length of payload (in bytes) + * @flags: message flags + * @data: @len bytes of message payload data + * + * Every message sent(/received) on the rpmsg bus begins with this header. + */ +struct rpmsg_hdr { + u32 src; + u32 dst; + u32 reserved; + u16 len; + u16 flags; + u8 data[0]; +} __packed; + +/** + * struct rpmsg_ns_msg - dynamic name service announcement message + * @name: name of remote service that is published + * @addr: address of remote service that is published + * @flags: indicates whether service is created or destroyed + * + * This message is sent across to publish a new service, or announce + * about its removal. When we receive these messages, an appropriate + * rpmsg channel (i.e device) is created/destroyed. In turn, the ->probe() + * or ->remove() handler of the appropriate rpmsg driver will be invoked + * (if/as-soon-as one is registered). + */ +struct rpmsg_ns_msg { + char name[RPMSG_NAME_SIZE]; + u32 addr; + u32 flags; +} __packed; + +/** + * enum rpmsg_ns_flags - dynamic name service announcement flags + * + * @RPMSG_NS_CREATE: a new remote service was just created + * @RPMSG_NS_DESTROY: a known remote service was just destroyed + */ +enum rpmsg_ns_flags { + RPMSG_NS_CREATE = 0, + RPMSG_NS_DESTROY = 1, +}; + +#define RPMSG_ADDR_ANY 0xFFFFFFFF + +struct virtproc_info; + +/** + * rpmsg_channel - devices that belong to the rpmsg bus are called channels + * @vrp: the remote processor this channel belongs to + * @dev: the device struct + * @id: device id (used to match between rpmsg drivers and devices) + * @src: local address + * @dst: destination address + * @ept: the rpmsg endpoint of this channel + * @announce: if set, rpmsg will announce the creation/removal of this channel + */ +struct rpmsg_channel { + struct virtproc_info *vrp; + struct device dev; + struct rpmsg_device_id id; + u32 src; + u32 dst; + struct rpmsg_endpoint *ept; + bool announce; +}; + +typedef void (*rpmsg_rx_cb_t)(struct rpmsg_channel *, void *, int, void *, u32); + +/** + * struct rpmsg_endpoint - binds a local rpmsg address to its user + * @rpdev: rpmsg channel device + * @cb: rx callback handler + * @addr: local rpmsg address + * @priv: private data for the driver's use + * + * In essence, an rpmsg endpoint represents a listener on the rpmsg bus, as + * it binds an rpmsg address with an rx callback handler. + * + * Simple rpmsg drivers shouldn't use this struct directly, because + * things just work: every rpmsg driver provides an rx callback upon + * registering to the bus, and that callback is then bound to its rpmsg + * address when the driver is probed. When relevant inbound messages arrive + * (i.e. messages which their dst address equals to the src address of + * the rpmsg channel), the driver's handler is invoked to process it. + * + * More complicated drivers though, that do need to allocate additional rpmsg + * addresses, and bind them to different rx callbacks, must explicitly + * create additional endpoints by themselves (see rpmsg_create_ept()). + */ +struct rpmsg_endpoint { + struct rpmsg_channel *rpdev; + rpmsg_rx_cb_t cb; + u32 addr; + void *priv; +}; + +/** + * struct rpmsg_driver - rpmsg driver struct + * @drv: underlying device driver + * @id_table: rpmsg ids serviced by this driver + * @probe: invoked when a matching rpmsg channel (i.e. device) is found + * @remove: invoked when the rpmsg channel is removed + * @callback: invoked when an inbound message is received on the channel + */ +struct rpmsg_driver { + struct device_driver drv; + const struct rpmsg_device_id *id_table; + int (*probe)(struct rpmsg_channel *dev); + void (*remove)(struct rpmsg_channel *dev); + void (*callback)(struct rpmsg_channel *, void *, int, void *, u32); +}; + +int register_rpmsg_device(struct rpmsg_channel *dev); +void unregister_rpmsg_device(struct rpmsg_channel *dev); +int register_rpmsg_driver(struct rpmsg_driver *drv); +void unregister_rpmsg_driver(struct rpmsg_driver *drv); +void rpmsg_destroy_ept(struct rpmsg_endpoint *); +struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *, + rpmsg_rx_cb_t cb, void *priv, u32 addr); +int +rpmsg_send_offchannel_raw(struct rpmsg_channel *, u32, u32, void *, int, bool); + +/** + * rpmsg_send() - send a message across to the remote processor + * @rpdev: the rpmsg channel + * @data: payload of message + * @len: length of payload + * + * This function sends @data of length @len on the @rpdev channel. + * The message will be sent to the remote processor which the @rpdev + * channel belongs to, using @rpdev's source and destination addresses. + * In case there are no TX buffers available, the function will block until + * one becomes available, or a timeout of 15 seconds elapses. When the latter + * happens, -ERESTARTSYS is returned. + * + * Can only be called from process context (for now). + * + * Returns 0 on success and an appropriate error value on failure. + */ +static inline int rpmsg_send(struct rpmsg_channel *rpdev, void *data, int len) +{ + u32 src = rpdev->src, dst = rpdev->dst; + + return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); +} + +/** + * rpmsg_sendto() - send a message across to the remote processor, specify dst + * @rpdev: the rpmsg channel + * @data: payload of message + * @len: length of payload + * @dst: destination address + * + * This function sends @data of length @len to the remote @dst address. + * The message will be sent to the remote processor which the @rpdev + * channel belongs to, using @rpdev's source address. + * In case there are no TX buffers available, the function will block until + * one becomes available, or a timeout of 15 seconds elapses. When the latter + * happens, -ERESTARTSYS is returned. + * + * Can only be called from process context (for now). + * + * Returns 0 on success and an appropriate error value on failure. + */ +static inline +int rpmsg_sendto(struct rpmsg_channel *rpdev, void *data, int len, u32 dst) +{ + u32 src = rpdev->src; + + return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); +} + +/** + * rpmsg_send_offchannel() - send a message using explicit src/dst addresses + * @rpdev: the rpmsg channel + * @src: source address + * @dst: destination address + * @data: payload of message + * @len: length of payload + * + * This function sends @data of length @len to the remote @dst address, + * and uses @src as the source address. + * The message will be sent to the remote processor which the @rpdev + * channel belongs to. + * In case there are no TX buffers available, the function will block until + * one becomes available, or a timeout of 15 seconds elapses. When the latter + * happens, -ERESTARTSYS is returned. + * + * Can only be called from process context (for now). + * + * Returns 0 on success and an appropriate error value on failure. + */ +static inline +int rpmsg_send_offchannel(struct rpmsg_channel *rpdev, u32 src, u32 dst, + void *data, int len) +{ + return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); +} + +/** + * rpmsg_send() - send a message across to the remote processor + * @rpdev: the rpmsg channel + * @data: payload of message + * @len: length of payload + * + * This function sends @data of length @len on the @rpdev channel. + * The message will be sent to the remote processor which the @rpdev + * channel belongs to, using @rpdev's source and destination addresses. + * In case there are no TX buffers available, the function will immediately + * return -ENOMEM without waiting until one becomes available. + * + * Can only be called from process context (for now). + * + * Returns 0 on success and an appropriate error value on failure. + */ +static inline +int rpmsg_trysend(struct rpmsg_channel *rpdev, void *data, int len) +{ + u32 src = rpdev->src, dst = rpdev->dst; + + return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); +} + +/** + * rpmsg_sendto() - send a message across to the remote processor, specify dst + * @rpdev: the rpmsg channel + * @data: payload of message + * @len: length of payload + * @dst: destination address + * + * This function sends @data of length @len to the remote @dst address. + * The message will be sent to the remote processor which the @rpdev + * channel belongs to, using @rpdev's source address. + * In case there are no TX buffers available, the function will immediately + * return -ENOMEM without waiting until one becomes available. + * + * Can only be called from process context (for now). + * + * Returns 0 on success and an appropriate error value on failure. + */ +static inline +int rpmsg_trysendto(struct rpmsg_channel *rpdev, void *data, int len, u32 dst) +{ + u32 src = rpdev->src; + + return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); +} + +/** + * rpmsg_send_offchannel() - send a message using explicit src/dst addresses + * @rpdev: the rpmsg channel + * @src: source address + * @dst: destination address + * @data: payload of message + * @len: length of payload + * + * This function sends @data of length @len to the remote @dst address, + * and uses @src as the source address. + * The message will be sent to the remote processor which the @rpdev + * channel belongs to. + * In case there are no TX buffers available, the function will immediately + * return -ENOMEM without waiting until one becomes available. + * + * Can only be called from process context (for now). + * + * Returns 0 on success and an appropriate error value on failure. + */ +static inline +int rpmsg_trysend_offchannel(struct rpmsg_channel *rpdev, u32 src, u32 dst, + void *data, int len) +{ + return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); +} + +#endif /* _LINUX_RPMSG_H */ diff --git a/include/linux/virtio_ids.h b/include/linux/virtio_ids.h index c5d8455c68c0..7529b854b7fd 100644 --- a/include/linux/virtio_ids.h +++ b/include/linux/virtio_ids.h @@ -34,6 +34,7 @@ #define VIRTIO_ID_CONSOLE 3 /* virtio console */ #define VIRTIO_ID_RNG 4 /* virtio ring */ #define VIRTIO_ID_BALLOON 5 /* virtio balloon */ +#define VIRTIO_ID_RPMSG 7 /* virtio remote processor messaging */ #define VIRTIO_ID_SCSI 8 /* virtio scsi */ #define VIRTIO_ID_9P 9 /* 9p virtio console */ |