summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-dw-core.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/spi/spi-dw-core.c')
-rw-r--r--drivers/spi/spi-dw-core.c301
1 files changed, 301 insertions, 0 deletions
diff --git a/drivers/spi/spi-dw-core.c b/drivers/spi/spi-dw-core.c
index 8480da49a6a1..8eb3b31b376d 100644
--- a/drivers/spi/spi-dw-core.c
+++ b/drivers/spi/spi-dw-core.c
@@ -8,10 +8,13 @@
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/module.h>
+#include <linux/preempt.h>
#include <linux/highmem.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
+#include <linux/spi/spi-mem.h>
+#include <linux/string.h>
#include <linux/of.h>
#include "spi-dw.h"
@@ -422,6 +425,301 @@ static void dw_spi_handle_err(struct spi_controller *master,
spi_reset_chip(dws);
}
+static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
+{
+ if (op->data.dir == SPI_MEM_DATA_IN)
+ op->data.nbytes = clamp_val(op->data.nbytes, 0, SPI_NDF_MASK + 1);
+
+ return 0;
+}
+
+static bool dw_spi_supports_mem_op(struct spi_mem *mem,
+ const struct spi_mem_op *op)
+{
+ if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
+ op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
+ return false;
+
+ return spi_mem_default_supports_op(mem, op);
+}
+
+static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
+{
+ unsigned int i, j, len;
+ u8 *out;
+
+ /*
+ * Calculate the total length of the EEPROM command transfer and
+ * either use the pre-allocated buffer or create a temporary one.
+ */
+ len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
+ if (op->data.dir == SPI_MEM_DATA_OUT)
+ len += op->data.nbytes;
+
+ if (len <= SPI_BUF_SIZE) {
+ out = dws->buf;
+ } else {
+ out = kzalloc(len, GFP_KERNEL);
+ if (!out)
+ return -ENOMEM;
+ }
+
+ /*
+ * Collect the operation code, address and dummy bytes into the single
+ * buffer. If it's a transfer with data to be sent, also copy it into the
+ * single buffer in order to speed the data transmission up.
+ */
+ for (i = 0; i < op->cmd.nbytes; ++i)
+ out[i] = SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
+ for (j = 0; j < op->addr.nbytes; ++i, ++j)
+ out[i] = SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
+ for (j = 0; j < op->dummy.nbytes; ++i, ++j)
+ out[i] = 0x0;
+
+ if (op->data.dir == SPI_MEM_DATA_OUT)
+ memcpy(&out[i], op->data.buf.out, op->data.nbytes);
+
+ dws->n_bytes = 1;
+ dws->tx = out;
+ dws->tx_len = len;
+ if (op->data.dir == SPI_MEM_DATA_IN) {
+ dws->rx = op->data.buf.in;
+ dws->rx_len = op->data.nbytes;
+ } else {
+ dws->rx = NULL;
+ dws->rx_len = 0;
+ }
+
+ return 0;
+}
+
+static void dw_spi_free_mem_buf(struct dw_spi *dws)
+{
+ if (dws->tx != dws->buf)
+ kfree(dws->tx);
+}
+
+static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
+{
+ u32 room, entries, sts;
+ unsigned int len;
+ u8 *buf;
+
+ /*
+ * At initial stage we just pre-fill the Tx FIFO in with no rush,
+ * since native CS hasn't been enabled yet and the automatic data
+ * transmission won't start til we do that.
+ */
+ len = min(dws->fifo_len, dws->tx_len);
+ buf = dws->tx;
+ while (len--)
+ dw_write_io_reg(dws, DW_SPI_DR, *buf++);
+
+ /*
+ * After setting any bit in the SER register the transmission will
+ * start automatically. We have to keep up with that procedure
+ * otherwise the CS de-assertion will happen whereupon the memory
+ * operation will be pre-terminated.
+ */
+ len = dws->tx_len - ((void *)buf - dws->tx);
+ dw_spi_set_cs(spi, false);
+ while (len) {
+ entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
+ if (!entries) {
+ dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
+ return -EIO;
+ }
+ room = min(dws->fifo_len - entries, len);
+ for (; room; --room, --len)
+ dw_write_io_reg(dws, DW_SPI_DR, *buf++);
+ }
+
+ /*
+ * Data fetching will start automatically if the EEPROM-read mode is
+ * activated. We have to keep up with the incoming data pace to
+ * prevent the Rx FIFO overflow causing the inbound data loss.
+ */
+ len = dws->rx_len;
+ buf = dws->rx;
+ while (len) {
+ entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
+ if (!entries) {
+ sts = readl_relaxed(dws->regs + DW_SPI_RISR);
+ if (sts & SPI_INT_RXOI) {
+ dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
+ return -EIO;
+ }
+ continue;
+ }
+ entries = min(entries, len);
+ for (; entries; --entries, --len)
+ *buf++ = dw_read_io_reg(dws, DW_SPI_DR);
+ }
+
+ return 0;
+}
+
+static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
+{
+ return dw_readl(dws, DW_SPI_SR) & SR_BUSY;
+}
+
+static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
+{
+ int retry = SPI_WAIT_RETRIES;
+ struct spi_delay delay;
+ unsigned long ns, us;
+ u32 nents;
+
+ nents = dw_readl(dws, DW_SPI_TXFLR);
+ ns = NSEC_PER_SEC / dws->current_freq * nents;
+ ns *= dws->n_bytes * BITS_PER_BYTE;
+ if (ns <= NSEC_PER_USEC) {
+ delay.unit = SPI_DELAY_UNIT_NSECS;
+ delay.value = ns;
+ } else {
+ us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
+ delay.unit = SPI_DELAY_UNIT_USECS;
+ delay.value = clamp_val(us, 0, USHRT_MAX);
+ }
+
+ while (dw_spi_ctlr_busy(dws) && retry--)
+ spi_delay_exec(&delay, NULL);
+
+ if (retry < 0) {
+ dev_err(&dws->master->dev, "Mem op hanged up\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
+{
+ spi_enable_chip(dws, 0);
+ dw_spi_set_cs(spi, true);
+ spi_enable_chip(dws, 1);
+}
+
+/*
+ * The SPI memory operation implementation below is the best choice for the
+ * devices, which are selected by the native chip-select lane. It's
+ * specifically developed to workaround the problem with automatic chip-select
+ * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
+ * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
+ * unavailable.
+ */
+static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
+{
+ struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
+ struct dw_spi_cfg cfg;
+ unsigned long flags;
+ int ret;
+
+ /*
+ * Collect the outbound data into a single buffer to speed the
+ * transmission up at least on the initial stage.
+ */
+ ret = dw_spi_init_mem_buf(dws, op);
+ if (ret)
+ return ret;
+
+ /*
+ * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
+ * operation. Transmit-only mode is suitable for the rest of them.
+ */
+ cfg.dfs = 8;
+ cfg.freq = mem->spi->max_speed_hz;
+ if (op->data.dir == SPI_MEM_DATA_IN) {
+ cfg.tmode = SPI_TMOD_EPROMREAD;
+ cfg.ndf = op->data.nbytes;
+ } else {
+ cfg.tmode = SPI_TMOD_TO;
+ }
+
+ spi_enable_chip(dws, 0);
+
+ dw_spi_update_config(dws, mem->spi, &cfg);
+
+ spi_mask_intr(dws, 0xff);
+
+ spi_enable_chip(dws, 1);
+
+ /*
+ * DW APB SSI controller has very nasty peculiarities. First originally
+ * (without any vendor-specific modifications) it doesn't provide a
+ * direct way to set and clear the native chip-select signal. Instead
+ * the controller asserts the CS lane if Tx FIFO isn't empty and a
+ * transmission is going on, and automatically de-asserts it back to
+ * the high level if the Tx FIFO doesn't have anything to be pushed
+ * out. Due to that a multi-tasking or heavy IRQs activity might be
+ * fatal, since the transfer procedure preemption may cause the Tx FIFO
+ * getting empty and sudden CS de-assertion, which in the middle of the
+ * transfer will most likely cause the data loss. Secondly the
+ * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
+ * data being automatically pulled in into the Rx FIFO. So if the
+ * driver software is late in fetching the data from the FIFO before
+ * it's overflown, new incoming data will be lost. In order to make
+ * sure the executed memory operations are CS-atomic and to prevent the
+ * Rx FIFO overflow we have to disable the local interrupts so to block
+ * any preemption during the subsequent IO operations.
+ *
+ * Note. At some circumstances disabling IRQs may not help to prevent
+ * the problems described above. The CS de-assertion and Rx FIFO
+ * overflow may still happen due to the relatively slow system bus or
+ * CPU not working fast enough, so the write-then-read algo implemented
+ * here just won't keep up with the SPI bus data transfer. Such
+ * situation is highly platform specific and is supposed to be fixed by
+ * manually restricting the SPI bus frequency using the
+ * dws->max_mem_freq parameter.
+ */
+ local_irq_save(flags);
+ preempt_disable();
+
+ ret = dw_spi_write_then_read(dws, mem->spi);
+
+ local_irq_restore(flags);
+ preempt_enable();
+
+ /*
+ * Wait for the operation being finished and check the controller
+ * status only if there hasn't been any run-time error detected. In the
+ * former case it's just pointless. In the later one to prevent an
+ * additional error message printing since any hw error flag being set
+ * would be due to an error detected on the data transfer.
+ */
+ if (!ret) {
+ ret = dw_spi_wait_mem_op_done(dws);
+ if (!ret)
+ ret = dw_spi_check_status(dws, true);
+ }
+
+ dw_spi_stop_mem_op(dws, mem->spi);
+
+ dw_spi_free_mem_buf(dws);
+
+ return ret;
+}
+
+/*
+ * Initialize the default memory operations if a glue layer hasn't specified
+ * custom ones. Direct mapping operations will be preserved anyway since DW SPI
+ * controller doesn't have an embedded dirmap interface. Note the memory
+ * operations implemented in this driver is the best choice only for the DW APB
+ * SSI controller with standard native CS functionality. If a hardware vendor
+ * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
+ * be safer to use the normal SPI-messages-based transfers implementation.
+ */
+static void dw_spi_init_mem_ops(struct dw_spi *dws)
+{
+ if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
+ !dws->set_cs) {
+ dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
+ dws->mem_ops.supports_op = dw_spi_supports_mem_op;
+ dws->mem_ops.exec_op = dw_spi_exec_mem_op;
+ }
+}
+
/* This may be called twice for each spi dev */
static int dw_spi_setup(struct spi_device *spi)
{
@@ -522,6 +820,8 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
goto err_free_master;
}
+ dw_spi_init_mem_ops(dws);
+
master->use_gpio_descriptors = true;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
@@ -535,6 +835,7 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
master->set_cs = dw_spi_set_cs;
master->transfer_one = dw_spi_transfer_one;
master->handle_err = dw_spi_handle_err;
+ master->mem_ops = &dws->mem_ops;
master->max_speed_hz = dws->max_freq;
master->dev.of_node = dev->of_node;
master->dev.fwnode = dev->fwnode;