diff options
Diffstat (limited to 'drivers/spi/spi-dw-core.c')
-rw-r--r-- | drivers/spi/spi-dw-core.c | 301 |
1 files changed, 301 insertions, 0 deletions
diff --git a/drivers/spi/spi-dw-core.c b/drivers/spi/spi-dw-core.c index 8480da49a6a1..8eb3b31b376d 100644 --- a/drivers/spi/spi-dw-core.c +++ b/drivers/spi/spi-dw-core.c @@ -8,10 +8,13 @@ #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/module.h> +#include <linux/preempt.h> #include <linux/highmem.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/spi/spi.h> +#include <linux/spi/spi-mem.h> +#include <linux/string.h> #include <linux/of.h> #include "spi-dw.h" @@ -422,6 +425,301 @@ static void dw_spi_handle_err(struct spi_controller *master, spi_reset_chip(dws); } +static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op) +{ + if (op->data.dir == SPI_MEM_DATA_IN) + op->data.nbytes = clamp_val(op->data.nbytes, 0, SPI_NDF_MASK + 1); + + return 0; +} + +static bool dw_spi_supports_mem_op(struct spi_mem *mem, + const struct spi_mem_op *op) +{ + if (op->data.buswidth > 1 || op->addr.buswidth > 1 || + op->dummy.buswidth > 1 || op->cmd.buswidth > 1) + return false; + + return spi_mem_default_supports_op(mem, op); +} + +static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op) +{ + unsigned int i, j, len; + u8 *out; + + /* + * Calculate the total length of the EEPROM command transfer and + * either use the pre-allocated buffer or create a temporary one. + */ + len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; + if (op->data.dir == SPI_MEM_DATA_OUT) + len += op->data.nbytes; + + if (len <= SPI_BUF_SIZE) { + out = dws->buf; + } else { + out = kzalloc(len, GFP_KERNEL); + if (!out) + return -ENOMEM; + } + + /* + * Collect the operation code, address and dummy bytes into the single + * buffer. If it's a transfer with data to be sent, also copy it into the + * single buffer in order to speed the data transmission up. + */ + for (i = 0; i < op->cmd.nbytes; ++i) + out[i] = SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1); + for (j = 0; j < op->addr.nbytes; ++i, ++j) + out[i] = SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1); + for (j = 0; j < op->dummy.nbytes; ++i, ++j) + out[i] = 0x0; + + if (op->data.dir == SPI_MEM_DATA_OUT) + memcpy(&out[i], op->data.buf.out, op->data.nbytes); + + dws->n_bytes = 1; + dws->tx = out; + dws->tx_len = len; + if (op->data.dir == SPI_MEM_DATA_IN) { + dws->rx = op->data.buf.in; + dws->rx_len = op->data.nbytes; + } else { + dws->rx = NULL; + dws->rx_len = 0; + } + + return 0; +} + +static void dw_spi_free_mem_buf(struct dw_spi *dws) +{ + if (dws->tx != dws->buf) + kfree(dws->tx); +} + +static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi) +{ + u32 room, entries, sts; + unsigned int len; + u8 *buf; + + /* + * At initial stage we just pre-fill the Tx FIFO in with no rush, + * since native CS hasn't been enabled yet and the automatic data + * transmission won't start til we do that. + */ + len = min(dws->fifo_len, dws->tx_len); + buf = dws->tx; + while (len--) + dw_write_io_reg(dws, DW_SPI_DR, *buf++); + + /* + * After setting any bit in the SER register the transmission will + * start automatically. We have to keep up with that procedure + * otherwise the CS de-assertion will happen whereupon the memory + * operation will be pre-terminated. + */ + len = dws->tx_len - ((void *)buf - dws->tx); + dw_spi_set_cs(spi, false); + while (len) { + entries = readl_relaxed(dws->regs + DW_SPI_TXFLR); + if (!entries) { + dev_err(&dws->master->dev, "CS de-assertion on Tx\n"); + return -EIO; + } + room = min(dws->fifo_len - entries, len); + for (; room; --room, --len) + dw_write_io_reg(dws, DW_SPI_DR, *buf++); + } + + /* + * Data fetching will start automatically if the EEPROM-read mode is + * activated. We have to keep up with the incoming data pace to + * prevent the Rx FIFO overflow causing the inbound data loss. + */ + len = dws->rx_len; + buf = dws->rx; + while (len) { + entries = readl_relaxed(dws->regs + DW_SPI_RXFLR); + if (!entries) { + sts = readl_relaxed(dws->regs + DW_SPI_RISR); + if (sts & SPI_INT_RXOI) { + dev_err(&dws->master->dev, "FIFO overflow on Rx\n"); + return -EIO; + } + continue; + } + entries = min(entries, len); + for (; entries; --entries, --len) + *buf++ = dw_read_io_reg(dws, DW_SPI_DR); + } + + return 0; +} + +static inline bool dw_spi_ctlr_busy(struct dw_spi *dws) +{ + return dw_readl(dws, DW_SPI_SR) & SR_BUSY; +} + +static int dw_spi_wait_mem_op_done(struct dw_spi *dws) +{ + int retry = SPI_WAIT_RETRIES; + struct spi_delay delay; + unsigned long ns, us; + u32 nents; + + nents = dw_readl(dws, DW_SPI_TXFLR); + ns = NSEC_PER_SEC / dws->current_freq * nents; + ns *= dws->n_bytes * BITS_PER_BYTE; + if (ns <= NSEC_PER_USEC) { + delay.unit = SPI_DELAY_UNIT_NSECS; + delay.value = ns; + } else { + us = DIV_ROUND_UP(ns, NSEC_PER_USEC); + delay.unit = SPI_DELAY_UNIT_USECS; + delay.value = clamp_val(us, 0, USHRT_MAX); + } + + while (dw_spi_ctlr_busy(dws) && retry--) + spi_delay_exec(&delay, NULL); + + if (retry < 0) { + dev_err(&dws->master->dev, "Mem op hanged up\n"); + return -EIO; + } + + return 0; +} + +static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi) +{ + spi_enable_chip(dws, 0); + dw_spi_set_cs(spi, true); + spi_enable_chip(dws, 1); +} + +/* + * The SPI memory operation implementation below is the best choice for the + * devices, which are selected by the native chip-select lane. It's + * specifically developed to workaround the problem with automatic chip-select + * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current + * SPI-mem core calls exec_op() callback only if the GPIO-based CS is + * unavailable. + */ +static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) +{ + struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller); + struct dw_spi_cfg cfg; + unsigned long flags; + int ret; + + /* + * Collect the outbound data into a single buffer to speed the + * transmission up at least on the initial stage. + */ + ret = dw_spi_init_mem_buf(dws, op); + if (ret) + return ret; + + /* + * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN + * operation. Transmit-only mode is suitable for the rest of them. + */ + cfg.dfs = 8; + cfg.freq = mem->spi->max_speed_hz; + if (op->data.dir == SPI_MEM_DATA_IN) { + cfg.tmode = SPI_TMOD_EPROMREAD; + cfg.ndf = op->data.nbytes; + } else { + cfg.tmode = SPI_TMOD_TO; + } + + spi_enable_chip(dws, 0); + + dw_spi_update_config(dws, mem->spi, &cfg); + + spi_mask_intr(dws, 0xff); + + spi_enable_chip(dws, 1); + + /* + * DW APB SSI controller has very nasty peculiarities. First originally + * (without any vendor-specific modifications) it doesn't provide a + * direct way to set and clear the native chip-select signal. Instead + * the controller asserts the CS lane if Tx FIFO isn't empty and a + * transmission is going on, and automatically de-asserts it back to + * the high level if the Tx FIFO doesn't have anything to be pushed + * out. Due to that a multi-tasking or heavy IRQs activity might be + * fatal, since the transfer procedure preemption may cause the Tx FIFO + * getting empty and sudden CS de-assertion, which in the middle of the + * transfer will most likely cause the data loss. Secondly the + * EEPROM-read or Read-only DW SPI transfer modes imply the incoming + * data being automatically pulled in into the Rx FIFO. So if the + * driver software is late in fetching the data from the FIFO before + * it's overflown, new incoming data will be lost. In order to make + * sure the executed memory operations are CS-atomic and to prevent the + * Rx FIFO overflow we have to disable the local interrupts so to block + * any preemption during the subsequent IO operations. + * + * Note. At some circumstances disabling IRQs may not help to prevent + * the problems described above. The CS de-assertion and Rx FIFO + * overflow may still happen due to the relatively slow system bus or + * CPU not working fast enough, so the write-then-read algo implemented + * here just won't keep up with the SPI bus data transfer. Such + * situation is highly platform specific and is supposed to be fixed by + * manually restricting the SPI bus frequency using the + * dws->max_mem_freq parameter. + */ + local_irq_save(flags); + preempt_disable(); + + ret = dw_spi_write_then_read(dws, mem->spi); + + local_irq_restore(flags); + preempt_enable(); + + /* + * Wait for the operation being finished and check the controller + * status only if there hasn't been any run-time error detected. In the + * former case it's just pointless. In the later one to prevent an + * additional error message printing since any hw error flag being set + * would be due to an error detected on the data transfer. + */ + if (!ret) { + ret = dw_spi_wait_mem_op_done(dws); + if (!ret) + ret = dw_spi_check_status(dws, true); + } + + dw_spi_stop_mem_op(dws, mem->spi); + + dw_spi_free_mem_buf(dws); + + return ret; +} + +/* + * Initialize the default memory operations if a glue layer hasn't specified + * custom ones. Direct mapping operations will be preserved anyway since DW SPI + * controller doesn't have an embedded dirmap interface. Note the memory + * operations implemented in this driver is the best choice only for the DW APB + * SSI controller with standard native CS functionality. If a hardware vendor + * has fixed the automatic CS assertion/de-assertion peculiarity, then it will + * be safer to use the normal SPI-messages-based transfers implementation. + */ +static void dw_spi_init_mem_ops(struct dw_spi *dws) +{ + if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) && + !dws->set_cs) { + dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size; + dws->mem_ops.supports_op = dw_spi_supports_mem_op; + dws->mem_ops.exec_op = dw_spi_exec_mem_op; + } +} + /* This may be called twice for each spi dev */ static int dw_spi_setup(struct spi_device *spi) { @@ -522,6 +820,8 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws) goto err_free_master; } + dw_spi_init_mem_ops(dws); + master->use_gpio_descriptors = true; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP; master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); @@ -535,6 +835,7 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws) master->set_cs = dw_spi_set_cs; master->transfer_one = dw_spi_transfer_one; master->handle_err = dw_spi_handle_err; + master->mem_ops = &dws->mem_ops; master->max_speed_hz = dws->max_freq; master->dev.of_node = dev->of_node; master->dev.fwnode = dev->fwnode; |