summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/amd/display/dc/spl/dc_spl.c')
-rw-r--r--drivers/gpu/drm/amd/display/dc/spl/dc_spl.c1861
1 files changed, 0 insertions, 1861 deletions
diff --git a/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c b/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c
deleted file mode 100644
index 73a65913cb12..000000000000
--- a/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c
+++ /dev/null
@@ -1,1861 +0,0 @@
-// SPDX-License-Identifier: MIT
-//
-// Copyright 2024 Advanced Micro Devices, Inc.
-
-#include "dc_spl.h"
-#include "dc_spl_scl_filters.h"
-#include "dc_spl_scl_easf_filters.h"
-#include "dc_spl_isharp_filters.h"
-#include "spl_debug.h"
-
-#define IDENTITY_RATIO(ratio) (spl_fixpt_u2d19(ratio) == (1 << 19))
-#define MIN_VIEWPORT_SIZE 12
-
-static struct spl_rect intersect_rec(const struct spl_rect *r0, const struct spl_rect *r1)
-{
- struct spl_rect rec;
- int r0_x_end = r0->x + r0->width;
- int r1_x_end = r1->x + r1->width;
- int r0_y_end = r0->y + r0->height;
- int r1_y_end = r1->y + r1->height;
-
- rec.x = r0->x > r1->x ? r0->x : r1->x;
- rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
- rec.y = r0->y > r1->y ? r0->y : r1->y;
- rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
-
- /* in case that there is no intersection */
- if (rec.width < 0 || rec.height < 0)
- memset(&rec, 0, sizeof(rec));
-
- return rec;
-}
-
-static struct spl_rect shift_rec(const struct spl_rect *rec_in, int x, int y)
-{
- struct spl_rect rec_out = *rec_in;
-
- rec_out.x += x;
- rec_out.y += y;
-
- return rec_out;
-}
-
-static struct spl_rect calculate_plane_rec_in_timing_active(
- struct spl_in *spl_in,
- const struct spl_rect *rec_in)
-{
- /*
- * The following diagram shows an example where we map a 1920x1200
- * desktop to a 2560x1440 timing with a plane rect in the middle
- * of the screen. To map a plane rect from Stream Source to Timing
- * Active space, we first multiply stream scaling ratios (i.e 2304/1920
- * horizontal and 1440/1200 vertical) to the plane's x and y, then
- * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
- * This will give us a plane rect's position in Timing Active. However
- * we have to remove the fractional. The rule is that we find left/right
- * and top/bottom positions and round the value to the adjacent integer.
- *
- * Stream Source Space
- * ------------
- * __________________________________________________
- * |Stream Source (1920 x 1200) ^ |
- * | y |
- * | <------- w --------|> |
- * | __________________V |
- * |<-- x -->|Plane//////////////| ^ |
- * | |(pre scale)////////| | |
- * | |///////////////////| | |
- * | |///////////////////| h |
- * | |///////////////////| | |
- * | |///////////////////| | |
- * | |///////////////////| V |
- * | |
- * | |
- * |__________________________________________________|
- *
- *
- * Timing Active Space
- * ---------------------------------
- *
- * Timing Active (2560 x 1440)
- * __________________________________________________
- * |*****| Stteam Destination (2304 x 1440) |*****|
- * |*****| |*****|
- * |<128>| |*****|
- * |*****| __________________ |*****|
- * |*****| |Plane/////////////| |*****|
- * |*****| |(post scale)//////| |*****|
- * |*****| |//////////////////| |*****|
- * |*****| |//////////////////| |*****|
- * |*****| |//////////////////| |*****|
- * |*****| |//////////////////| |*****|
- * |*****| |*****|
- * |*****| |*****|
- * |*****| |*****|
- * |*****|______________________________________|*****|
- *
- * So the resulting formulas are shown below:
- *
- * recout_x = 128 + round(plane_x * 2304 / 1920)
- * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
- * recout_y = 0 + round(plane_y * 1440 / 1200)
- * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
- *
- * NOTE: fixed point division is not error free. To reduce errors
- * introduced by fixed point division, we divide only after
- * multiplication is complete.
- */
- const struct spl_rect *stream_src = &spl_in->basic_out.src_rect;
- const struct spl_rect *stream_dst = &spl_in->basic_out.dst_rect;
- struct spl_rect rec_out = {0};
- struct spl_fixed31_32 temp;
-
-
- temp = spl_fixpt_from_fraction(rec_in->x * (long long)stream_dst->width,
- stream_src->width);
- rec_out.x = stream_dst->x + spl_fixpt_round(temp);
-
- temp = spl_fixpt_from_fraction(
- (rec_in->x + rec_in->width) * (long long)stream_dst->width,
- stream_src->width);
- rec_out.width = stream_dst->x + spl_fixpt_round(temp) - rec_out.x;
-
- temp = spl_fixpt_from_fraction(rec_in->y * (long long)stream_dst->height,
- stream_src->height);
- rec_out.y = stream_dst->y + spl_fixpt_round(temp);
-
- temp = spl_fixpt_from_fraction(
- (rec_in->y + rec_in->height) * (long long)stream_dst->height,
- stream_src->height);
- rec_out.height = stream_dst->y + spl_fixpt_round(temp) - rec_out.y;
-
- return rec_out;
-}
-
-static struct spl_rect calculate_mpc_slice_in_timing_active(
- struct spl_in *spl_in,
- struct spl_rect *plane_clip_rec)
-{
- int mpc_slice_count = spl_in->basic_in.mpc_combine_h;
- int mpc_slice_idx = spl_in->basic_in.mpc_combine_v;
- int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
- struct spl_rect mpc_rec;
-
- mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
- mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
- mpc_rec.height = plane_clip_rec->height;
- mpc_rec.y = plane_clip_rec->y;
- SPL_ASSERT(mpc_slice_count == 1 ||
- spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE ||
- mpc_rec.width % 2 == 0);
-
- /* extra pixels in the division remainder need to go to pipes after
- * the extra pixel index minus one(epimo) defined here as:
- */
- if (mpc_slice_idx > epimo) {
- mpc_rec.x += mpc_slice_idx - epimo - 1;
- mpc_rec.width += 1;
- }
-
- if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) {
- SPL_ASSERT(mpc_rec.height % 2 == 0);
- mpc_rec.height /= 2;
- }
- return mpc_rec;
-}
-
-static struct spl_rect calculate_odm_slice_in_timing_active(struct spl_in *spl_in)
-{
- int odm_slice_count = spl_in->basic_out.odm_combine_factor;
- int odm_slice_idx = spl_in->odm_slice_index;
- bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
- int h_active = spl_in->basic_out.output_size.width;
- int v_active = spl_in->basic_out.output_size.height;
- int odm_slice_width;
- struct spl_rect odm_rec;
-
- if (spl_in->basic_out.odm_combine_factor > 0) {
- odm_slice_width = h_active / odm_slice_count;
- /*
- * deprecated, caller must pass in odm slice rect i.e OPP input
- * rect in timing active for the new interface.
- */
- if (spl_in->basic_out.use_two_pixels_per_container && (odm_slice_width % 2))
- odm_slice_width++;
-
- odm_rec.x = odm_slice_width * odm_slice_idx;
- odm_rec.width = is_last_odm_slice ?
- /* last slice width is the reminder of h_active */
- h_active - odm_slice_width * (odm_slice_count - 1) :
- /* odm slice width is the floor of h_active / count */
- odm_slice_width;
- odm_rec.y = 0;
- odm_rec.height = v_active;
-
- return odm_rec;
- }
-
- return spl_in->basic_out.odm_slice_rect;
-}
-
-static void spl_calculate_recout(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out)
-{
- /*
- * A plane clip represents the desired plane size and position in Stream
- * Source Space. Stream Source is the destination where all planes are
- * blended (i.e. positioned, scaled and overlaid). It is a canvas where
- * all planes associated with the current stream are drawn together.
- * After Stream Source is completed, we will further scale and
- * reposition the entire canvas of the stream source to Stream
- * Destination in Timing Active Space. This could be due to display
- * overscan adjustment where we will need to rescale and reposition all
- * the planes so they can fit into a TV with overscan or downscale
- * upscale features such as GPU scaling or VSR.
- *
- * This two step blending is a virtual procedure in software. In
- * hardware there is no such thing as Stream Source. all planes are
- * blended once in Timing Active Space. Software virtualizes a Stream
- * Source space to decouple the math complicity so scaling param
- * calculation focuses on one step at a time.
- *
- * In the following two diagrams, user applied 10% overscan adjustment
- * so the Stream Source needs to be scaled down a little before mapping
- * to Timing Active Space. As a result the Plane Clip is also scaled
- * down by the same ratio, Plane Clip position (i.e. x and y) with
- * respect to Stream Source is also scaled down. To map it in Timing
- * Active Space additional x and y offsets from Stream Destination are
- * added to Plane Clip as well.
- *
- * Stream Source Space
- * ------------
- * __________________________________________________
- * |Stream Source (3840 x 2160) ^ |
- * | y |
- * | | |
- * | __________________V |
- * |<-- x -->|Plane Clip/////////| |
- * | |(pre scale)////////| |
- * | |///////////////////| |
- * | |///////////////////| |
- * | |///////////////////| |
- * | |///////////////////| |
- * | |///////////////////| |
- * | |
- * | |
- * |__________________________________________________|
- *
- *
- * Timing Active Space (3840 x 2160)
- * ---------------------------------
- *
- * Timing Active
- * __________________________________________________
- * | y_____________________________________________ |
- * |x |Stream Destination (3456 x 1944) | |
- * | | | |
- * | | __________________ | |
- * | | |Plane Clip////////| | |
- * | | |(post scale)//////| | |
- * | | |//////////////////| | |
- * | | |//////////////////| | |
- * | | |//////////////////| | |
- * | | |//////////////////| | |
- * | | | |
- * | | | |
- * | |____________________________________________| |
- * |__________________________________________________|
- *
- *
- * In Timing Active Space a plane clip could be further sliced into
- * pieces called MPC slices. Each Pipe Context is responsible for
- * processing only one MPC slice so the plane processing workload can be
- * distributed to multiple DPP Pipes. MPC slices could be blended
- * together to a single ODM slice. Each ODM slice is responsible for
- * processing a portion of Timing Active divided horizontally so the
- * output pixel processing workload can be distributed to multiple OPP
- * pipes. All ODM slices are mapped together in ODM block so all MPC
- * slices belong to different ODM slices could be pieced together to
- * form a single image in Timing Active. MPC slices must belong to
- * single ODM slice. If an MPC slice goes across ODM slice boundary, it
- * needs to be divided into two MPC slices one for each ODM slice.
- *
- * In the following diagram the output pixel processing workload is
- * divided horizontally into two ODM slices one for each OPP blend tree.
- * OPP0 blend tree is responsible for processing left half of Timing
- * Active, while OPP2 blend tree is responsible for processing right
- * half.
- *
- * The plane has two MPC slices. However since the right MPC slice goes
- * across ODM boundary, two DPP pipes are needed one for each OPP blend
- * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
- *
- * Assuming that we have a Pipe Context associated with OPP0 and DPP1
- * working on processing the plane in the diagram. We want to know the
- * width and height of the shaded rectangle and its relative position
- * with respect to the ODM slice0. This is called the recout of the pipe
- * context.
- *
- * Planes can be at arbitrary size and position and there could be an
- * arbitrary number of MPC and ODM slices. The algorithm needs to take
- * all scenarios into account.
- *
- * Timing Active Space (3840 x 2160)
- * ---------------------------------
- *
- * Timing Active
- * __________________________________________________
- * |OPP0(ODM slice0)^ |OPP2(ODM slice1) |
- * | y | |
- * | | <- w -> |
- * | _____V________|____ |
- * | |DPP0 ^ |DPP1 |DPP2| |
- * |<------ x |-----|->|/////| | |
- * | | | |/////| | |
- * | | h |/////| | |
- * | | | |/////| | |
- * | |_____V__|/////|____| |
- * | | |
- * | | |
- * | | |
- * |_________________________|________________________|
- *
- *
- */
- struct spl_rect plane_clip;
- struct spl_rect mpc_slice_of_plane_clip;
- struct spl_rect odm_slice;
- struct spl_rect overlapping_area;
-
- plane_clip = calculate_plane_rec_in_timing_active(spl_in,
- &spl_in->basic_in.clip_rect);
- /* guard plane clip from drawing beyond stream dst here */
- plane_clip = intersect_rec(&plane_clip,
- &spl_in->basic_out.dst_rect);
- mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
- spl_in, &plane_clip);
- odm_slice = calculate_odm_slice_in_timing_active(spl_in);
- overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
-
- if (overlapping_area.height > 0 &&
- overlapping_area.width > 0) {
- /* shift the overlapping area so it is with respect to current
- * ODM slice's position
- */
- spl_scratch->scl_data.recout = shift_rec(
- &overlapping_area,
- -odm_slice.x, -odm_slice.y);
- spl_scratch->scl_data.recout.height -=
- spl_in->debug.visual_confirm_base_offset;
- spl_scratch->scl_data.recout.height -=
- spl_in->debug.visual_confirm_dpp_offset;
- } else
- /* if there is no overlap, zero recout */
- memset(&spl_scratch->scl_data.recout, 0,
- sizeof(struct spl_rect));
-}
-
-/* Calculate scaling ratios */
-static void spl_calculate_scaling_ratios(struct spl_in *spl_in,
- struct spl_scratch *spl_scratch,
- struct spl_out *spl_out)
-{
- const int in_w = spl_in->basic_out.src_rect.width;
- const int in_h = spl_in->basic_out.src_rect.height;
- const int out_w = spl_in->basic_out.dst_rect.width;
- const int out_h = spl_in->basic_out.dst_rect.height;
- struct spl_rect surf_src = spl_in->basic_in.src_rect;
-
- /*Swap surf_src height and width since scaling ratios are in recout rotation*/
- if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
- spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270)
- spl_swap(surf_src.height, surf_src.width);
-
- spl_scratch->scl_data.ratios.horz = spl_fixpt_from_fraction(
- surf_src.width,
- spl_in->basic_in.dst_rect.width);
- spl_scratch->scl_data.ratios.vert = spl_fixpt_from_fraction(
- surf_src.height,
- spl_in->basic_in.dst_rect.height);
-
- if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
- spl_scratch->scl_data.ratios.horz.value *= 2;
- else if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
- spl_scratch->scl_data.ratios.vert.value *= 2;
-
- spl_scratch->scl_data.ratios.vert.value = spl_div64_s64(
- spl_scratch->scl_data.ratios.vert.value * in_h, out_h);
- spl_scratch->scl_data.ratios.horz.value = spl_div64_s64(
- spl_scratch->scl_data.ratios.horz.value * in_w, out_w);
-
- spl_scratch->scl_data.ratios.horz_c = spl_scratch->scl_data.ratios.horz;
- spl_scratch->scl_data.ratios.vert_c = spl_scratch->scl_data.ratios.vert;
-
- if (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
- || spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) {
- spl_scratch->scl_data.ratios.horz_c.value /= 2;
- spl_scratch->scl_data.ratios.vert_c.value /= 2;
- }
- spl_scratch->scl_data.ratios.horz = spl_fixpt_truncate(
- spl_scratch->scl_data.ratios.horz, 19);
- spl_scratch->scl_data.ratios.vert = spl_fixpt_truncate(
- spl_scratch->scl_data.ratios.vert, 19);
- spl_scratch->scl_data.ratios.horz_c = spl_fixpt_truncate(
- spl_scratch->scl_data.ratios.horz_c, 19);
- spl_scratch->scl_data.ratios.vert_c = spl_fixpt_truncate(
- spl_scratch->scl_data.ratios.vert_c, 19);
-
- /*
- * Coefficient table and some registers are different based on ratio
- * that is output/input. Currently we calculate input/output
- * Store 1/ratio in recip_ratio for those lookups
- */
- spl_scratch->scl_data.recip_ratios.horz = spl_fixpt_recip(
- spl_scratch->scl_data.ratios.horz);
- spl_scratch->scl_data.recip_ratios.vert = spl_fixpt_recip(
- spl_scratch->scl_data.ratios.vert);
- spl_scratch->scl_data.recip_ratios.horz_c = spl_fixpt_recip(
- spl_scratch->scl_data.ratios.horz_c);
- spl_scratch->scl_data.recip_ratios.vert_c = spl_fixpt_recip(
- spl_scratch->scl_data.ratios.vert_c);
-}
-
-/* Calculate Viewport size */
-static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
-{
- spl_scratch->scl_data.viewport.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz,
- spl_scratch->scl_data.recout.width));
- spl_scratch->scl_data.viewport.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert,
- spl_scratch->scl_data.recout.height));
- spl_scratch->scl_data.viewport_c.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz_c,
- spl_scratch->scl_data.recout.width));
- spl_scratch->scl_data.viewport_c.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert_c,
- spl_scratch->scl_data.recout.height));
- if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
- spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) {
- spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
- spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
- }
-}
-
-static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation,
- bool horizontal_mirror,
- bool *orthogonal_rotation,
- bool *flip_vert_scan_dir,
- bool *flip_horz_scan_dir)
-{
- *orthogonal_rotation = false;
- *flip_vert_scan_dir = false;
- *flip_horz_scan_dir = false;
- if (rotation == SPL_ROTATION_ANGLE_180) {
- *flip_vert_scan_dir = true;
- *flip_horz_scan_dir = true;
- } else if (rotation == SPL_ROTATION_ANGLE_90) {
- *orthogonal_rotation = true;
- *flip_horz_scan_dir = true;
- } else if (rotation == SPL_ROTATION_ANGLE_270) {
- *orthogonal_rotation = true;
- *flip_vert_scan_dir = true;
- }
-
- if (horizontal_mirror)
- *flip_horz_scan_dir = !*flip_horz_scan_dir;
-}
-
-/*
- * We completely calculate vp offset, size and inits here based entirely on scaling
- * ratios and recout for pixel perfect pipe combine.
- */
-static void spl_calculate_init_and_vp(bool flip_scan_dir,
- int recout_offset_within_recout_full,
- int recout_size,
- int src_size,
- int taps,
- struct spl_fixed31_32 ratio,
- struct spl_fixed31_32 init_adj,
- struct spl_fixed31_32 *init,
- int *vp_offset,
- int *vp_size)
-{
- struct spl_fixed31_32 temp;
- int int_part;
-
- /*
- * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
- * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
- * All following calculations are based on this logic.
- *
- * Init calculated according to formula:
- * init = (scaling_ratio + number_of_taps + 1) / 2
- * init_bot = init + scaling_ratio
- * to get pixel perfect combine add the fraction from calculating vp offset
- */
- temp = spl_fixpt_mul_int(ratio, recout_offset_within_recout_full);
- *vp_offset = spl_fixpt_floor(temp);
- temp.value &= 0xffffffff;
- *init = spl_fixpt_add(spl_fixpt_div_int(spl_fixpt_add_int(ratio, taps + 1), 2), temp);
- *init = spl_fixpt_add(*init, init_adj);
- *init = spl_fixpt_truncate(*init, 19);
-
- /*
- * If viewport has non 0 offset and there are more taps than covered by init then
- * we should decrease the offset and increase init so we are never sampling
- * outside of viewport.
- */
- int_part = spl_fixpt_floor(*init);
- if (int_part < taps) {
- int_part = taps - int_part;
- if (int_part > *vp_offset)
- int_part = *vp_offset;
- *vp_offset -= int_part;
- *init = spl_fixpt_add_int(*init, int_part);
- }
- /*
- * If taps are sampling outside of viewport at end of recout and there are more pixels
- * available in the surface we should increase the viewport size, regardless set vp to
- * only what is used.
- */
- temp = spl_fixpt_add(*init, spl_fixpt_mul_int(ratio, recout_size - 1));
- *vp_size = spl_fixpt_floor(temp);
- if (*vp_size + *vp_offset > src_size)
- *vp_size = src_size - *vp_offset;
-
- /* We did all the math assuming we are scanning same direction as display does,
- * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
- * is flipped we simply need to calculate offset from the other side of plane.
- * Note that outside of viewport all scaling hardware works in recout space.
- */
- if (flip_scan_dir)
- *vp_offset = src_size - *vp_offset - *vp_size;
-}
-
-static bool spl_is_yuv420(enum spl_pixel_format format)
-{
- if ((format >= SPL_PIXEL_FORMAT_420BPP8) &&
- (format <= SPL_PIXEL_FORMAT_420BPP10))
- return true;
-
- return false;
-}
-
-static bool spl_is_rgb8(enum spl_pixel_format format)
-{
- if (format == SPL_PIXEL_FORMAT_ARGB8888)
- return true;
-
- return false;
-}
-
-/*Calculate inits and viewport */
-static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
- struct spl_scratch *spl_scratch)
-{
- struct spl_rect src = spl_in->basic_in.src_rect;
- struct spl_rect recout_dst_in_active_timing;
- struct spl_rect recout_clip_in_active_timing;
- struct spl_rect recout_clip_in_recout_dst;
- struct spl_rect overlap_in_active_timing;
- struct spl_rect odm_slice = calculate_odm_slice_in_timing_active(spl_in);
- int vpc_div = (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
- || spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) ? 2 : 1;
- bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
- struct spl_fixed31_32 init_adj_h = spl_fixpt_zero;
- struct spl_fixed31_32 init_adj_v = spl_fixpt_zero;
-
- recout_clip_in_active_timing = shift_rec(
- &spl_scratch->scl_data.recout, odm_slice.x, odm_slice.y);
- recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
- spl_in, &spl_in->basic_in.dst_rect);
- overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
- &recout_dst_in_active_timing);
- if (overlap_in_active_timing.width > 0 &&
- overlap_in_active_timing.height > 0)
- recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
- -recout_dst_in_active_timing.x,
- -recout_dst_in_active_timing.y);
- else
- memset(&recout_clip_in_recout_dst, 0, sizeof(struct spl_rect));
- /*
- * Work in recout rotation since that requires less transformations
- */
- spl_get_vp_scan_direction(
- spl_in->basic_in.rotation,
- spl_in->basic_in.horizontal_mirror,
- &orthogonal_rotation,
- &flip_vert_scan_dir,
- &flip_horz_scan_dir);
-
- if (orthogonal_rotation) {
- spl_swap(src.width, src.height);
- spl_swap(flip_vert_scan_dir, flip_horz_scan_dir);
- }
-
- if (spl_is_yuv420(spl_in->basic_in.format)) {
- /* this gives the direction of the cositing (negative will move
- * left, right otherwise)
- */
- int sign = 1;
-
- switch (spl_in->basic_in.cositing) {
-
- case CHROMA_COSITING_LEFT:
- init_adj_h = spl_fixpt_zero;
- init_adj_v = spl_fixpt_from_fraction(sign, 4);
- break;
- case CHROMA_COSITING_NONE:
- init_adj_h = spl_fixpt_from_fraction(sign, 4);
- init_adj_v = spl_fixpt_from_fraction(sign, 4);
- break;
- case CHROMA_COSITING_TOPLEFT:
- default:
- init_adj_h = spl_fixpt_zero;
- init_adj_v = spl_fixpt_zero;
- break;
- }
- }
-
- spl_calculate_init_and_vp(
- flip_horz_scan_dir,
- recout_clip_in_recout_dst.x,
- spl_scratch->scl_data.recout.width,
- src.width,
- spl_scratch->scl_data.taps.h_taps,
- spl_scratch->scl_data.ratios.horz,
- spl_fixpt_zero,
- &spl_scratch->scl_data.inits.h,
- &spl_scratch->scl_data.viewport.x,
- &spl_scratch->scl_data.viewport.width);
- spl_calculate_init_and_vp(
- flip_horz_scan_dir,
- recout_clip_in_recout_dst.x,
- spl_scratch->scl_data.recout.width,
- src.width / vpc_div,
- spl_scratch->scl_data.taps.h_taps_c,
- spl_scratch->scl_data.ratios.horz_c,
- init_adj_h,
- &spl_scratch->scl_data.inits.h_c,
- &spl_scratch->scl_data.viewport_c.x,
- &spl_scratch->scl_data.viewport_c.width);
- spl_calculate_init_and_vp(
- flip_vert_scan_dir,
- recout_clip_in_recout_dst.y,
- spl_scratch->scl_data.recout.height,
- src.height,
- spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.ratios.vert,
- spl_fixpt_zero,
- &spl_scratch->scl_data.inits.v,
- &spl_scratch->scl_data.viewport.y,
- &spl_scratch->scl_data.viewport.height);
- spl_calculate_init_and_vp(
- flip_vert_scan_dir,
- recout_clip_in_recout_dst.y,
- spl_scratch->scl_data.recout.height,
- src.height / vpc_div,
- spl_scratch->scl_data.taps.v_taps_c,
- spl_scratch->scl_data.ratios.vert_c,
- init_adj_v,
- &spl_scratch->scl_data.inits.v_c,
- &spl_scratch->scl_data.viewport_c.y,
- &spl_scratch->scl_data.viewport_c.height);
- if (orthogonal_rotation) {
- spl_swap(spl_scratch->scl_data.viewport.x, spl_scratch->scl_data.viewport.y);
- spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
- spl_swap(spl_scratch->scl_data.viewport_c.x, spl_scratch->scl_data.viewport_c.y);
- spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
- }
- spl_scratch->scl_data.viewport.x += src.x;
- spl_scratch->scl_data.viewport.y += src.y;
- SPL_ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
- spl_scratch->scl_data.viewport_c.x += src.x / vpc_div;
- spl_scratch->scl_data.viewport_c.y += src.y / vpc_div;
-}
-
-static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout)
-{
- /*
- * Handle side by side and top bottom 3d recout offsets after vp calculation
- * since 3d is special and needs to calculate vp as if there is no recout offset
- * This may break with rotation, good thing we aren't mixing hw rotation and 3d
- */
- if (spl_in->basic_in.mpc_combine_v) {
- SPL_ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 ||
- (spl_in->basic_out.view_format != SPL_VIEW_3D_TOP_AND_BOTTOM &&
- spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE));
- if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
- recout->y += recout->height;
- else if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
- recout->x += recout->width;
- }
-}
-
-static void spl_clamp_viewport(struct spl_rect *viewport)
-{
- /* Clamp minimum viewport size */
- if (viewport->height < MIN_VIEWPORT_SIZE)
- viewport->height = MIN_VIEWPORT_SIZE;
- if (viewport->width < MIN_VIEWPORT_SIZE)
- viewport->width = MIN_VIEWPORT_SIZE;
-}
-
-static bool spl_dscl_is_420_format(enum spl_pixel_format format)
-{
- if (format == SPL_PIXEL_FORMAT_420BPP8 ||
- format == SPL_PIXEL_FORMAT_420BPP10)
- return true;
- else
- return false;
-}
-
-static bool spl_dscl_is_video_format(enum spl_pixel_format format)
-{
- if (format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
- && format <= SPL_PIXEL_FORMAT_VIDEO_END)
- return true;
- else
- return false;
-}
-
-static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in,
- const struct spl_scaler_data *data,
- bool enable_isharp, bool enable_easf)
-{
- const long long one = spl_fixpt_one.value;
- enum spl_pixel_format pixel_format = spl_in->basic_in.format;
-
- /* Bypass if ratio is 1:1 with no ISHARP or force scale on */
- if (data->ratios.horz.value == one
- && data->ratios.vert.value == one
- && data->ratios.horz_c.value == one
- && data->ratios.vert_c.value == one
- && !spl_in->basic_out.always_scale
- && !enable_isharp)
- return SCL_MODE_SCALING_444_BYPASS;
-
- if (!spl_dscl_is_420_format(pixel_format)) {
- if (spl_dscl_is_video_format(pixel_format))
- return SCL_MODE_SCALING_444_YCBCR_ENABLE;
- else
- return SCL_MODE_SCALING_444_RGB_ENABLE;
- }
-
- /*
- * Bypass YUV if Y is 1:1 with no ISHARP
- * Do not bypass UV at 1:1 for cositing to be applied
- */
- if (!enable_isharp) {
- if (data->ratios.horz.value == one && data->ratios.vert.value == one)
- return SCL_MODE_SCALING_420_LUMA_BYPASS;
- }
-
- return SCL_MODE_SCALING_420_YCBCR_ENABLE;
-}
-
-static bool spl_choose_lls_policy(enum spl_pixel_format format,
- enum spl_transfer_func_type tf_type,
- enum spl_transfer_func_predefined tf_predefined_type,
- enum linear_light_scaling *lls_pref)
-{
- if (spl_is_yuv420(format)) {
- *lls_pref = LLS_PREF_NO;
- if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
- (tf_type == SPL_TF_TYPE_DISTRIBUTED_POINTS))
- return true;
- } else { /* RGB or YUV444 */
- if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
- (tf_type == SPL_TF_TYPE_BYPASS)) {
- *lls_pref = LLS_PREF_YES;
- return true;
- }
- }
- *lls_pref = LLS_PREF_NO;
- return false;
-}
-
-/* Enable EASF ?*/
-static bool enable_easf(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
-{
- int vratio = 0;
- int hratio = 0;
- bool skip_easf = false;
- bool lls_enable_easf = true;
-
- if (spl_in->disable_easf)
- skip_easf = true;
-
- vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
- hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
-
- /*
- * No EASF support for downscaling > 2:1
- * EASF support for upscaling or downscaling up to 2:1
- */
- if ((vratio > 2) || (hratio > 2))
- skip_easf = true;
-
- /*
- * If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
- * function to determine whether to use LINEAR or NONLINEAR scaling
- */
- if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
- lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
- spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
- &spl_in->lls_pref);
-
- if (!lls_enable_easf)
- skip_easf = true;
-
- /* Check for linear scaling or EASF preferred */
- if (spl_in->lls_pref != LLS_PREF_YES && !spl_in->prefer_easf)
- skip_easf = true;
-
- return skip_easf;
-}
-
-/* Check if video is in fullscreen mode */
-static bool spl_is_video_fullscreen(struct spl_in *spl_in)
-{
- if (spl_is_yuv420(spl_in->basic_in.format) && spl_in->is_fullscreen)
- return true;
- return false;
-}
-
-static bool spl_get_isharp_en(struct spl_in *spl_in,
- struct spl_scratch *spl_scratch)
-{
- bool enable_isharp = false;
- int vratio = 0;
- int hratio = 0;
- struct spl_taps taps = spl_scratch->scl_data.taps;
- bool fullscreen = spl_is_video_fullscreen(spl_in);
-
- /* Return if adaptive sharpness is disabled */
- if (spl_in->adaptive_sharpness.enable == false)
- return enable_isharp;
-
- vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
- hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
-
- /* No iSHARP support for downscaling */
- if (vratio > 1 || hratio > 1)
- return enable_isharp;
-
- // Scaling is up to 1:1 (no scaling) or upscaling
-
- /*
- * Apply sharpness to RGB and YUV (NV12/P010)
- * surfaces based on policy setting
- */
- if (!spl_is_yuv420(spl_in->basic_in.format) &&
- (spl_in->sharpen_policy == SHARPEN_YUV))
- return enable_isharp;
- else if ((spl_is_yuv420(spl_in->basic_in.format) && !fullscreen) &&
- (spl_in->sharpen_policy == SHARPEN_RGB_FULLSCREEN_YUV))
- return enable_isharp;
- else if (!spl_in->is_fullscreen &&
- spl_in->sharpen_policy == SHARPEN_FULLSCREEN_ALL)
- return enable_isharp;
-
- /*
- * Apply sharpness if supports horizontal taps 4,6 AND
- * vertical taps 3, 4, 6
- */
- if ((taps.h_taps == 4 || taps.h_taps == 6) &&
- (taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6))
- enable_isharp = true;
-
- return enable_isharp;
-}
-
-/* Calculate number of tap with adaptive scaling off */
-static void spl_get_taps_non_adaptive_scaler(
- struct spl_scratch *spl_scratch, const struct spl_taps *in_taps)
-{
- if (in_taps->h_taps == 0) {
- if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz) > 1)
- spl_scratch->scl_data.taps.h_taps = spl_min(2 * spl_fixpt_ceil(
- spl_scratch->scl_data.ratios.horz), 8);
- else
- spl_scratch->scl_data.taps.h_taps = 4;
- } else
- spl_scratch->scl_data.taps.h_taps = in_taps->h_taps;
-
- if (in_taps->v_taps == 0) {
- if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 1)
- spl_scratch->scl_data.taps.v_taps = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
- spl_scratch->scl_data.ratios.vert, 2)), 8);
- else
- spl_scratch->scl_data.taps.v_taps = 4;
- } else
- spl_scratch->scl_data.taps.v_taps = in_taps->v_taps;
-
- if (in_taps->v_taps_c == 0) {
- if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 1)
- spl_scratch->scl_data.taps.v_taps_c = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
- spl_scratch->scl_data.ratios.vert_c, 2)), 8);
- else
- spl_scratch->scl_data.taps.v_taps_c = 4;
- } else
- spl_scratch->scl_data.taps.v_taps_c = in_taps->v_taps_c;
-
- if (in_taps->h_taps_c == 0) {
- if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz_c) > 1)
- spl_scratch->scl_data.taps.h_taps_c = spl_min(2 * spl_fixpt_ceil(
- spl_scratch->scl_data.ratios.horz_c), 8);
- else
- spl_scratch->scl_data.taps.h_taps_c = 4;
- } else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1)
- /* Only 1 and even h_taps_c are supported by hw */
- spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1;
- else
- spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c;
-
- if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz))
- spl_scratch->scl_data.taps.h_taps = 1;
- if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))
- spl_scratch->scl_data.taps.v_taps = 1;
- if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c))
- spl_scratch->scl_data.taps.h_taps_c = 1;
- if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c))
- spl_scratch->scl_data.taps.v_taps_c = 1;
-
-}
-
-/* Calculate optimal number of taps */
-static bool spl_get_optimal_number_of_taps(
- int max_downscale_src_width, struct spl_in *spl_in, struct spl_scratch *spl_scratch,
- const struct spl_taps *in_taps, bool *enable_easf_v, bool *enable_easf_h,
- bool *enable_isharp)
-{
- int num_part_y, num_part_c;
- int max_taps_y, max_taps_c;
- int min_taps_y, min_taps_c;
- enum lb_memory_config lb_config;
- bool skip_easf = false;
- bool is_ycbcr = spl_dscl_is_video_format(spl_in->basic_in.format);
-
- if (spl_scratch->scl_data.viewport.width > spl_scratch->scl_data.h_active &&
- max_downscale_src_width != 0 &&
- spl_scratch->scl_data.viewport.width > max_downscale_src_width) {
- spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps);
- *enable_easf_v = false;
- *enable_easf_h = false;
- *enable_isharp = false;
- return false;
- }
-
- /* Disable adaptive scaler and sharpener when integer scaling is enabled */
- if (spl_in->scaling_quality.integer_scaling) {
- spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps);
- *enable_easf_v = false;
- *enable_easf_h = false;
- *enable_isharp = false;
- return true;
- }
-
- /* Check if we are using EASF or not */
- skip_easf = enable_easf(spl_in, spl_scratch);
-
- /*
- * Set default taps if none are provided
- * From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling
- * taps = 4 for upscaling
- */
- if (skip_easf)
- spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps);
- else {
- if (spl_is_yuv420(spl_in->basic_in.format)) {
- spl_scratch->scl_data.taps.h_taps = 6;
- spl_scratch->scl_data.taps.v_taps = 6;
- spl_scratch->scl_data.taps.h_taps_c = 4;
- spl_scratch->scl_data.taps.v_taps_c = 4;
- } else { /* RGB */
- spl_scratch->scl_data.taps.h_taps = 6;
- spl_scratch->scl_data.taps.v_taps = 6;
- spl_scratch->scl_data.taps.h_taps_c = 6;
- spl_scratch->scl_data.taps.v_taps_c = 6;
- }
- }
-
- /*Ensure we can support the requested number of vtaps*/
- min_taps_y = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
- min_taps_c = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c);
-
- /* Use LB_MEMORY_CONFIG_3 for 4:2:0 */
- if ((spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8)
- || (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10))
- lb_config = LB_MEMORY_CONFIG_3;
- else
- lb_config = LB_MEMORY_CONFIG_0;
- // Determine max vtap support by calculating how much line buffer can fit
- spl_in->callbacks.spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_scratch->scl_data,
- lb_config, &num_part_y, &num_part_c);
- /* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */
- if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 2)
- max_taps_y = num_part_y - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) - 2);
- else
- max_taps_y = num_part_y;
-
- if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 2)
- max_taps_c = num_part_c - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) - 2);
- else
- max_taps_c = num_part_c;
-
- if (max_taps_y < min_taps_y)
- return false;
- else if (max_taps_c < min_taps_c)
- return false;
-
- if (spl_scratch->scl_data.taps.v_taps > max_taps_y)
- spl_scratch->scl_data.taps.v_taps = max_taps_y;
-
- if (spl_scratch->scl_data.taps.v_taps_c > max_taps_c)
- spl_scratch->scl_data.taps.v_taps_c = max_taps_c;
-
- if (!skip_easf) {
- /*
- * RGB ( L + NL ) and Linear HDR support 6x6, 6x4, 6x3, 4x4, 4x3
- * NL YUV420 only supports 6x6, 6x4 for Y and 4x4 for UV
- *
- * If LB does not support 3, 4, or 6 taps, then disable EASF_V
- * and only enable EASF_H. So for RGB, support 6x2, 4x2
- * and for NL YUV420, support 6x2 for Y and 4x2 for UV
- *
- * All other cases, have to disable EASF_V and EASF_H
- *
- * If optimal no of taps is 5, then set it to 4
- * If optimal no of taps is 7 or 8, then fine since max tap is 6
- *
- */
- if (spl_scratch->scl_data.taps.v_taps == 5)
- spl_scratch->scl_data.taps.v_taps = 4;
-
- if (spl_scratch->scl_data.taps.v_taps_c == 5)
- spl_scratch->scl_data.taps.v_taps_c = 4;
-
- if (spl_scratch->scl_data.taps.h_taps == 5)
- spl_scratch->scl_data.taps.h_taps = 4;
-
- if (spl_scratch->scl_data.taps.h_taps_c == 5)
- spl_scratch->scl_data.taps.h_taps_c = 4;
-
- if (spl_is_yuv420(spl_in->basic_in.format)) {
- if ((spl_scratch->scl_data.taps.h_taps <= 4) ||
- (spl_scratch->scl_data.taps.h_taps_c <= 3)) {
- *enable_easf_v = false;
- *enable_easf_h = false;
- } else if ((spl_scratch->scl_data.taps.v_taps <= 3) ||
- (spl_scratch->scl_data.taps.v_taps_c <= 3)) {
- *enable_easf_v = false;
- *enable_easf_h = true;
- } else {
- *enable_easf_v = true;
- *enable_easf_h = true;
- }
- SPL_ASSERT((spl_scratch->scl_data.taps.v_taps > 1) &&
- (spl_scratch->scl_data.taps.v_taps_c > 1));
- } else { /* RGB */
- if (spl_scratch->scl_data.taps.h_taps <= 3) {
- *enable_easf_v = false;
- *enable_easf_h = false;
- } else if (spl_scratch->scl_data.taps.v_taps < 3) {
- *enable_easf_v = false;
- *enable_easf_h = true;
- } else {
- *enable_easf_v = true;
- *enable_easf_h = true;
- }
- SPL_ASSERT(spl_scratch->scl_data.taps.v_taps > 1);
- }
- } else {
- *enable_easf_v = false;
- *enable_easf_h = false;
- } // end of if prefer_easf
-
- /* Sharpener requires scaler to be enabled, including for 1:1
- * Check if ISHARP can be enabled
- * If ISHARP is not enabled, set taps to 1 if ratio is 1:1
- * except for chroma taps. Keep previous taps so it can
- * handle cositing
- */
-
- *enable_isharp = spl_get_isharp_en(spl_in, spl_scratch);
- if (!*enable_isharp && !spl_in->basic_out.always_scale) {
- if ((IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)) &&
- (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))) {
- spl_scratch->scl_data.taps.h_taps = 1;
- spl_scratch->scl_data.taps.v_taps = 1;
-
- if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c) && !is_ycbcr)
- spl_scratch->scl_data.taps.h_taps_c = 1;
-
- if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c) && !is_ycbcr)
- spl_scratch->scl_data.taps.v_taps_c = 1;
-
- *enable_easf_v = false;
- *enable_easf_h = false;
- } else {
- if ((!*enable_easf_h) &&
- (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)))
- spl_scratch->scl_data.taps.h_taps = 1;
-
- if ((!*enable_easf_v) &&
- (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert)))
- spl_scratch->scl_data.taps.v_taps = 1;
-
- if ((!*enable_easf_h) && !is_ycbcr &&
- (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c)))
- spl_scratch->scl_data.taps.h_taps_c = 1;
-
- if ((!*enable_easf_v) && !is_ycbcr &&
- (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c)))
- spl_scratch->scl_data.taps.v_taps_c = 1;
- }
- }
- return true;
-}
-
-static void spl_set_black_color_data(enum spl_pixel_format format,
- struct scl_black_color *scl_black_color)
-{
- bool ycbcr = spl_dscl_is_video_format(format);
- if (ycbcr) {
- scl_black_color->offset_rgb_y = BLACK_OFFSET_RGB_Y;
- scl_black_color->offset_rgb_cbcr = BLACK_OFFSET_CBCR;
- } else {
- scl_black_color->offset_rgb_y = 0x0;
- scl_black_color->offset_rgb_cbcr = 0x0;
- }
-}
-
-static void spl_set_manual_ratio_init_data(struct dscl_prog_data *dscl_prog_data,
- const struct spl_scaler_data *scl_data)
-{
- struct spl_fixed31_32 bot;
-
- dscl_prog_data->ratios.h_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.horz) << 5;
- dscl_prog_data->ratios.v_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.vert) << 5;
- dscl_prog_data->ratios.h_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.horz_c) << 5;
- dscl_prog_data->ratios.v_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.vert_c) << 5;
- /*
- * 0.24 format for fraction, first five bits zeroed
- */
- dscl_prog_data->init.h_filter_init_frac =
- spl_fixpt_u0d19(scl_data->inits.h) << 5;
- dscl_prog_data->init.h_filter_init_int =
- spl_fixpt_floor(scl_data->inits.h);
- dscl_prog_data->init.h_filter_init_frac_c =
- spl_fixpt_u0d19(scl_data->inits.h_c) << 5;
- dscl_prog_data->init.h_filter_init_int_c =
- spl_fixpt_floor(scl_data->inits.h_c);
- dscl_prog_data->init.v_filter_init_frac =
- spl_fixpt_u0d19(scl_data->inits.v) << 5;
- dscl_prog_data->init.v_filter_init_int =
- spl_fixpt_floor(scl_data->inits.v);
- dscl_prog_data->init.v_filter_init_frac_c =
- spl_fixpt_u0d19(scl_data->inits.v_c) << 5;
- dscl_prog_data->init.v_filter_init_int_c =
- spl_fixpt_floor(scl_data->inits.v_c);
-
- bot = spl_fixpt_add(scl_data->inits.v, scl_data->ratios.vert);
- dscl_prog_data->init.v_filter_init_bot_frac = spl_fixpt_u0d19(bot) << 5;
- dscl_prog_data->init.v_filter_init_bot_int = spl_fixpt_floor(bot);
- bot = spl_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c);
- dscl_prog_data->init.v_filter_init_bot_frac_c = spl_fixpt_u0d19(bot) << 5;
- dscl_prog_data->init.v_filter_init_bot_int_c = spl_fixpt_floor(bot);
-}
-
-static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data,
- const struct spl_scaler_data *scl_data)
-{
- dscl_prog_data->taps.v_taps = scl_data->taps.v_taps - 1;
- dscl_prog_data->taps.h_taps = scl_data->taps.h_taps - 1;
- dscl_prog_data->taps.v_taps_c = scl_data->taps.v_taps_c - 1;
- dscl_prog_data->taps.h_taps_c = scl_data->taps.h_taps_c - 1;
-}
-
-/* Populate dscl prog data structure from scaler data calculated by SPL */
-static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_scratch *spl_scratch,
- struct spl_out *spl_out, bool enable_easf_v, bool enable_easf_h, bool enable_isharp)
-{
- struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
-
- const struct spl_scaler_data *data = &spl_scratch->scl_data;
-
- struct scl_black_color *scl_black_color = &dscl_prog_data->scl_black_color;
-
- bool enable_easf = enable_easf_v || enable_easf_h;
-
- // Set values for recout
- dscl_prog_data->recout = spl_scratch->scl_data.recout;
- // Set values for MPC Size
- dscl_prog_data->mpc_size.width = spl_scratch->scl_data.h_active;
- dscl_prog_data->mpc_size.height = spl_scratch->scl_data.v_active;
-
- // SCL_MODE - Set SCL_MODE data
- dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data, enable_isharp,
- enable_easf);
-
- // SCL_BLACK_COLOR
- spl_set_black_color_data(spl_in->basic_in.format, scl_black_color);
-
- /* Manually calculate scale ratio and init values */
- spl_set_manual_ratio_init_data(dscl_prog_data, data);
-
- // Set HTaps/VTaps
- spl_set_taps_data(dscl_prog_data, data);
- // Set viewport
- dscl_prog_data->viewport = spl_scratch->scl_data.viewport;
- // Set viewport_c
- dscl_prog_data->viewport_c = spl_scratch->scl_data.viewport_c;
- // Set filters data
- spl_set_filters_data(dscl_prog_data, data, enable_easf_v, enable_easf_h);
-}
-
-/* Calculate C0-C3 coefficients based on HDR_mult */
-static void spl_calculate_c0_c3_hdr(struct dscl_prog_data *dscl_prog_data, uint32_t sdr_white_level_nits)
-{
- struct spl_fixed31_32 hdr_mult, c0_mult, c1_mult, c2_mult;
- struct spl_fixed31_32 c0_calc, c1_calc, c2_calc;
- struct spl_custom_float_format fmt;
- uint32_t hdr_multx100_int;
-
- if ((sdr_white_level_nits >= 80) && (sdr_white_level_nits <= 480))
- hdr_multx100_int = sdr_white_level_nits * 100 / 80;
- else
- hdr_multx100_int = 100; /* default for 80 nits otherwise */
-
- hdr_mult = spl_fixpt_from_fraction((long long)hdr_multx100_int, 100LL);
- c0_mult = spl_fixpt_from_fraction(2126LL, 10000LL);
- c1_mult = spl_fixpt_from_fraction(7152LL, 10000LL);
- c2_mult = spl_fixpt_from_fraction(722LL, 10000LL);
-
- c0_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c0_mult, spl_fixpt_from_fraction(
- 16384LL, 125LL)));
- c1_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c1_mult, spl_fixpt_from_fraction(
- 16384LL, 125LL)));
- c2_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c2_mult, spl_fixpt_from_fraction(
- 16384LL, 125LL)));
-
- fmt.exponenta_bits = 5;
- fmt.mantissa_bits = 10;
- fmt.sign = true;
-
- // fp1.5.10, C0 coefficient (LN_rec709: HDR_MULT * 0.212600 * 2^14/125)
- spl_convert_to_custom_float_format(c0_calc, &fmt, &dscl_prog_data->easf_matrix_c0);
- // fp1.5.10, C1 coefficient (LN_rec709: HDR_MULT * 0.715200 * 2^14/125)
- spl_convert_to_custom_float_format(c1_calc, &fmt, &dscl_prog_data->easf_matrix_c1);
- // fp1.5.10, C2 coefficient (LN_rec709: HDR_MULT * 0.072200 * 2^14/125)
- spl_convert_to_custom_float_format(c2_calc, &fmt, &dscl_prog_data->easf_matrix_c2);
- dscl_prog_data->easf_matrix_c3 = 0x0; // fp1.5.10, C3 coefficient
-}
-
-/* Set EASF data */
-static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *spl_out, bool enable_easf_v,
- bool enable_easf_h, enum linear_light_scaling lls_pref,
- enum spl_pixel_format format, enum system_setup setup,
- uint32_t sdr_white_level_nits)
-{
- struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
- if (enable_easf_v) {
- dscl_prog_data->easf_v_en = true;
- dscl_prog_data->easf_v_ring = 0;
- dscl_prog_data->easf_v_sharp_factor = 0;
- dscl_prog_data->easf_v_bf1_en = 1; // 1-bit, BF1 calculation enable, 0=disable, 1=enable
- dscl_prog_data->easf_v_bf2_mode = 0xF; // 4-bit, BF2 calculation mode
- /* 2-bit, BF3 chroma mode correction calculation mode */
- dscl_prog_data->easf_v_bf3_mode = spl_get_v_bf3_mode(
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10 [ minCoef ]*/
- dscl_prog_data->easf_v_ringest_3tap_dntilt_uptilt =
- spl_get_3tap_dntilt_uptilt_offset(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10 [ upTiltMaxVal ]*/
- dscl_prog_data->easf_v_ringest_3tap_uptilt_max =
- spl_get_3tap_uptilt_maxval(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10 [ dnTiltSlope ]*/
- dscl_prog_data->easf_v_ringest_3tap_dntilt_slope =
- spl_get_3tap_dntilt_slope(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10 [ upTilt1Slope ]*/
- dscl_prog_data->easf_v_ringest_3tap_uptilt1_slope =
- spl_get_3tap_uptilt1_slope(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10 [ upTilt2Slope ]*/
- dscl_prog_data->easf_v_ringest_3tap_uptilt2_slope =
- spl_get_3tap_uptilt2_slope(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10 [ upTilt2Offset ]*/
- dscl_prog_data->easf_v_ringest_3tap_uptilt2_offset =
- spl_get_3tap_uptilt2_offset(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
- dscl_prog_data->easf_v_ringest_eventap_reduceg1 =
- spl_get_reducer_gain4(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
- dscl_prog_data->easf_v_ringest_eventap_reduceg2 =
- spl_get_reducer_gain6(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
- dscl_prog_data->easf_v_ringest_eventap_gain1 =
- spl_get_gainRing4(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- /* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
- dscl_prog_data->easf_v_ringest_eventap_gain2 =
- spl_get_gainRing6(spl_scratch->scl_data.taps.v_taps,
- spl_scratch->scl_data.recip_ratios.vert);
- dscl_prog_data->easf_v_bf_maxa = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 0
- dscl_prog_data->easf_v_bf_maxb = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 1
- dscl_prog_data->easf_v_bf_mina = 0; //Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 0
- dscl_prog_data->easf_v_bf_minb = 0; //Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 1
- if (lls_pref == LLS_PREF_YES) {
- dscl_prog_data->easf_v_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control
- dscl_prog_data->easf_v_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control
- dscl_prog_data->easf_v_bf2_roc_gain = 4; // U2.2, Rate Of Change control
-
- dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x600; // S0.10, BF1 PWL Segment 0 = -512
- dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
- dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 3; // S7.3, BF1 Slope PWL Segment 0
- dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7EC; // S0.10, BF1 PWL Segment 1 = -20
- dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
- dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 326; // S7.3, BF1 Slope PWL Segment 1
- dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
- dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2
- dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
- dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 16; // S0.10, BF1 PWL Segment 3
- dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
- dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7C8; // S7.3, BF1 Slope PWL Segment 3 = -56
- dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 32; // S0.10, BF1 PWL Segment 4
- dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
- dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7D0; // S7.3, BF1 Slope PWL Segment 4 = -48
- dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 48; // S0.10, BF1 PWL Segment 5
- dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
- dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x710; // S7.3, BF1 Slope PWL Segment 5 = -240
- dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 64; // S0.10, BF1 PWL Segment 6
- dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
- dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x760; // S7.3, BF1 Slope PWL Segment 6 = -160
- dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 80; // S0.10, BF1 PWL Segment 7
- dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
-
- dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
- dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
- dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x12C5; // FP1.6.6, BF3 Slope PWL Segment 0
- dscl_prog_data->easf_v_bf3_pwl_in_set1 =
- 0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
- dscl_prog_data->easf_v_bf3_pwl_base_set1 = 62; // S0.6, BF3 Base PWL Segment 1
- dscl_prog_data->easf_v_bf3_pwl_slope_set1 =
- 0x13B8; // FP1.6.6, BF3 Slope PWL Segment 1
- dscl_prog_data->easf_v_bf3_pwl_in_set2 =
- 0x0BB7; // FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
- dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2
- dscl_prog_data->easf_v_bf3_pwl_slope_set2 =
- 0x1356; // FP1.6.6, BF3 Slope PWL Segment 2
- dscl_prog_data->easf_v_bf3_pwl_in_set3 =
- 0x0BF7; // FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
- dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3
- dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
- 0x136B; // FP1.6.6, BF3 Slope PWL Segment 3
- dscl_prog_data->easf_v_bf3_pwl_in_set4 =
- 0x0C37; // FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
- dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x4E; // S0.6, BF3 Base PWL Segment 4 = -50
- dscl_prog_data->easf_v_bf3_pwl_slope_set4 =
- 0x1200; // FP1.6.6, BF3 Slope PWL Segment 4
- dscl_prog_data->easf_v_bf3_pwl_in_set5 =
- 0x0CF7; // FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
- dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63
- } else {
- dscl_prog_data->easf_v_bf2_flat1_gain = 13; // U1.3, BF2 Flat1 Gain control
- dscl_prog_data->easf_v_bf2_flat2_gain = 15; // U4.0, BF2 Flat2 Gain control
- dscl_prog_data->easf_v_bf2_roc_gain = 14; // U2.2, Rate Of Change control
-
- dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x440; // S0.10, BF1 PWL Segment 0 = -960
- dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
- dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 2; // S7.3, BF1 Slope PWL Segment 0
- dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7C4; // S0.10, BF1 PWL Segment 1 = -60
- dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
- dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 109; // S7.3, BF1 Slope PWL Segment 1
- dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
- dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2
- dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
- dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 48; // S0.10, BF1 PWL Segment 3
- dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
- dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7ED; // S7.3, BF1 Slope PWL Segment 3 = -19
- dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 96; // S0.10, BF1 PWL Segment 4
- dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
- dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7F0; // S7.3, BF1 Slope PWL Segment 4 = -16
- dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 144; // S0.10, BF1 PWL Segment 5
- dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
- dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x7B0; // S7.3, BF1 Slope PWL Segment 5 = -80
- dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 192; // S0.10, BF1 PWL Segment 6
- dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
- dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x7CB; // S7.3, BF1 Slope PWL Segment 6 = -53
- dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 240; // S0.10, BF1 PWL Segment 7
- dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
-
- dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
- dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
- dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x0000; // FP1.6.6, BF3 Slope PWL Segment 0
- dscl_prog_data->easf_v_bf3_pwl_in_set1 =
- 0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
- dscl_prog_data->easf_v_bf3_pwl_base_set1 = 63; // S0.6, BF3 Base PWL Segment 1
- dscl_prog_data->easf_v_bf3_pwl_slope_set1 = 0x1896; // FP1.6.6, BF3 Slope PWL Segment 1
- dscl_prog_data->easf_v_bf3_pwl_in_set2 =
- 0x0700; // FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
- dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2
- dscl_prog_data->easf_v_bf3_pwl_slope_set2 = 0x1810; // FP1.6.6, BF3 Slope PWL Segment 2
- dscl_prog_data->easf_v_bf3_pwl_in_set3 =
- 0x0740; // FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
- dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3
- dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
- 0x1878; // FP1.6.6, BF3 Slope PWL Segment 3
- dscl_prog_data->easf_v_bf3_pwl_in_set4 =
- 0x0761; // FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
- dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x44; // S0.6, BF3 Base PWL Segment 4 = -60
- dscl_prog_data->easf_v_bf3_pwl_slope_set4 = 0x1760; // FP1.6.6, BF3 Slope PWL Segment 4
- dscl_prog_data->easf_v_bf3_pwl_in_set5 =
- 0x0780; // FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
- dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63
- }
- } else
- dscl_prog_data->easf_v_en = false;
-
- if (enable_easf_h) {
- dscl_prog_data->easf_h_en = true;
- dscl_prog_data->easf_h_ring = 0;
- dscl_prog_data->easf_h_sharp_factor = 0;
- dscl_prog_data->easf_h_bf1_en =
- 1; // 1-bit, BF1 calculation enable, 0=disable, 1=enable
- dscl_prog_data->easf_h_bf2_mode =
- 0xF; // 4-bit, BF2 calculation mode
- /* 2-bit, BF3 chroma mode correction calculation mode */
- dscl_prog_data->easf_h_bf3_mode = spl_get_h_bf3_mode(
- spl_scratch->scl_data.recip_ratios.horz);
- /* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
- dscl_prog_data->easf_h_ringest_eventap_reduceg1 =
- spl_get_reducer_gain4(spl_scratch->scl_data.taps.h_taps,
- spl_scratch->scl_data.recip_ratios.horz);
- /* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
- dscl_prog_data->easf_h_ringest_eventap_reduceg2 =
- spl_get_reducer_gain6(spl_scratch->scl_data.taps.h_taps,
- spl_scratch->scl_data.recip_ratios.horz);
- /* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
- dscl_prog_data->easf_h_ringest_eventap_gain1 =
- spl_get_gainRing4(spl_scratch->scl_data.taps.h_taps,
- spl_scratch->scl_data.recip_ratios.horz);
- /* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
- dscl_prog_data->easf_h_ringest_eventap_gain2 =
- spl_get_gainRing6(spl_scratch->scl_data.taps.h_taps,
- spl_scratch->scl_data.recip_ratios.horz);
- dscl_prog_data->easf_h_bf_maxa = 63; //Horz Max BF value A in U0.6 format.Selected if H_FCNTL==0
- dscl_prog_data->easf_h_bf_maxb = 63; //Horz Max BF value B in U0.6 format.Selected if H_FCNTL==1
- dscl_prog_data->easf_h_bf_mina = 0; //Horz Min BF value B in U0.6 format.Selected if H_FCNTL==0
- dscl_prog_data->easf_h_bf_minb = 0; //Horz Min BF value B in U0.6 format.Selected if H_FCNTL==1
- if (lls_pref == LLS_PREF_YES) {
- dscl_prog_data->easf_h_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control
- dscl_prog_data->easf_h_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control
- dscl_prog_data->easf_h_bf2_roc_gain = 4; // U2.2, Rate Of Change control
-
- dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x600; // S0.10, BF1 PWL Segment 0 = -512
- dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
- dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 3; // S7.3, BF1 Slope PWL Segment 0
- dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7EC; // S0.10, BF1 PWL Segment 1 = -20
- dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
- dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 326; // S7.3, BF1 Slope PWL Segment 1
- dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
- dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2
- dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
- dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 16; // S0.10, BF1 PWL Segment 3
- dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
- dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7C8; // S7.3, BF1 Slope PWL Segment 3 = -56
- dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 32; // S0.10, BF1 PWL Segment 4
- dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
- dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7D0; // S7.3, BF1 Slope PWL Segment 4 = -48
- dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 48; // S0.10, BF1 PWL Segment 5
- dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
- dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x710; // S7.3, BF1 Slope PWL Segment 5 = -240
- dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 64; // S0.10, BF1 PWL Segment 6
- dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
- dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x760; // S7.3, BF1 Slope PWL Segment 6 = -160
- dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 80; // S0.10, BF1 PWL Segment 7
- dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
-
- dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
- dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
- dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x12C5; // FP1.6.6, BF3 Slope PWL Segment 0
- dscl_prog_data->easf_h_bf3_pwl_in_set1 =
- 0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
- dscl_prog_data->easf_h_bf3_pwl_base_set1 = 62; // S0.6, BF3 Base PWL Segment 1
- dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x13B8; // FP1.6.6, BF3 Slope PWL Segment 1
- dscl_prog_data->easf_h_bf3_pwl_in_set2 =
- 0x0BB7; // FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
- dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2
- dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1356; // FP1.6.6, BF3 Slope PWL Segment 2
- dscl_prog_data->easf_h_bf3_pwl_in_set3 =
- 0x0BF7; // FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
- dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3
- dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x136B; // FP1.6.6, BF3 Slope PWL Segment 3
- dscl_prog_data->easf_h_bf3_pwl_in_set4 =
- 0x0C37; // FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
- dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x4E; // S0.6, BF3 Base PWL Segment 4 = -50
- dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1200; // FP1.6.6, BF3 Slope PWL Segment 4
- dscl_prog_data->easf_h_bf3_pwl_in_set5 =
- 0x0CF7; // FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
- dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63
- } else {
- dscl_prog_data->easf_h_bf2_flat1_gain = 13; // U1.3, BF2 Flat1 Gain control
- dscl_prog_data->easf_h_bf2_flat2_gain = 15; // U4.0, BF2 Flat2 Gain control
- dscl_prog_data->easf_h_bf2_roc_gain = 14; // U2.2, Rate Of Change control
-
- dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x440; // S0.10, BF1 PWL Segment 0 = -960
- dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
- dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 2; // S7.3, BF1 Slope PWL Segment 0
- dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7C4; // S0.10, BF1 PWL Segment 1 = -60
- dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
- dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 109; // S7.3, BF1 Slope PWL Segment 1
- dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
- dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2
- dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
- dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 48; // S0.10, BF1 PWL Segment 3
- dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
- dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7ED; // S7.3, BF1 Slope PWL Segment 3 = -19
- dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 96; // S0.10, BF1 PWL Segment 4
- dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
- dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7F0; // S7.3, BF1 Slope PWL Segment 4 = -16
- dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 144; // S0.10, BF1 PWL Segment 5
- dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
- dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x7B0; // S7.3, BF1 Slope PWL Segment 5 = -80
- dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 192; // S0.10, BF1 PWL Segment 6
- dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
- dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x7CB; // S7.3, BF1 Slope PWL Segment 6 = -53
- dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 240; // S0.10, BF1 PWL Segment 7
- dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
-
- dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
- dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
- dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x0000; // FP1.6.6, BF3 Slope PWL Segment 0
- dscl_prog_data->easf_h_bf3_pwl_in_set1 =
- 0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
- dscl_prog_data->easf_h_bf3_pwl_base_set1 = 63; // S0.6, BF3 Base PWL Segment 1
- dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x1896; // FP1.6.6, BF3 Slope PWL Segment 1
- dscl_prog_data->easf_h_bf3_pwl_in_set2 =
- 0x0700; // FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
- dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2
- dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1810; // FP1.6.6, BF3 Slope PWL Segment 2
- dscl_prog_data->easf_h_bf3_pwl_in_set3 =
- 0x0740; // FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
- dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3
- dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x1878; // FP1.6.6, BF3 Slope PWL Segment 3
- dscl_prog_data->easf_h_bf3_pwl_in_set4 =
- 0x0761; // FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
- dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x44; // S0.6, BF3 Base PWL Segment 4 = -60
- dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1760; // FP1.6.6, BF3 Slope PWL Segment 4
- dscl_prog_data->easf_h_bf3_pwl_in_set5 =
- 0x0780; // FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
- dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63
- } // if (lls_pref == LLS_PREF_YES)
- } else
- dscl_prog_data->easf_h_en = false;
-
- if (lls_pref == LLS_PREF_YES) {
- dscl_prog_data->easf_ltonl_en = 1; // Linear input
- if ((setup == HDR_L) && (spl_is_rgb8(format))) {
- /* Calculate C0-C3 coefficients based on HDR multiplier */
- spl_calculate_c0_c3_hdr(dscl_prog_data, sdr_white_level_nits);
- } else { // HDR_L ( DWM ) and SDR_L
- dscl_prog_data->easf_matrix_c0 =
- 0x4EF7; // fp1.5.10, C0 coefficient (LN_rec709: 0.2126 * (2^14)/125 = 27.86590720)
- dscl_prog_data->easf_matrix_c1 =
- 0x55DC; // fp1.5.10, C1 coefficient (LN_rec709: 0.7152 * (2^14)/125 = 93.74269440)
- dscl_prog_data->easf_matrix_c2 =
- 0x48BB; // fp1.5.10, C2 coefficient (LN_rec709: 0.0722 * (2^14)/125 = 9.46339840)
- dscl_prog_data->easf_matrix_c3 =
- 0x0; // fp1.5.10, C3 coefficient
- }
- } else {
- dscl_prog_data->easf_ltonl_en = 0; // Non-Linear input
- dscl_prog_data->easf_matrix_c0 =
- 0x3434; // fp1.5.10, C0 coefficient (LN_BT2020: 0.262695312500000)
- dscl_prog_data->easf_matrix_c1 =
- 0x396D; // fp1.5.10, C1 coefficient (LN_BT2020: 0.678222656250000)
- dscl_prog_data->easf_matrix_c2 =
- 0x2B97; // fp1.5.10, C2 coefficient (LN_BT2020: 0.059295654296875)
- dscl_prog_data->easf_matrix_c3 =
- 0x0; // fp1.5.10, C3 coefficient
- }
-
- if (spl_is_yuv420(format)) { /* TODO: 0 = RGB, 1 = YUV */
- dscl_prog_data->easf_matrix_mode = 1;
- /*
- * 2-bit, BF3 chroma mode correction calculation mode
- * Needs to be disabled for YUV420 mode
- * Override lookup value
- */
- dscl_prog_data->easf_v_bf3_mode = 0;
- dscl_prog_data->easf_h_bf3_mode = 0;
- } else
- dscl_prog_data->easf_matrix_mode = 0;
-
-}
-
-/*Set isharp noise detection */
-static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data,
- const struct spl_scaler_data *data)
-{
- // ISHARP_NOISEDET_MODE
- // 0: 3x5 as VxH
- // 1: 4x5 as VxH
- // 2:
- // 3: 5x5 as VxH
- if (data->taps.v_taps == 6)
- dscl_prog_data->isharp_noise_det.mode = 3;
- else if (data->taps.v_taps == 4)
- dscl_prog_data->isharp_noise_det.mode = 1;
- else if (data->taps.v_taps == 3)
- dscl_prog_data->isharp_noise_det.mode = 0;
-};
-/* Set Sharpener data */
-static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
- struct adaptive_sharpness adp_sharpness, bool enable_isharp,
- enum linear_light_scaling lls_pref, enum spl_pixel_format format,
- const struct spl_scaler_data *data, struct spl_fixed31_32 ratio,
- enum system_setup setup, enum scale_to_sharpness_policy scale_to_sharpness_policy)
-{
- /* Turn off sharpener if not required */
- if (!enable_isharp) {
- dscl_prog_data->isharp_en = 0;
- return;
- }
-
- spl_build_isharp_1dlut_from_reference_curve(ratio, setup, adp_sharpness,
- scale_to_sharpness_policy);
- memcpy(dscl_prog_data->isharp_delta, spl_get_pregen_filter_isharp_1D_lut(setup),
- sizeof(uint32_t) * ISHARP_LUT_TABLE_SIZE);
- dscl_prog_data->sharpness_level = adp_sharpness.sharpness_level;
-
- dscl_prog_data->isharp_en = 1; // ISHARP_EN
- // Set ISHARP_NOISEDET_MODE if htaps = 6-tap
- if (data->taps.h_taps == 6) {
- dscl_prog_data->isharp_noise_det.enable = 1; /* ISHARP_NOISEDET_EN */
- spl_set_isharp_noise_det_mode(dscl_prog_data, data); /* ISHARP_NOISEDET_MODE */
- } else
- dscl_prog_data->isharp_noise_det.enable = 0; // ISHARP_NOISEDET_EN
- // Program noise detection threshold
- dscl_prog_data->isharp_noise_det.uthreshold = 24; // ISHARP_NOISEDET_UTHRE
- dscl_prog_data->isharp_noise_det.dthreshold = 4; // ISHARP_NOISEDET_DTHRE
- // Program noise detection gain
- dscl_prog_data->isharp_noise_det.pwl_start_in = 3; // ISHARP_NOISEDET_PWL_START_IN
- dscl_prog_data->isharp_noise_det.pwl_end_in = 13; // ISHARP_NOISEDET_PWL_END_IN
- dscl_prog_data->isharp_noise_det.pwl_slope = 1623; // ISHARP_NOISEDET_PWL_SLOPE
-
- if (lls_pref == LLS_PREF_NO) /* ISHARP_FMT_MODE */
- dscl_prog_data->isharp_fmt.mode = 1;
- else
- dscl_prog_data->isharp_fmt.mode = 0;
-
- dscl_prog_data->isharp_fmt.norm = 0x3C00; // ISHARP_FMT_NORM
- dscl_prog_data->isharp_lba.mode = 0; // ISHARP_LBA_MODE
-
- if (setup == SDR_L) {
- // ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
- dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[0] = 62; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
- dscl_prog_data->isharp_lba.in_seg[1] = 130; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
- dscl_prog_data->isharp_lba.in_seg[2] = 450; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[2] = 0x18D; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -115
- // ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
- dscl_prog_data->isharp_lba.in_seg[3] = 520; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
- dscl_prog_data->isharp_lba.in_seg[4] = 520; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
- dscl_prog_data->isharp_lba.in_seg[5] = 520; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
- } else if (setup == HDR_L) {
- // ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
- dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[0] = 32; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
- dscl_prog_data->isharp_lba.in_seg[1] = 254; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
- dscl_prog_data->isharp_lba.in_seg[2] = 559; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[2] = 0x10C; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -244
- // ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
- dscl_prog_data->isharp_lba.in_seg[3] = 592; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
- dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
- dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
- } else {
- // ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
- dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[0] = 40; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
- dscl_prog_data->isharp_lba.in_seg[1] = 204; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
- dscl_prog_data->isharp_lba.in_seg[2] = 818; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39
- // ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
- dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
- dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
- // ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
- dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
- dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
- }
-
- // Program the nldelta soft clip values
- if (lls_pref == LLS_PREF_YES) {
- dscl_prog_data->isharp_nldelta_sclip.enable_p = 0; /* ISHARP_NLDELTA_SCLIP_EN_P */
- dscl_prog_data->isharp_nldelta_sclip.pivot_p = 0; /* ISHARP_NLDELTA_SCLIP_PIVOT_P */
- dscl_prog_data->isharp_nldelta_sclip.slope_p = 0; /* ISHARP_NLDELTA_SCLIP_SLOPE_P */
- dscl_prog_data->isharp_nldelta_sclip.enable_n = 1; /* ISHARP_NLDELTA_SCLIP_EN_N */
- dscl_prog_data->isharp_nldelta_sclip.pivot_n = 71; /* ISHARP_NLDELTA_SCLIP_PIVOT_N */
- dscl_prog_data->isharp_nldelta_sclip.slope_n = 16; /* ISHARP_NLDELTA_SCLIP_SLOPE_N */
- } else {
- dscl_prog_data->isharp_nldelta_sclip.enable_p = 1; /* ISHARP_NLDELTA_SCLIP_EN_P */
- dscl_prog_data->isharp_nldelta_sclip.pivot_p = 70; /* ISHARP_NLDELTA_SCLIP_PIVOT_P */
- dscl_prog_data->isharp_nldelta_sclip.slope_p = 24; /* ISHARP_NLDELTA_SCLIP_SLOPE_P */
- dscl_prog_data->isharp_nldelta_sclip.enable_n = 1; /* ISHARP_NLDELTA_SCLIP_EN_N */
- dscl_prog_data->isharp_nldelta_sclip.pivot_n = 70; /* ISHARP_NLDELTA_SCLIP_PIVOT_N */
- dscl_prog_data->isharp_nldelta_sclip.slope_n = 24; /* ISHARP_NLDELTA_SCLIP_SLOPE_N */
- }
-
- // Set the values as per lookup table
- spl_set_blur_scale_data(dscl_prog_data, data);
-}
-
-/* Calculate recout, scaling ratio, and viewport, then get optimal number of taps */
-static bool spl_calculate_number_of_taps(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out,
- bool *enable_easf_v, bool *enable_easf_h, bool *enable_isharp)
-{
- bool res = false;
-
- memset(spl_scratch, 0, sizeof(struct spl_scratch));
- spl_scratch->scl_data.h_active = spl_in->h_active;
- spl_scratch->scl_data.v_active = spl_in->v_active;
-
- // All SPL calls
- /* recout calculation */
- /* depends on h_active */
- spl_calculate_recout(spl_in, spl_scratch, spl_out);
- /* depends on pixel format */
- spl_calculate_scaling_ratios(spl_in, spl_scratch, spl_out);
- /* depends on scaling ratios and recout, does not calculate offset yet */
- spl_calculate_viewport_size(spl_in, spl_scratch);
-
- res = spl_get_optimal_number_of_taps(
- spl_in->basic_out.max_downscale_src_width, spl_in,
- spl_scratch, &spl_in->scaling_quality, enable_easf_v,
- enable_easf_h, enable_isharp);
- return res;
-}
-
-/* Calculate scaler parameters */
-bool spl_calculate_scaler_params(struct spl_in *spl_in, struct spl_out *spl_out)
-{
- bool res = false;
- bool enable_easf_v = false;
- bool enable_easf_h = false;
- int vratio = 0;
- int hratio = 0;
- struct spl_scratch spl_scratch;
- struct spl_fixed31_32 isharp_scale_ratio;
- enum system_setup setup;
- bool enable_isharp = false;
- const struct spl_scaler_data *data = &spl_scratch.scl_data;
-
- res = spl_calculate_number_of_taps(spl_in, &spl_scratch, spl_out,
- &enable_easf_v, &enable_easf_h, &enable_isharp);
-
- /*
- * Depends on recout, scaling ratios, h_active and taps
- * May need to re-check lb size after this in some obscure scenario
- */
- if (res)
- spl_calculate_inits_and_viewports(spl_in, &spl_scratch);
- // Handle 3d recout
- spl_handle_3d_recout(spl_in, &spl_scratch.scl_data.recout);
- // Clamp
- spl_clamp_viewport(&spl_scratch.scl_data.viewport);
-
- // Save all calculated parameters in dscl_prog_data structure to program hw registers
- spl_set_dscl_prog_data(spl_in, &spl_scratch, spl_out, enable_easf_v, enable_easf_h, enable_isharp);
-
- if (!res)
- return res;
-
- if (spl_in->lls_pref == LLS_PREF_YES) {
- if (spl_in->is_hdr_on)
- setup = HDR_L;
- else
- setup = SDR_L;
- } else {
- if (spl_in->is_hdr_on)
- setup = HDR_NL;
- else
- setup = SDR_NL;
- }
-
- // Set EASF
- spl_set_easf_data(&spl_scratch, spl_out, enable_easf_v, enable_easf_h, spl_in->lls_pref,
- spl_in->basic_in.format, setup, spl_in->sdr_white_level_nits);
-
- // Set iSHARP
- vratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.vert);
- hratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.horz);
- if (vratio <= hratio)
- isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.vert;
- else
- isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.horz;
-
- spl_set_isharp_data(spl_out->dscl_prog_data, spl_in->adaptive_sharpness, enable_isharp,
- spl_in->lls_pref, spl_in->basic_in.format, data, isharp_scale_ratio, setup,
- spl_in->debug.scale_to_sharpness_policy);
-
- return res;
-}
-
-/* External interface to get number of taps only */
-bool spl_get_number_of_taps(struct spl_in *spl_in, struct spl_out *spl_out)
-{
- bool res = false;
- bool enable_easf_v = false;
- bool enable_easf_h = false;
- bool enable_isharp = false;
- struct spl_scratch spl_scratch;
- struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
- const struct spl_scaler_data *data = &spl_scratch.scl_data;
-
- res = spl_calculate_number_of_taps(spl_in, &spl_scratch, spl_out,
- &enable_easf_v, &enable_easf_h, &enable_isharp);
- spl_set_taps_data(dscl_prog_data, data);
- return res;
-}