summaryrefslogtreecommitdiff
path: root/arch/x86/mm/tlb.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/mm/tlb.c')
-rw-r--r--arch/x86/mm/tlb.c432
1 files changed, 392 insertions, 40 deletions
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
index 6cf881a942bb..e459d97ef397 100644
--- a/arch/x86/mm/tlb.c
+++ b/arch/x86/mm/tlb.c
@@ -74,13 +74,15 @@
* use different names for each of them:
*
* ASID - [0, TLB_NR_DYN_ASIDS-1]
- * the canonical identifier for an mm
+ * the canonical identifier for an mm, dynamically allocated on each CPU
+ * [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1]
+ * the canonical, global identifier for an mm, identical across all CPUs
*
- * kPCID - [1, TLB_NR_DYN_ASIDS]
+ * kPCID - [1, MAX_ASID_AVAILABLE]
* the value we write into the PCID part of CR3; corresponds to the
* ASID+1, because PCID 0 is special.
*
- * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
+ * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE]
* for KPTI each mm has two address spaces and thus needs two
* PCID values, but we can still do with a single ASID denomination
* for each mm. Corresponds to kPCID + 2048.
@@ -225,6 +227,20 @@ static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
return;
}
+ /*
+ * TLB consistency for global ASIDs is maintained with hardware assisted
+ * remote TLB flushing. Global ASIDs are always up to date.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) {
+ u16 global_asid = mm_global_asid(next);
+
+ if (global_asid) {
+ *new_asid = global_asid;
+ *need_flush = false;
+ return;
+ }
+ }
+
if (this_cpu_read(cpu_tlbstate.invalidate_other))
clear_asid_other();
@@ -252,6 +268,268 @@ static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
}
/*
+ * Global ASIDs are allocated for multi-threaded processes that are
+ * active on multiple CPUs simultaneously, giving each of those
+ * processes the same PCID on every CPU, for use with hardware-assisted
+ * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR.
+ *
+ * These global ASIDs are held for the lifetime of the process.
+ */
+static DEFINE_RAW_SPINLOCK(global_asid_lock);
+static u16 last_global_asid = MAX_ASID_AVAILABLE;
+static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE);
+static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE);
+static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1;
+
+/*
+ * When the search for a free ASID in the global ASID space reaches
+ * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously
+ * freed global ASIDs are safe to re-use.
+ *
+ * This way the global flush only needs to happen at ASID rollover
+ * time, and not at ASID allocation time.
+ */
+static void reset_global_asid_space(void)
+{
+ lockdep_assert_held(&global_asid_lock);
+
+ invlpgb_flush_all_nonglobals();
+
+ /*
+ * The TLB flush above makes it safe to re-use the previously
+ * freed global ASIDs.
+ */
+ bitmap_andnot(global_asid_used, global_asid_used,
+ global_asid_freed, MAX_ASID_AVAILABLE);
+ bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE);
+
+ /* Restart the search from the start of global ASID space. */
+ last_global_asid = TLB_NR_DYN_ASIDS;
+}
+
+static u16 allocate_global_asid(void)
+{
+ u16 asid;
+
+ lockdep_assert_held(&global_asid_lock);
+
+ /* The previous allocation hit the edge of available address space */
+ if (last_global_asid >= MAX_ASID_AVAILABLE - 1)
+ reset_global_asid_space();
+
+ asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid);
+
+ if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) {
+ /* This should never happen. */
+ VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n",
+ global_asid_available);
+ return 0;
+ }
+
+ /* Claim this global ASID. */
+ __set_bit(asid, global_asid_used);
+ last_global_asid = asid;
+ global_asid_available--;
+ return asid;
+}
+
+/*
+ * Check whether a process is currently active on more than @threshold CPUs.
+ * This is a cheap estimation on whether or not it may make sense to assign
+ * a global ASID to this process, and use broadcast TLB invalidation.
+ */
+static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold)
+{
+ int count = 0;
+ int cpu;
+
+ /* This quick check should eliminate most single threaded programs. */
+ if (cpumask_weight(mm_cpumask(mm)) <= threshold)
+ return false;
+
+ /* Slower check to make sure. */
+ for_each_cpu(cpu, mm_cpumask(mm)) {
+ /* Skip the CPUs that aren't really running this process. */
+ if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm)
+ continue;
+
+ if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
+ continue;
+
+ if (++count > threshold)
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Assign a global ASID to the current process, protecting against
+ * races between multiple threads in the process.
+ */
+static void use_global_asid(struct mm_struct *mm)
+{
+ u16 asid;
+
+ guard(raw_spinlock_irqsave)(&global_asid_lock);
+
+ /* This process is already using broadcast TLB invalidation. */
+ if (mm_global_asid(mm))
+ return;
+
+ /*
+ * The last global ASID was consumed while waiting for the lock.
+ *
+ * If this fires, a more aggressive ASID reuse scheme might be
+ * needed.
+ */
+ if (!global_asid_available) {
+ VM_WARN_ONCE(1, "Ran out of global ASIDs\n");
+ return;
+ }
+
+ asid = allocate_global_asid();
+ if (!asid)
+ return;
+
+ mm_assign_global_asid(mm, asid);
+}
+
+void mm_free_global_asid(struct mm_struct *mm)
+{
+ if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ return;
+
+ if (!mm_global_asid(mm))
+ return;
+
+ guard(raw_spinlock_irqsave)(&global_asid_lock);
+
+ /* The global ASID can be re-used only after flush at wrap-around. */
+#ifdef CONFIG_BROADCAST_TLB_FLUSH
+ __set_bit(mm->context.global_asid, global_asid_freed);
+
+ mm->context.global_asid = 0;
+ global_asid_available++;
+#endif
+}
+
+/*
+ * Is the mm transitioning from a CPU-local ASID to a global ASID?
+ */
+static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid)
+{
+ u16 global_asid = mm_global_asid(mm);
+
+ if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ return false;
+
+ /* Process is transitioning to a global ASID */
+ if (global_asid && asid != global_asid)
+ return true;
+
+ return false;
+}
+
+/*
+ * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86
+ * systems have over 8k CPUs. Because of this potential ASID shortage,
+ * global ASIDs are handed out to processes that have frequent TLB
+ * flushes and are active on 4 or more CPUs simultaneously.
+ */
+static void consider_global_asid(struct mm_struct *mm)
+{
+ if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ return;
+
+ /* Check every once in a while. */
+ if ((current->pid & 0x1f) != (jiffies & 0x1f))
+ return;
+
+ /*
+ * Assign a global ASID if the process is active on
+ * 4 or more CPUs simultaneously.
+ */
+ if (mm_active_cpus_exceeds(mm, 3))
+ use_global_asid(mm);
+}
+
+static void finish_asid_transition(struct flush_tlb_info *info)
+{
+ struct mm_struct *mm = info->mm;
+ int bc_asid = mm_global_asid(mm);
+ int cpu;
+
+ if (!mm_in_asid_transition(mm))
+ return;
+
+ for_each_cpu(cpu, mm_cpumask(mm)) {
+ /*
+ * The remote CPU is context switching. Wait for that to
+ * finish, to catch the unlikely case of it switching to
+ * the target mm with an out of date ASID.
+ */
+ while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING)
+ cpu_relax();
+
+ if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm)
+ continue;
+
+ /*
+ * If at least one CPU is not using the global ASID yet,
+ * send a TLB flush IPI. The IPI should cause stragglers
+ * to transition soon.
+ *
+ * This can race with the CPU switching to another task;
+ * that results in a (harmless) extra IPI.
+ */
+ if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) {
+ flush_tlb_multi(mm_cpumask(info->mm), info);
+ return;
+ }
+ }
+
+ /* All the CPUs running this process are using the global ASID. */
+ mm_clear_asid_transition(mm);
+}
+
+static void broadcast_tlb_flush(struct flush_tlb_info *info)
+{
+ bool pmd = info->stride_shift == PMD_SHIFT;
+ unsigned long asid = mm_global_asid(info->mm);
+ unsigned long addr = info->start;
+
+ /*
+ * TLB flushes with INVLPGB are kicked off asynchronously.
+ * The inc_mm_tlb_gen() guarantees page table updates are done
+ * before these TLB flushes happen.
+ */
+ if (info->end == TLB_FLUSH_ALL) {
+ invlpgb_flush_single_pcid_nosync(kern_pcid(asid));
+ /* Do any CPUs supporting INVLPGB need PTI? */
+ if (cpu_feature_enabled(X86_FEATURE_PTI))
+ invlpgb_flush_single_pcid_nosync(user_pcid(asid));
+ } else do {
+ unsigned long nr = 1;
+
+ if (info->stride_shift <= PMD_SHIFT) {
+ nr = (info->end - addr) >> info->stride_shift;
+ nr = clamp_val(nr, 1, invlpgb_count_max);
+ }
+
+ invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd);
+ if (cpu_feature_enabled(X86_FEATURE_PTI))
+ invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd);
+
+ addr += nr << info->stride_shift;
+ } while (addr < info->end);
+
+ finish_asid_transition(info);
+
+ /* Wait for the INVLPGBs kicked off above to finish. */
+ __tlbsync();
+}
+
+/*
* Given an ASID, flush the corresponding user ASID. We can delay this
* until the next time we switch to it.
*
@@ -447,8 +725,7 @@ static void cond_mitigation(struct task_struct *next)
* different context than the user space task which ran
* last on this CPU.
*/
- if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
- (unsigned long)next->mm)
+ if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm)
indirect_branch_prediction_barrier();
}
@@ -556,7 +833,8 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
*/
if (prev == next) {
/* Not actually switching mm's */
- VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
+ VM_WARN_ON(is_dyn_asid(prev_asid) &&
+ this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
next->context.ctx_id);
/*
@@ -573,6 +851,20 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
!cpumask_test_cpu(cpu, mm_cpumask(next))))
cpumask_set_cpu(cpu, mm_cpumask(next));
+ /* Check if the current mm is transitioning to a global ASID */
+ if (mm_needs_global_asid(next, prev_asid)) {
+ next_tlb_gen = atomic64_read(&next->context.tlb_gen);
+ choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
+ goto reload_tlb;
+ }
+
+ /*
+ * Broadcast TLB invalidation keeps this ASID up to date
+ * all the time.
+ */
+ if (is_global_asid(prev_asid))
+ return;
+
/*
* If the CPU is not in lazy TLB mode, we are just switching
* from one thread in a process to another thread in the same
@@ -607,6 +899,13 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
cond_mitigation(tsk);
/*
+ * Let nmi_uaccess_okay() and finish_asid_transition()
+ * know that CR3 is changing.
+ */
+ this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
+ barrier();
+
+ /*
* Leave this CPU in prev's mm_cpumask. Atomic writes to
* mm_cpumask can be expensive under contention. The CPU
* will be removed lazily at TLB flush time.
@@ -620,14 +919,12 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
-
- /* Let nmi_uaccess_okay() know that we're changing CR3. */
- this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
- barrier();
}
+reload_tlb:
new_lam = mm_lam_cr3_mask(next);
if (need_flush) {
+ VM_WARN_ON_ONCE(is_global_asid(new_asid));
this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
@@ -746,7 +1043,7 @@ static void flush_tlb_func(void *info)
const struct flush_tlb_info *f = info;
struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
- u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
+ u64 local_tlb_gen;
bool local = smp_processor_id() == f->initiating_cpu;
unsigned long nr_invalidate = 0;
u64 mm_tlb_gen;
@@ -769,6 +1066,16 @@ static void flush_tlb_func(void *info)
if (unlikely(loaded_mm == &init_mm))
return;
+ /* Reload the ASID if transitioning into or out of a global ASID */
+ if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) {
+ switch_mm_irqs_off(NULL, loaded_mm, NULL);
+ loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+ }
+
+ /* Broadcast ASIDs are always kept up to date with INVLPGB. */
+ if (is_global_asid(loaded_mm_asid))
+ return;
+
VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
loaded_mm->context.ctx_id);
@@ -786,6 +1093,8 @@ static void flush_tlb_func(void *info)
return;
}
+ local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
+
if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
f->new_tlb_gen <= local_tlb_gen)) {
/*
@@ -953,7 +1262,7 @@ STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
* up on the new contents of what used to be page tables, while
* doing a speculative memory access.
*/
- if (info->freed_tables)
+ if (info->freed_tables || mm_in_asid_transition(info->mm))
on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
else
on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
@@ -1000,6 +1309,15 @@ static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
#endif
+ /*
+ * If the number of flushes is so large that a full flush
+ * would be faster, do a full flush.
+ */
+ if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) {
+ start = 0;
+ end = TLB_FLUSH_ALL;
+ }
+
info->start = start;
info->end = end;
info->mm = mm;
@@ -1026,17 +1344,8 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
bool freed_tables)
{
struct flush_tlb_info *info;
+ int cpu = get_cpu();
u64 new_tlb_gen;
- int cpu;
-
- cpu = get_cpu();
-
- /* Should we flush just the requested range? */
- if ((end == TLB_FLUSH_ALL) ||
- ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
- start = 0;
- end = TLB_FLUSH_ALL;
- }
/* This is also a barrier that synchronizes with switch_mm(). */
new_tlb_gen = inc_mm_tlb_gen(mm);
@@ -1049,9 +1358,12 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
* a local TLB flush is needed. Optimize this use-case by calling
* flush_tlb_func_local() directly in this case.
*/
- if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
+ if (mm_global_asid(mm)) {
+ broadcast_tlb_flush(info);
+ } else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
info->trim_cpumask = should_trim_cpumask(mm);
flush_tlb_multi(mm_cpumask(mm), info);
+ consider_global_asid(mm);
} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
lockdep_assert_irqs_enabled();
local_irq_disable();
@@ -1064,7 +1376,6 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
}
-
static void do_flush_tlb_all(void *info)
{
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
@@ -1074,7 +1385,32 @@ static void do_flush_tlb_all(void *info)
void flush_tlb_all(void)
{
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
- on_each_cpu(do_flush_tlb_all, NULL, 1);
+
+ /* First try (faster) hardware-assisted TLB invalidation. */
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ invlpgb_flush_all();
+ else
+ /* Fall back to the IPI-based invalidation. */
+ on_each_cpu(do_flush_tlb_all, NULL, 1);
+}
+
+/* Flush an arbitrarily large range of memory with INVLPGB. */
+static void invlpgb_kernel_range_flush(struct flush_tlb_info *info)
+{
+ unsigned long addr, nr;
+
+ for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) {
+ nr = (info->end - addr) >> PAGE_SHIFT;
+
+ /*
+ * INVLPGB has a limit on the size of ranges it can
+ * flush. Break up large flushes.
+ */
+ nr = clamp_val(nr, 1, invlpgb_count_max);
+
+ invlpgb_flush_addr_nosync(addr, nr);
+ }
+ __tlbsync();
}
static void do_kernel_range_flush(void *info)
@@ -1087,24 +1423,37 @@ static void do_kernel_range_flush(void *info)
flush_tlb_one_kernel(addr);
}
-void flush_tlb_kernel_range(unsigned long start, unsigned long end)
+static void kernel_tlb_flush_all(struct flush_tlb_info *info)
{
- /* Balance as user space task's flush, a bit conservative */
- if (end == TLB_FLUSH_ALL ||
- (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ invlpgb_flush_all();
+ else
on_each_cpu(do_flush_tlb_all, NULL, 1);
- } else {
- struct flush_tlb_info *info;
-
- preempt_disable();
- info = get_flush_tlb_info(NULL, start, end, 0, false,
- TLB_GENERATION_INVALID);
+}
+static void kernel_tlb_flush_range(struct flush_tlb_info *info)
+{
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ invlpgb_kernel_range_flush(info);
+ else
on_each_cpu(do_kernel_range_flush, info, 1);
+}
- put_flush_tlb_info();
- preempt_enable();
- }
+void flush_tlb_kernel_range(unsigned long start, unsigned long end)
+{
+ struct flush_tlb_info *info;
+
+ guard(preempt)();
+
+ info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false,
+ TLB_GENERATION_INVALID);
+
+ if (info->end == TLB_FLUSH_ALL)
+ kernel_tlb_flush_all(info);
+ else
+ kernel_tlb_flush_range(info);
+
+ put_flush_tlb_info();
}
/*
@@ -1283,7 +1632,10 @@ void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
* a local TLB flush is needed. Optimize this use-case by calling
* flush_tlb_func_local() directly in this case.
*/
- if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) {
+ invlpgb_flush_all_nonglobals();
+ batch->unmapped_pages = false;
+ } else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
flush_tlb_multi(&batch->cpumask, info);
} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
lockdep_assert_irqs_enabled();
@@ -1325,7 +1677,7 @@ bool nmi_uaccess_okay(void)
if (loaded_mm != current_mm)
return false;
- VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
+ VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa());
return true;
}