summaryrefslogtreecommitdiff
path: root/arch/s390/lib
diff options
context:
space:
mode:
Diffstat (limited to 'arch/s390/lib')
-rw-r--r--arch/s390/lib/Makefile3
-rw-r--r--arch/s390/lib/crc32-glue.c92
-rw-r--r--arch/s390/lib/crc32-vx.h12
-rw-r--r--arch/s390/lib/crc32be-vx.c174
-rw-r--r--arch/s390/lib/crc32le-vx.c240
-rw-r--r--arch/s390/lib/mem.S15
-rw-r--r--arch/s390/lib/uaccess.c90
-rw-r--r--arch/s390/lib/xor.c61
8 files changed, 555 insertions, 132 deletions
diff --git a/arch/s390/lib/Makefile b/arch/s390/lib/Makefile
index f43f897d3fc0..14bbfe50033c 100644
--- a/arch/s390/lib/Makefile
+++ b/arch/s390/lib/Makefile
@@ -24,3 +24,6 @@ obj-$(CONFIG_S390_MODULES_SANITY_TEST_HELPERS) += test_modules_helpers.o
lib-$(CONFIG_FUNCTION_ERROR_INJECTION) += error-inject.o
obj-$(CONFIG_EXPOLINE_EXTERN) += expoline.o
+
+obj-$(CONFIG_CRC32_ARCH) += crc32-s390.o
+crc32-s390-y := crc32-glue.o crc32le-vx.o crc32be-vx.o
diff --git a/arch/s390/lib/crc32-glue.c b/arch/s390/lib/crc32-glue.c
new file mode 100644
index 000000000000..124214a27340
--- /dev/null
+++ b/arch/s390/lib/crc32-glue.c
@@ -0,0 +1,92 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * CRC-32 implemented with the z/Architecture Vector Extension Facility.
+ *
+ * Copyright IBM Corp. 2015
+ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
+ */
+#define KMSG_COMPONENT "crc32-vx"
+#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
+
+#include <linux/module.h>
+#include <linux/cpufeature.h>
+#include <linux/crc32.h>
+#include <asm/fpu.h>
+#include "crc32-vx.h"
+
+#define VX_MIN_LEN 64
+#define VX_ALIGNMENT 16L
+#define VX_ALIGN_MASK (VX_ALIGNMENT - 1)
+
+static DEFINE_STATIC_KEY_FALSE(have_vxrs);
+
+/*
+ * DEFINE_CRC32_VX() - Define a CRC-32 function using the vector extension
+ *
+ * Creates a function to perform a particular CRC-32 computation. Depending
+ * on the message buffer, the hardware-accelerated or software implementation
+ * is used. Note that the message buffer is aligned to improve fetch
+ * operations of VECTOR LOAD MULTIPLE instructions.
+ */
+#define DEFINE_CRC32_VX(___fname, ___crc32_vx, ___crc32_sw) \
+ u32 ___fname(u32 crc, const u8 *data, size_t datalen) \
+ { \
+ unsigned long prealign, aligned, remaining; \
+ DECLARE_KERNEL_FPU_ONSTACK16(vxstate); \
+ \
+ if (datalen < VX_MIN_LEN + VX_ALIGN_MASK || \
+ !static_branch_likely(&have_vxrs)) \
+ return ___crc32_sw(crc, data, datalen); \
+ \
+ if ((unsigned long)data & VX_ALIGN_MASK) { \
+ prealign = VX_ALIGNMENT - \
+ ((unsigned long)data & VX_ALIGN_MASK); \
+ datalen -= prealign; \
+ crc = ___crc32_sw(crc, data, prealign); \
+ data = (void *)((unsigned long)data + prealign); \
+ } \
+ \
+ aligned = datalen & ~VX_ALIGN_MASK; \
+ remaining = datalen & VX_ALIGN_MASK; \
+ \
+ kernel_fpu_begin(&vxstate, KERNEL_VXR_LOW); \
+ crc = ___crc32_vx(crc, data, aligned); \
+ kernel_fpu_end(&vxstate, KERNEL_VXR_LOW); \
+ \
+ if (remaining) \
+ crc = ___crc32_sw(crc, data + aligned, remaining); \
+ \
+ return crc; \
+ } \
+ EXPORT_SYMBOL(___fname);
+
+DEFINE_CRC32_VX(crc32_le_arch, crc32_le_vgfm_16, crc32_le_base)
+DEFINE_CRC32_VX(crc32_be_arch, crc32_be_vgfm_16, crc32_be_base)
+DEFINE_CRC32_VX(crc32c_arch, crc32c_le_vgfm_16, crc32c_base)
+
+static int __init crc32_s390_init(void)
+{
+ if (cpu_have_feature(S390_CPU_FEATURE_VXRS))
+ static_branch_enable(&have_vxrs);
+ return 0;
+}
+arch_initcall(crc32_s390_init);
+
+static void __exit crc32_s390_exit(void)
+{
+}
+module_exit(crc32_s390_exit);
+
+u32 crc32_optimizations(void)
+{
+ if (static_key_enabled(&have_vxrs))
+ return CRC32_LE_OPTIMIZATION |
+ CRC32_BE_OPTIMIZATION |
+ CRC32C_OPTIMIZATION;
+ return 0;
+}
+EXPORT_SYMBOL(crc32_optimizations);
+
+MODULE_AUTHOR("Hendrik Brueckner <brueckner@linux.vnet.ibm.com>");
+MODULE_DESCRIPTION("CRC-32 algorithms using z/Architecture Vector Extension Facility");
+MODULE_LICENSE("GPL");
diff --git a/arch/s390/lib/crc32-vx.h b/arch/s390/lib/crc32-vx.h
new file mode 100644
index 000000000000..652c96e1a822
--- /dev/null
+++ b/arch/s390/lib/crc32-vx.h
@@ -0,0 +1,12 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef _CRC32_VX_S390_H
+#define _CRC32_VX_S390_H
+
+#include <linux/types.h>
+
+u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
+u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
+u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
+
+#endif /* _CRC32_VX_S390_H */
diff --git a/arch/s390/lib/crc32be-vx.c b/arch/s390/lib/crc32be-vx.c
new file mode 100644
index 000000000000..fed7c9c70d05
--- /dev/null
+++ b/arch/s390/lib/crc32be-vx.c
@@ -0,0 +1,174 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
+ *
+ * Use the z/Architecture Vector Extension Facility to accelerate the
+ * computing of CRC-32 checksums.
+ *
+ * This CRC-32 implementation algorithm processes the most-significant
+ * bit first (BE).
+ *
+ * Copyright IBM Corp. 2015
+ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
+ */
+
+#include <linux/types.h>
+#include <asm/fpu.h>
+#include "crc32-vx.h"
+
+/* Vector register range containing CRC-32 constants */
+#define CONST_R1R2 9
+#define CONST_R3R4 10
+#define CONST_R5 11
+#define CONST_R6 12
+#define CONST_RU_POLY 13
+#define CONST_CRC_POLY 14
+
+/*
+ * The CRC-32 constant block contains reduction constants to fold and
+ * process particular chunks of the input data stream in parallel.
+ *
+ * For the CRC-32 variants, the constants are precomputed according to
+ * these definitions:
+ *
+ * R1 = x4*128+64 mod P(x)
+ * R2 = x4*128 mod P(x)
+ * R3 = x128+64 mod P(x)
+ * R4 = x128 mod P(x)
+ * R5 = x96 mod P(x)
+ * R6 = x64 mod P(x)
+ *
+ * Barret reduction constant, u, is defined as floor(x**64 / P(x)).
+ *
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
+ * polynomial in the reversed (bitreflected) domain.
+ *
+ * Note that the constant definitions below are extended in order to compute
+ * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
+ * The rightmost doubleword can be 0 to prevent contribution to the result or
+ * can be multiplied by 1 to perform an XOR without the need for a separate
+ * VECTOR EXCLUSIVE OR instruction.
+ *
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
+ *
+ * P(x) = 0x04C11DB7
+ * P'(x) = 0xEDB88320
+ */
+
+static unsigned long constants_CRC_32_BE[] = {
+ 0x08833794c, 0x0e6228b11, /* R1, R2 */
+ 0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */
+ 0x0f200aa66, 1UL << 32, /* R5, x32 */
+ 0x0490d678d, 1, /* R6, 1 */
+ 0x104d101df, 0, /* u */
+ 0x104C11DB7, 0, /* P(x) */
+};
+
+/**
+ * crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers
+ * @crc: Initial CRC value, typically ~0.
+ * @buf: Input buffer pointer, performance might be improved if the
+ * buffer is on a doubleword boundary.
+ * @size: Size of the buffer, must be 64 bytes or greater.
+ *
+ * Register usage:
+ * V0: Initial CRC value and intermediate constants and results.
+ * V1..V4: Data for CRC computation.
+ * V5..V8: Next data chunks that are fetched from the input buffer.
+ * V9..V14: CRC-32 constants.
+ */
+u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
+{
+ /* Load CRC-32 constants */
+ fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE);
+ fpu_vzero(0);
+
+ /* Load the initial CRC value into the leftmost word of V0. */
+ fpu_vlvgf(0, crc, 0);
+
+ /* Load a 64-byte data chunk and XOR with CRC */
+ fpu_vlm(1, 4, buf);
+ fpu_vx(1, 0, 1);
+ buf += 64;
+ size -= 64;
+
+ while (size >= 64) {
+ /* Load the next 64-byte data chunk into V5 to V8 */
+ fpu_vlm(5, 8, buf);
+
+ /*
+ * Perform a GF(2) multiplication of the doublewords in V1 with
+ * the reduction constants in V0. The intermediate result is
+ * then folded (accumulated) with the next data chunk in V5 and
+ * stored in V1. Repeat this step for the register contents
+ * in V2, V3, and V4 respectively.
+ */
+ fpu_vgfmag(1, CONST_R1R2, 1, 5);
+ fpu_vgfmag(2, CONST_R1R2, 2, 6);
+ fpu_vgfmag(3, CONST_R1R2, 3, 7);
+ fpu_vgfmag(4, CONST_R1R2, 4, 8);
+ buf += 64;
+ size -= 64;
+ }
+
+ /* Fold V1 to V4 into a single 128-bit value in V1 */
+ fpu_vgfmag(1, CONST_R3R4, 1, 2);
+ fpu_vgfmag(1, CONST_R3R4, 1, 3);
+ fpu_vgfmag(1, CONST_R3R4, 1, 4);
+
+ while (size >= 16) {
+ fpu_vl(2, buf);
+ fpu_vgfmag(1, CONST_R3R4, 1, 2);
+ buf += 16;
+ size -= 16;
+ }
+
+ /*
+ * The R5 constant is used to fold a 128-bit value into an 96-bit value
+ * that is XORed with the next 96-bit input data chunk. To use a single
+ * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
+ * form an intermediate 96-bit value (with appended zeros) which is then
+ * XORed with the intermediate reduction result.
+ */
+ fpu_vgfmg(1, CONST_R5, 1);
+
+ /*
+ * Further reduce the remaining 96-bit value to a 64-bit value using a
+ * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
+ * intermediate result is then XORed with the product of the leftmost
+ * doubleword with R6. The result is a 64-bit value and is subject to
+ * the Barret reduction.
+ */
+ fpu_vgfmg(1, CONST_R6, 1);
+
+ /*
+ * The input values to the Barret reduction are the degree-63 polynomial
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
+ * P(x).
+ *
+ * The Barret reduction algorithm is defined as:
+ *
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
+ *
+ * Note: To compensate the division by x^32, use the vector unpack
+ * instruction to move the leftmost word into the leftmost doubleword
+ * of the vector register. The rightmost doubleword is multiplied
+ * with zero to not contribute to the intermediate results.
+ */
+
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
+ fpu_vupllf(2, 1);
+ fpu_vgfmg(2, CONST_RU_POLY, 2);
+
+ /*
+ * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
+ * The final result is in the rightmost word of V2.
+ */
+ fpu_vupllf(2, 2);
+ fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
+ return fpu_vlgvf(2, 3);
+}
diff --git a/arch/s390/lib/crc32le-vx.c b/arch/s390/lib/crc32le-vx.c
new file mode 100644
index 000000000000..2f629f394df7
--- /dev/null
+++ b/arch/s390/lib/crc32le-vx.c
@@ -0,0 +1,240 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
+ *
+ * Use the z/Architecture Vector Extension Facility to accelerate the
+ * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
+ * and Castagnoli.
+ *
+ * This CRC-32 implementation algorithm is bitreflected and processes
+ * the least-significant bit first (Little-Endian).
+ *
+ * Copyright IBM Corp. 2015
+ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
+ */
+
+#include <linux/types.h>
+#include <asm/fpu.h>
+#include "crc32-vx.h"
+
+/* Vector register range containing CRC-32 constants */
+#define CONST_PERM_LE2BE 9
+#define CONST_R2R1 10
+#define CONST_R4R3 11
+#define CONST_R5 12
+#define CONST_RU_POLY 13
+#define CONST_CRC_POLY 14
+
+/*
+ * The CRC-32 constant block contains reduction constants to fold and
+ * process particular chunks of the input data stream in parallel.
+ *
+ * For the CRC-32 variants, the constants are precomputed according to
+ * these definitions:
+ *
+ * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
+ * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
+ * R3 = [(x128+32 mod P'(x) << 32)]' << 1
+ * R4 = [(x128-32 mod P'(x) << 32)]' << 1
+ * R5 = [(x64 mod P'(x) << 32)]' << 1
+ * R6 = [(x32 mod P'(x) << 32)]' << 1
+ *
+ * The bitreflected Barret reduction constant, u', is defined as
+ * the bit reversal of floor(x**64 / P(x)).
+ *
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
+ * polynomial in the reversed (bitreflected) domain.
+ *
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
+ *
+ * P(x) = 0x04C11DB7
+ * P'(x) = 0xEDB88320
+ *
+ * CRC-32C (Castagnoli) polynomials:
+ *
+ * P(x) = 0x1EDC6F41
+ * P'(x) = 0x82F63B78
+ */
+
+static unsigned long constants_CRC_32_LE[] = {
+ 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
+ 0x1c6e41596, 0x154442bd4, /* R2, R1 */
+ 0x0ccaa009e, 0x1751997d0, /* R4, R3 */
+ 0x0, 0x163cd6124, /* R5 */
+ 0x0, 0x1f7011641, /* u' */
+ 0x0, 0x1db710641 /* P'(x) << 1 */
+};
+
+static unsigned long constants_CRC_32C_LE[] = {
+ 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
+ 0x09e4addf8, 0x740eef02, /* R2, R1 */
+ 0x14cd00bd6, 0xf20c0dfe, /* R4, R3 */
+ 0x0, 0x0dd45aab8, /* R5 */
+ 0x0, 0x0dea713f1, /* u' */
+ 0x0, 0x105ec76f0 /* P'(x) << 1 */
+};
+
+/**
+ * crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers
+ * @crc: Initial CRC value, typically ~0.
+ * @buf: Input buffer pointer, performance might be improved if the
+ * buffer is on a doubleword boundary.
+ * @size: Size of the buffer, must be 64 bytes or greater.
+ * @constants: CRC-32 constant pool base pointer.
+ *
+ * Register usage:
+ * V0: Initial CRC value and intermediate constants and results.
+ * V1..V4: Data for CRC computation.
+ * V5..V8: Next data chunks that are fetched from the input buffer.
+ * V9: Constant for BE->LE conversion and shift operations
+ * V10..V14: CRC-32 constants.
+ */
+static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants)
+{
+ /* Load CRC-32 constants */
+ fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants);
+
+ /*
+ * Load the initial CRC value.
+ *
+ * The CRC value is loaded into the rightmost word of the
+ * vector register and is later XORed with the LSB portion
+ * of the loaded input data.
+ */
+ fpu_vzero(0); /* Clear V0 */
+ fpu_vlvgf(0, crc, 3); /* Load CRC into rightmost word */
+
+ /* Load a 64-byte data chunk and XOR with CRC */
+ fpu_vlm(1, 4, buf);
+ fpu_vperm(1, 1, 1, CONST_PERM_LE2BE);
+ fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
+ fpu_vperm(3, 3, 3, CONST_PERM_LE2BE);
+ fpu_vperm(4, 4, 4, CONST_PERM_LE2BE);
+
+ fpu_vx(1, 0, 1); /* V1 ^= CRC */
+ buf += 64;
+ size -= 64;
+
+ while (size >= 64) {
+ fpu_vlm(5, 8, buf);
+ fpu_vperm(5, 5, 5, CONST_PERM_LE2BE);
+ fpu_vperm(6, 6, 6, CONST_PERM_LE2BE);
+ fpu_vperm(7, 7, 7, CONST_PERM_LE2BE);
+ fpu_vperm(8, 8, 8, CONST_PERM_LE2BE);
+ /*
+ * Perform a GF(2) multiplication of the doublewords in V1 with
+ * the R1 and R2 reduction constants in V0. The intermediate
+ * result is then folded (accumulated) with the next data chunk
+ * in V5 and stored in V1. Repeat this step for the register
+ * contents in V2, V3, and V4 respectively.
+ */
+ fpu_vgfmag(1, CONST_R2R1, 1, 5);
+ fpu_vgfmag(2, CONST_R2R1, 2, 6);
+ fpu_vgfmag(3, CONST_R2R1, 3, 7);
+ fpu_vgfmag(4, CONST_R2R1, 4, 8);
+ buf += 64;
+ size -= 64;
+ }
+
+ /*
+ * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
+ * and R4 and accumulating the next 128-bit chunk until a single 128-bit
+ * value remains.
+ */
+ fpu_vgfmag(1, CONST_R4R3, 1, 2);
+ fpu_vgfmag(1, CONST_R4R3, 1, 3);
+ fpu_vgfmag(1, CONST_R4R3, 1, 4);
+
+ while (size >= 16) {
+ fpu_vl(2, buf);
+ fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
+ fpu_vgfmag(1, CONST_R4R3, 1, 2);
+ buf += 16;
+ size -= 16;
+ }
+
+ /*
+ * Set up a vector register for byte shifts. The shift value must
+ * be loaded in bits 1-4 in byte element 7 of a vector register.
+ * Shift by 8 bytes: 0x40
+ * Shift by 4 bytes: 0x20
+ */
+ fpu_vleib(9, 0x40, 7);
+
+ /*
+ * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
+ * to move R4 into the rightmost doubleword and set the leftmost
+ * doubleword to 0x1.
+ */
+ fpu_vsrlb(0, CONST_R4R3, 9);
+ fpu_vleig(0, 1, 0);
+
+ /*
+ * Compute GF(2) product of V1 and V0. The rightmost doubleword
+ * of V1 is multiplied with R4. The leftmost doubleword of V1 is
+ * multiplied by 0x1 and is then XORed with rightmost product.
+ * Implicitly, the intermediate leftmost product becomes padded
+ */
+ fpu_vgfmg(1, 0, 1);
+
+ /*
+ * Now do the final 32-bit fold by multiplying the rightmost word
+ * in V1 with R5 and XOR the result with the remaining bits in V1.
+ *
+ * To achieve this by a single VGFMAG, right shift V1 by a word
+ * and store the result in V2 which is then accumulated. Use the
+ * vector unpack instruction to load the rightmost half of the
+ * doubleword into the rightmost doubleword element of V1; the other
+ * half is loaded in the leftmost doubleword.
+ * The vector register with CONST_R5 contains the R5 constant in the
+ * rightmost doubleword and the leftmost doubleword is zero to ignore
+ * the leftmost product of V1.
+ */
+ fpu_vleib(9, 0x20, 7); /* Shift by words */
+ fpu_vsrlb(2, 1, 9); /* Store remaining bits in V2 */
+ fpu_vupllf(1, 1); /* Split rightmost doubleword */
+ fpu_vgfmag(1, CONST_R5, 1, 2); /* V1 = (V1 * R5) XOR V2 */
+
+ /*
+ * Apply a Barret reduction to compute the final 32-bit CRC value.
+ *
+ * The input values to the Barret reduction are the degree-63 polynomial
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
+ * P(x).
+ *
+ * The Barret reduction algorithm is defined as:
+ *
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
+ *
+ * Note: The leftmost doubleword of vector register containing
+ * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
+ * is zero and does not contribute to the final result.
+ */
+
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
+ fpu_vupllf(2, 1);
+ fpu_vgfmg(2, CONST_RU_POLY, 2);
+
+ /*
+ * Compute the GF(2) product of the CRC polynomial with T1(x) in
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
+ * The final result is stored in word element 2 of V2.
+ */
+ fpu_vupllf(2, 2);
+ fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
+
+ return fpu_vlgvf(2, 2);
+}
+
+u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
+{
+ return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]);
+}
+
+u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
+{
+ return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]);
+}
diff --git a/arch/s390/lib/mem.S b/arch/s390/lib/mem.S
index 08f60a42b9a6..d026debf250c 100644
--- a/arch/s390/lib/mem.S
+++ b/arch/s390/lib/mem.S
@@ -34,8 +34,7 @@ SYM_FUNC_START(__memmove)
la %r3,256(%r3)
brctg %r0,.Lmemmove_forward_loop
.Lmemmove_forward_remainder:
- larl %r5,.Lmemmove_mvc
- ex %r4,0(%r5)
+ exrl %r4,.Lmemmove_mvc
.Lmemmove_exit:
BR_EX %r14
.Lmemmove_reverse:
@@ -83,8 +82,7 @@ SYM_FUNC_START(__memset)
la %r1,256(%r1)
brctg %r3,.Lmemset_clear_loop
.Lmemset_clear_remainder:
- larl %r3,.Lmemset_xc
- ex %r4,0(%r3)
+ exrl %r4,.Lmemset_xc
.Lmemset_exit:
BR_EX %r14
.Lmemset_fill:
@@ -102,8 +100,7 @@ SYM_FUNC_START(__memset)
brctg %r5,.Lmemset_fill_loop
.Lmemset_fill_remainder:
stc %r3,0(%r1)
- larl %r5,.Lmemset_mvc
- ex %r4,0(%r5)
+ exrl %r4,.Lmemset_mvc
BR_EX %r14
.Lmemset_fill_exit:
stc %r3,0(%r1)
@@ -132,8 +129,7 @@ SYM_FUNC_START(__memcpy)
lgr %r1,%r2
jnz .Lmemcpy_loop
.Lmemcpy_remainder:
- larl %r5,.Lmemcpy_mvc
- ex %r4,0(%r5)
+ exrl %r4,.Lmemcpy_mvc
.Lmemcpy_exit:
BR_EX %r14
.Lmemcpy_loop:
@@ -175,8 +171,7 @@ SYM_FUNC_START(__memset\bits)
brctg %r5,.L__memset_loop\bits
.L__memset_remainder\bits:
\insn %r3,0(%r1)
- larl %r5,.L__memset_mvc\bits
- ex %r4,0(%r5)
+ exrl %r4,.L__memset_mvc\bits
BR_EX %r14
.L__memset_store\bits:
\insn %r3,0(%r2)
diff --git a/arch/s390/lib/uaccess.c b/arch/s390/lib/uaccess.c
index c7c269d5c491..f977b7c37efc 100644
--- a/arch/s390/lib/uaccess.c
+++ b/arch/s390/lib/uaccess.c
@@ -31,51 +31,6 @@ void debug_user_asce(int exit)
}
#endif /*CONFIG_DEBUG_ENTRY */
-static unsigned long raw_copy_from_user_key(void *to, const void __user *from,
- unsigned long size, unsigned long key)
-{
- unsigned long rem;
- union oac spec = {
- .oac2.key = key,
- .oac2.as = PSW_BITS_AS_SECONDARY,
- .oac2.k = 1,
- .oac2.a = 1,
- };
-
- asm volatile(
- " lr 0,%[spec]\n"
- "0: mvcos 0(%[to]),0(%[from]),%[size]\n"
- "1: jz 5f\n"
- " algr %[size],%[val]\n"
- " slgr %[from],%[val]\n"
- " slgr %[to],%[val]\n"
- " j 0b\n"
- "2: la %[rem],4095(%[from])\n" /* rem = from + 4095 */
- " nr %[rem],%[val]\n" /* rem = (from + 4095) & -4096 */
- " slgr %[rem],%[from]\n"
- " clgr %[size],%[rem]\n" /* copy crosses next page boundary? */
- " jnh 6f\n"
- "3: mvcos 0(%[to]),0(%[from]),%[rem]\n"
- "4: slgr %[size],%[rem]\n"
- " j 6f\n"
- "5: slgr %[size],%[size]\n"
- "6:\n"
- EX_TABLE(0b, 2b)
- EX_TABLE(1b, 2b)
- EX_TABLE(3b, 6b)
- EX_TABLE(4b, 6b)
- : [size] "+&a" (size), [from] "+&a" (from), [to] "+&a" (to), [rem] "=&a" (rem)
- : [val] "a" (-4096UL), [spec] "d" (spec.val)
- : "cc", "memory", "0");
- return size;
-}
-
-unsigned long raw_copy_from_user(void *to, const void __user *from, unsigned long n)
-{
- return raw_copy_from_user_key(to, from, n, 0);
-}
-EXPORT_SYMBOL(raw_copy_from_user);
-
unsigned long _copy_from_user_key(void *to, const void __user *from,
unsigned long n, unsigned long key)
{
@@ -93,51 +48,6 @@ unsigned long _copy_from_user_key(void *to, const void __user *from,
}
EXPORT_SYMBOL(_copy_from_user_key);
-static unsigned long raw_copy_to_user_key(void __user *to, const void *from,
- unsigned long size, unsigned long key)
-{
- unsigned long rem;
- union oac spec = {
- .oac1.key = key,
- .oac1.as = PSW_BITS_AS_SECONDARY,
- .oac1.k = 1,
- .oac1.a = 1,
- };
-
- asm volatile(
- " lr 0,%[spec]\n"
- "0: mvcos 0(%[to]),0(%[from]),%[size]\n"
- "1: jz 5f\n"
- " algr %[size],%[val]\n"
- " slgr %[to],%[val]\n"
- " slgr %[from],%[val]\n"
- " j 0b\n"
- "2: la %[rem],4095(%[to])\n" /* rem = to + 4095 */
- " nr %[rem],%[val]\n" /* rem = (to + 4095) & -4096 */
- " slgr %[rem],%[to]\n"
- " clgr %[size],%[rem]\n" /* copy crosses next page boundary? */
- " jnh 6f\n"
- "3: mvcos 0(%[to]),0(%[from]),%[rem]\n"
- "4: slgr %[size],%[rem]\n"
- " j 6f\n"
- "5: slgr %[size],%[size]\n"
- "6:\n"
- EX_TABLE(0b, 2b)
- EX_TABLE(1b, 2b)
- EX_TABLE(3b, 6b)
- EX_TABLE(4b, 6b)
- : [size] "+&a" (size), [to] "+&a" (to), [from] "+&a" (from), [rem] "=&a" (rem)
- : [val] "a" (-4096UL), [spec] "d" (spec.val)
- : "cc", "memory", "0");
- return size;
-}
-
-unsigned long raw_copy_to_user(void __user *to, const void *from, unsigned long n)
-{
- return raw_copy_to_user_key(to, from, n, 0);
-}
-EXPORT_SYMBOL(raw_copy_to_user);
-
unsigned long _copy_to_user_key(void __user *to, const void *from,
unsigned long n, unsigned long key)
{
diff --git a/arch/s390/lib/xor.c b/arch/s390/lib/xor.c
index fb924a8041dc..ce7bcf7c0032 100644
--- a/arch/s390/lib/xor.c
+++ b/arch/s390/lib/xor.c
@@ -15,7 +15,6 @@ static void xor_xc_2(unsigned long bytes, unsigned long * __restrict p1,
const unsigned long * __restrict p2)
{
asm volatile(
- " larl 1,2f\n"
" aghi %0,-1\n"
" jm 3f\n"
" srlg 0,%0,8\n"
@@ -25,12 +24,12 @@ static void xor_xc_2(unsigned long bytes, unsigned long * __restrict p1,
" la %1,256(%1)\n"
" la %2,256(%2)\n"
" brctg 0,0b\n"
- "1: ex %0,0(1)\n"
+ "1: exrl %0,2f\n"
" j 3f\n"
"2: xc 0(1,%1),0(%2)\n"
"3:\n"
: : "d" (bytes), "a" (p1), "a" (p2)
- : "0", "1", "cc", "memory");
+ : "0", "cc", "memory");
}
static void xor_xc_3(unsigned long bytes, unsigned long * __restrict p1,
@@ -38,9 +37,8 @@ static void xor_xc_3(unsigned long bytes, unsigned long * __restrict p1,
const unsigned long * __restrict p3)
{
asm volatile(
- " larl 1,2f\n"
" aghi %0,-1\n"
- " jm 3f\n"
+ " jm 4f\n"
" srlg 0,%0,8\n"
" ltgr 0,0\n"
" jz 1f\n"
@@ -50,14 +48,14 @@ static void xor_xc_3(unsigned long bytes, unsigned long * __restrict p1,
" la %2,256(%2)\n"
" la %3,256(%3)\n"
" brctg 0,0b\n"
- "1: ex %0,0(1)\n"
- " ex %0,6(1)\n"
- " j 3f\n"
+ "1: exrl %0,2f\n"
+ " exrl %0,3f\n"
+ " j 4f\n"
"2: xc 0(1,%1),0(%2)\n"
- " xc 0(1,%1),0(%3)\n"
- "3:\n"
+ "3: xc 0(1,%1),0(%3)\n"
+ "4:\n"
: "+d" (bytes), "+a" (p1), "+a" (p2), "+a" (p3)
- : : "0", "1", "cc", "memory");
+ : : "0", "cc", "memory");
}
static void xor_xc_4(unsigned long bytes, unsigned long * __restrict p1,
@@ -66,9 +64,8 @@ static void xor_xc_4(unsigned long bytes, unsigned long * __restrict p1,
const unsigned long * __restrict p4)
{
asm volatile(
- " larl 1,2f\n"
" aghi %0,-1\n"
- " jm 3f\n"
+ " jm 5f\n"
" srlg 0,%0,8\n"
" ltgr 0,0\n"
" jz 1f\n"
@@ -80,16 +77,16 @@ static void xor_xc_4(unsigned long bytes, unsigned long * __restrict p1,
" la %3,256(%3)\n"
" la %4,256(%4)\n"
" brctg 0,0b\n"
- "1: ex %0,0(1)\n"
- " ex %0,6(1)\n"
- " ex %0,12(1)\n"
- " j 3f\n"
+ "1: exrl %0,2f\n"
+ " exrl %0,3f\n"
+ " exrl %0,4f\n"
+ " j 5f\n"
"2: xc 0(1,%1),0(%2)\n"
- " xc 0(1,%1),0(%3)\n"
- " xc 0(1,%1),0(%4)\n"
- "3:\n"
+ "3: xc 0(1,%1),0(%3)\n"
+ "4: xc 0(1,%1),0(%4)\n"
+ "5:\n"
: "+d" (bytes), "+a" (p1), "+a" (p2), "+a" (p3), "+a" (p4)
- : : "0", "1", "cc", "memory");
+ : : "0", "cc", "memory");
}
static void xor_xc_5(unsigned long bytes, unsigned long * __restrict p1,
@@ -101,7 +98,7 @@ static void xor_xc_5(unsigned long bytes, unsigned long * __restrict p1,
asm volatile(
" larl 1,2f\n"
" aghi %0,-1\n"
- " jm 3f\n"
+ " jm 6f\n"
" srlg 0,%0,8\n"
" ltgr 0,0\n"
" jz 1f\n"
@@ -115,19 +112,19 @@ static void xor_xc_5(unsigned long bytes, unsigned long * __restrict p1,
" la %4,256(%4)\n"
" la %5,256(%5)\n"
" brctg 0,0b\n"
- "1: ex %0,0(1)\n"
- " ex %0,6(1)\n"
- " ex %0,12(1)\n"
- " ex %0,18(1)\n"
- " j 3f\n"
+ "1: exrl %0,2f\n"
+ " exrl %0,3f\n"
+ " exrl %0,4f\n"
+ " exrl %0,5f\n"
+ " j 6f\n"
"2: xc 0(1,%1),0(%2)\n"
- " xc 0(1,%1),0(%3)\n"
- " xc 0(1,%1),0(%4)\n"
- " xc 0(1,%1),0(%5)\n"
- "3:\n"
+ "3: xc 0(1,%1),0(%3)\n"
+ "4: xc 0(1,%1),0(%4)\n"
+ "5: xc 0(1,%1),0(%5)\n"
+ "6:\n"
: "+d" (bytes), "+a" (p1), "+a" (p2), "+a" (p3), "+a" (p4),
"+a" (p5)
- : : "0", "1", "cc", "memory");
+ : : "0", "cc", "memory");
}
struct xor_block_template xor_block_xc = {