summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/x86_64
diff options
context:
space:
mode:
authorTakashi Iwai <tiwai@suse.de>2021-03-30 17:42:40 +0200
committerTakashi Iwai <tiwai@suse.de>2021-03-30 17:42:40 +0200
commit5b1ed7df01335ecf686edf490948054078d5766d (patch)
tree06245eabf0eb1441b2f9a8c93e73915b5a54ed0f /tools/testing/selftests/kvm/x86_64
parentabc21649b3e5c34b143bf86f0c78e33d5815e250 (diff)
parenta135dfb5de1501327895729b4f513370d2555b4d (diff)
downloadlwn-5b1ed7df01335ecf686edf490948054078d5766d.tar.gz
lwn-5b1ed7df01335ecf686edf490948054078d5766d.zip
Merge tag 'tags/mute-led-rework' into for-next
ALSA: control - add generic LED API This patchset tries to resolve the diversity in the audio LED control among the ALSA drivers. A new control layer registration is introduced which allows to run additional operations on top of the elementary ALSA sound controls. A new control access group (three bits in the access flags) was introduced to carry the LED group information for the sound controls. The low-level sound drivers can just mark those controls using this access group. This information is not exported to the user space, but user space can manage the LED sound control associations through sysfs (last patch) per Mark's request. It makes things fully configurable in the kernel and user space (UCM). The actual state ('route') evaluation is really easy (the minimal value check for all channels / controls / cards). If there's more complicated logic for a given hardware, the card driver may eventually export a new read-only sound control for the LED group and do the logic itself. The new LED trigger control code is completely separated and possibly optional (there's no symbol dependency). The full code separation allows eventually to move this LED trigger control to the user space in future. Actually it replaces the already present functionality in the kernel space (HDA drivers) and allows a quick adoption for the recent hardware (ASoC codecs including SoundWire). snd_ctl_led 24576 0 The sound driver implementation is really easy: 1) call snd_ctl_led_request() when control LED layer should be automatically activated / it calls module_request("snd-ctl-led") on demand / 2) mark all related kcontrols with SNDRV_CTL_ELEM_ACCESS_SPK_LED or SNDRV_CTL_ELEM_ACCESS_MIC_LED Link: https://lore.kernel.org/r/20210317172945.842280-1-perex@perex.cz Signed-off-by: Takashi Iwai <tiwai@suse.de>
Diffstat (limited to 'tools/testing/selftests/kvm/x86_64')
-rw-r--r--tools/testing/selftests/kvm/x86_64/get_msr_index_features.c134
-rw-r--r--tools/testing/selftests/kvm/x86_64/hyperv_clock.c260
-rw-r--r--tools/testing/selftests/kvm/x86_64/set_boot_cpu_id.c166
3 files changed, 560 insertions, 0 deletions
diff --git a/tools/testing/selftests/kvm/x86_64/get_msr_index_features.c b/tools/testing/selftests/kvm/x86_64/get_msr_index_features.c
new file mode 100644
index 000000000000..cb953df4d7d0
--- /dev/null
+++ b/tools/testing/selftests/kvm/x86_64/get_msr_index_features.c
@@ -0,0 +1,134 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Test that KVM_GET_MSR_INDEX_LIST and
+ * KVM_GET_MSR_FEATURE_INDEX_LIST work as intended
+ *
+ * Copyright (C) 2020, Red Hat, Inc.
+ */
+#include <fcntl.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/ioctl.h>
+
+#include "test_util.h"
+#include "kvm_util.h"
+#include "processor.h"
+
+static int kvm_num_index_msrs(int kvm_fd, int nmsrs)
+{
+ struct kvm_msr_list *list;
+ int r;
+
+ list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
+ list->nmsrs = nmsrs;
+ r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
+ TEST_ASSERT(r == -1 && errno == E2BIG,
+ "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
+ r);
+
+ r = list->nmsrs;
+ free(list);
+ return r;
+}
+
+static void test_get_msr_index(void)
+{
+ int old_res, res, kvm_fd, r;
+ struct kvm_msr_list *list;
+
+ kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
+ if (kvm_fd < 0)
+ exit(KSFT_SKIP);
+
+ old_res = kvm_num_index_msrs(kvm_fd, 0);
+ TEST_ASSERT(old_res != 0, "Expecting nmsrs to be > 0");
+
+ if (old_res != 1) {
+ res = kvm_num_index_msrs(kvm_fd, 1);
+ TEST_ASSERT(res > 1, "Expecting nmsrs to be > 1");
+ TEST_ASSERT(res == old_res, "Expecting nmsrs to be identical");
+ }
+
+ list = malloc(sizeof(*list) + old_res * sizeof(list->indices[0]));
+ list->nmsrs = old_res;
+ r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
+
+ TEST_ASSERT(r == 0,
+ "Unexpected result from KVM_GET_MSR_FEATURE_INDEX_LIST, r: %i",
+ r);
+ TEST_ASSERT(list->nmsrs == old_res, "Expecting nmsrs to be identical");
+ free(list);
+
+ close(kvm_fd);
+}
+
+static int kvm_num_feature_msrs(int kvm_fd, int nmsrs)
+{
+ struct kvm_msr_list *list;
+ int r;
+
+ list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
+ list->nmsrs = nmsrs;
+ r = ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
+ TEST_ASSERT(r == -1 && errno == E2BIG,
+ "Unexpected result from KVM_GET_MSR_FEATURE_INDEX_LIST probe, r: %i",
+ r);
+
+ r = list->nmsrs;
+ free(list);
+ return r;
+}
+
+struct kvm_msr_list *kvm_get_msr_feature_list(int kvm_fd, int nmsrs)
+{
+ struct kvm_msr_list *list;
+ int r;
+
+ list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
+ list->nmsrs = nmsrs;
+ r = ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
+
+ TEST_ASSERT(r == 0,
+ "Unexpected result from KVM_GET_MSR_FEATURE_INDEX_LIST, r: %i",
+ r);
+
+ return list;
+}
+
+static void test_get_msr_feature(void)
+{
+ int res, old_res, i, kvm_fd;
+ struct kvm_msr_list *feature_list;
+
+ kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
+ if (kvm_fd < 0)
+ exit(KSFT_SKIP);
+
+ old_res = kvm_num_feature_msrs(kvm_fd, 0);
+ TEST_ASSERT(old_res != 0, "Expecting nmsrs to be > 0");
+
+ if (old_res != 1) {
+ res = kvm_num_feature_msrs(kvm_fd, 1);
+ TEST_ASSERT(res > 1, "Expecting nmsrs to be > 1");
+ TEST_ASSERT(res == old_res, "Expecting nmsrs to be identical");
+ }
+
+ feature_list = kvm_get_msr_feature_list(kvm_fd, old_res);
+ TEST_ASSERT(old_res == feature_list->nmsrs,
+ "Unmatching number of msr indexes");
+
+ for (i = 0; i < feature_list->nmsrs; i++)
+ kvm_get_feature_msr(feature_list->indices[i]);
+
+ free(feature_list);
+ close(kvm_fd);
+}
+
+int main(int argc, char *argv[])
+{
+ if (kvm_check_cap(KVM_CAP_GET_MSR_FEATURES))
+ test_get_msr_feature();
+
+ test_get_msr_index();
+}
diff --git a/tools/testing/selftests/kvm/x86_64/hyperv_clock.c b/tools/testing/selftests/kvm/x86_64/hyperv_clock.c
new file mode 100644
index 000000000000..ffbc4555c6e2
--- /dev/null
+++ b/tools/testing/selftests/kvm/x86_64/hyperv_clock.c
@@ -0,0 +1,260 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2021, Red Hat, Inc.
+ *
+ * Tests for Hyper-V clocksources
+ */
+#include "test_util.h"
+#include "kvm_util.h"
+#include "processor.h"
+
+struct ms_hyperv_tsc_page {
+ volatile u32 tsc_sequence;
+ u32 reserved1;
+ volatile u64 tsc_scale;
+ volatile s64 tsc_offset;
+} __packed;
+
+#define HV_X64_MSR_GUEST_OS_ID 0x40000000
+#define HV_X64_MSR_TIME_REF_COUNT 0x40000020
+#define HV_X64_MSR_REFERENCE_TSC 0x40000021
+#define HV_X64_MSR_TSC_FREQUENCY 0x40000022
+#define HV_X64_MSR_REENLIGHTENMENT_CONTROL 0x40000106
+#define HV_X64_MSR_TSC_EMULATION_CONTROL 0x40000107
+
+/* Simplified mul_u64_u64_shr() */
+static inline u64 mul_u64_u64_shr64(u64 a, u64 b)
+{
+ union {
+ u64 ll;
+ struct {
+ u32 low, high;
+ } l;
+ } rm, rn, rh, a0, b0;
+ u64 c;
+
+ a0.ll = a;
+ b0.ll = b;
+
+ rm.ll = (u64)a0.l.low * b0.l.high;
+ rn.ll = (u64)a0.l.high * b0.l.low;
+ rh.ll = (u64)a0.l.high * b0.l.high;
+
+ rh.l.low = c = rm.l.high + rn.l.high + rh.l.low;
+ rh.l.high = (c >> 32) + rh.l.high;
+
+ return rh.ll;
+}
+
+static inline void nop_loop(void)
+{
+ int i;
+
+ for (i = 0; i < 1000000; i++)
+ asm volatile("nop");
+}
+
+static inline void check_tsc_msr_rdtsc(void)
+{
+ u64 tsc_freq, r1, r2, t1, t2;
+ s64 delta_ns;
+
+ tsc_freq = rdmsr(HV_X64_MSR_TSC_FREQUENCY);
+ GUEST_ASSERT(tsc_freq > 0);
+
+ /* First, check MSR-based clocksource */
+ r1 = rdtsc();
+ t1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
+ nop_loop();
+ r2 = rdtsc();
+ t2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
+
+ GUEST_ASSERT(r2 > r1 && t2 > t1);
+
+ /* HV_X64_MSR_TIME_REF_COUNT is in 100ns */
+ delta_ns = ((t2 - t1) * 100) - ((r2 - r1) * 1000000000 / tsc_freq);
+ if (delta_ns < 0)
+ delta_ns = -delta_ns;
+
+ /* 1% tolerance */
+ GUEST_ASSERT(delta_ns * 100 < (t2 - t1) * 100);
+}
+
+static inline void check_tsc_msr_tsc_page(struct ms_hyperv_tsc_page *tsc_page)
+{
+ u64 r1, r2, t1, t2;
+
+ /* Compare TSC page clocksource with HV_X64_MSR_TIME_REF_COUNT */
+ t1 = mul_u64_u64_shr64(rdtsc(), tsc_page->tsc_scale) + tsc_page->tsc_offset;
+ r1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
+
+ /* 10 ms tolerance */
+ GUEST_ASSERT(r1 >= t1 && r1 - t1 < 100000);
+ nop_loop();
+
+ t2 = mul_u64_u64_shr64(rdtsc(), tsc_page->tsc_scale) + tsc_page->tsc_offset;
+ r2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
+ GUEST_ASSERT(r2 >= t1 && r2 - t2 < 100000);
+}
+
+static void guest_main(struct ms_hyperv_tsc_page *tsc_page, vm_paddr_t tsc_page_gpa)
+{
+ u64 tsc_scale, tsc_offset;
+
+ /* Set Guest OS id to enable Hyper-V emulation */
+ GUEST_SYNC(1);
+ wrmsr(HV_X64_MSR_GUEST_OS_ID, (u64)0x8100 << 48);
+ GUEST_SYNC(2);
+
+ check_tsc_msr_rdtsc();
+
+ GUEST_SYNC(3);
+
+ /* Set up TSC page is disabled state, check that it's clean */
+ wrmsr(HV_X64_MSR_REFERENCE_TSC, tsc_page_gpa);
+ GUEST_ASSERT(tsc_page->tsc_sequence == 0);
+ GUEST_ASSERT(tsc_page->tsc_scale == 0);
+ GUEST_ASSERT(tsc_page->tsc_offset == 0);
+
+ GUEST_SYNC(4);
+
+ /* Set up TSC page is enabled state */
+ wrmsr(HV_X64_MSR_REFERENCE_TSC, tsc_page_gpa | 0x1);
+ GUEST_ASSERT(tsc_page->tsc_sequence != 0);
+
+ GUEST_SYNC(5);
+
+ check_tsc_msr_tsc_page(tsc_page);
+
+ GUEST_SYNC(6);
+
+ tsc_offset = tsc_page->tsc_offset;
+ /* Call KVM_SET_CLOCK from userspace, check that TSC page was updated */
+ GUEST_SYNC(7);
+ GUEST_ASSERT(tsc_page->tsc_offset != tsc_offset);
+
+ nop_loop();
+
+ /*
+ * Enable Re-enlightenment and check that TSC page stays constant across
+ * KVM_SET_CLOCK.
+ */
+ wrmsr(HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0x1 << 16 | 0xff);
+ wrmsr(HV_X64_MSR_TSC_EMULATION_CONTROL, 0x1);
+ tsc_offset = tsc_page->tsc_offset;
+ tsc_scale = tsc_page->tsc_scale;
+ GUEST_SYNC(8);
+ GUEST_ASSERT(tsc_page->tsc_offset == tsc_offset);
+ GUEST_ASSERT(tsc_page->tsc_scale == tsc_scale);
+
+ GUEST_SYNC(9);
+
+ check_tsc_msr_tsc_page(tsc_page);
+
+ /*
+ * Disable re-enlightenment and TSC page, check that KVM doesn't update
+ * it anymore.
+ */
+ wrmsr(HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
+ wrmsr(HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
+ wrmsr(HV_X64_MSR_REFERENCE_TSC, 0);
+ memset(tsc_page, 0, sizeof(*tsc_page));
+
+ GUEST_SYNC(10);
+ GUEST_ASSERT(tsc_page->tsc_sequence == 0);
+ GUEST_ASSERT(tsc_page->tsc_offset == 0);
+ GUEST_ASSERT(tsc_page->tsc_scale == 0);
+
+ GUEST_DONE();
+}
+
+#define VCPU_ID 0
+
+static void host_check_tsc_msr_rdtsc(struct kvm_vm *vm)
+{
+ u64 tsc_freq, r1, r2, t1, t2;
+ s64 delta_ns;
+
+ tsc_freq = vcpu_get_msr(vm, VCPU_ID, HV_X64_MSR_TSC_FREQUENCY);
+ TEST_ASSERT(tsc_freq > 0, "TSC frequency must be nonzero");
+
+ /* First, check MSR-based clocksource */
+ r1 = rdtsc();
+ t1 = vcpu_get_msr(vm, VCPU_ID, HV_X64_MSR_TIME_REF_COUNT);
+ nop_loop();
+ r2 = rdtsc();
+ t2 = vcpu_get_msr(vm, VCPU_ID, HV_X64_MSR_TIME_REF_COUNT);
+
+ TEST_ASSERT(t2 > t1, "Time reference MSR is not monotonic (%ld <= %ld)", t1, t2);
+
+ /* HV_X64_MSR_TIME_REF_COUNT is in 100ns */
+ delta_ns = ((t2 - t1) * 100) - ((r2 - r1) * 1000000000 / tsc_freq);
+ if (delta_ns < 0)
+ delta_ns = -delta_ns;
+
+ /* 1% tolerance */
+ TEST_ASSERT(delta_ns * 100 < (t2 - t1) * 100,
+ "Elapsed time does not match (MSR=%ld, TSC=%ld)",
+ (t2 - t1) * 100, (r2 - r1) * 1000000000 / tsc_freq);
+}
+
+int main(void)
+{
+ struct kvm_vm *vm;
+ struct kvm_run *run;
+ struct ucall uc;
+ vm_vaddr_t tsc_page_gva;
+ int stage;
+
+ vm = vm_create_default(VCPU_ID, 0, guest_main);
+ run = vcpu_state(vm, VCPU_ID);
+
+ vcpu_set_hv_cpuid(vm, VCPU_ID);
+
+ tsc_page_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
+ memset(addr_gpa2hva(vm, tsc_page_gva), 0x0, getpagesize());
+ TEST_ASSERT((addr_gva2gpa(vm, tsc_page_gva) & (getpagesize() - 1)) == 0,
+ "TSC page has to be page aligned\n");
+ vcpu_args_set(vm, VCPU_ID, 2, tsc_page_gva, addr_gva2gpa(vm, tsc_page_gva));
+
+ host_check_tsc_msr_rdtsc(vm);
+
+ for (stage = 1;; stage++) {
+ _vcpu_run(vm, VCPU_ID);
+ TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
+ "Stage %d: unexpected exit reason: %u (%s),\n",
+ stage, run->exit_reason,
+ exit_reason_str(run->exit_reason));
+
+ switch (get_ucall(vm, VCPU_ID, &uc)) {
+ case UCALL_ABORT:
+ TEST_FAIL("%s at %s:%ld", (const char *)uc.args[0],
+ __FILE__, uc.args[1]);
+ /* NOT REACHED */
+ case UCALL_SYNC:
+ break;
+ case UCALL_DONE:
+ /* Keep in sync with guest_main() */
+ TEST_ASSERT(stage == 11, "Testing ended prematurely, stage %d\n",
+ stage);
+ goto out;
+ default:
+ TEST_FAIL("Unknown ucall %lu", uc.cmd);
+ }
+
+ TEST_ASSERT(!strcmp((const char *)uc.args[0], "hello") &&
+ uc.args[1] == stage,
+ "Stage %d: Unexpected register values vmexit, got %lx",
+ stage, (ulong)uc.args[1]);
+
+ /* Reset kvmclock triggering TSC page update */
+ if (stage == 7 || stage == 8 || stage == 10) {
+ struct kvm_clock_data clock = {0};
+
+ vm_ioctl(vm, KVM_SET_CLOCK, &clock);
+ }
+ }
+
+out:
+ kvm_vm_free(vm);
+}
diff --git a/tools/testing/selftests/kvm/x86_64/set_boot_cpu_id.c b/tools/testing/selftests/kvm/x86_64/set_boot_cpu_id.c
new file mode 100644
index 000000000000..12c558fc8074
--- /dev/null
+++ b/tools/testing/selftests/kvm/x86_64/set_boot_cpu_id.c
@@ -0,0 +1,166 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Test that KVM_SET_BOOT_CPU_ID works as intended
+ *
+ * Copyright (C) 2020, Red Hat, Inc.
+ */
+#define _GNU_SOURCE /* for program_invocation_name */
+#include <fcntl.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/ioctl.h>
+
+#include "test_util.h"
+#include "kvm_util.h"
+#include "processor.h"
+
+#define N_VCPU 2
+#define VCPU_ID0 0
+#define VCPU_ID1 1
+
+static uint32_t get_bsp_flag(void)
+{
+ return rdmsr(MSR_IA32_APICBASE) & MSR_IA32_APICBASE_BSP;
+}
+
+static void guest_bsp_vcpu(void *arg)
+{
+ GUEST_SYNC(1);
+
+ GUEST_ASSERT(get_bsp_flag() != 0);
+
+ GUEST_DONE();
+}
+
+static void guest_not_bsp_vcpu(void *arg)
+{
+ GUEST_SYNC(1);
+
+ GUEST_ASSERT(get_bsp_flag() == 0);
+
+ GUEST_DONE();
+}
+
+static void test_set_boot_busy(struct kvm_vm *vm)
+{
+ int res;
+
+ res = _vm_ioctl(vm, KVM_SET_BOOT_CPU_ID, (void *) VCPU_ID0);
+ TEST_ASSERT(res == -1 && errno == EBUSY,
+ "KVM_SET_BOOT_CPU_ID set while running vm");
+}
+
+static void run_vcpu(struct kvm_vm *vm, uint32_t vcpuid)
+{
+ struct ucall uc;
+ int stage;
+
+ for (stage = 0; stage < 2; stage++) {
+
+ vcpu_run(vm, vcpuid);
+
+ switch (get_ucall(vm, vcpuid, &uc)) {
+ case UCALL_SYNC:
+ TEST_ASSERT(!strcmp((const char *)uc.args[0], "hello") &&
+ uc.args[1] == stage + 1,
+ "Stage %d: Unexpected register values vmexit, got %lx",
+ stage + 1, (ulong)uc.args[1]);
+ test_set_boot_busy(vm);
+ break;
+ case UCALL_DONE:
+ TEST_ASSERT(stage == 1,
+ "Expected GUEST_DONE in stage 2, got stage %d",
+ stage);
+ break;
+ case UCALL_ABORT:
+ TEST_ASSERT(false, "%s at %s:%ld\n\tvalues: %#lx, %#lx",
+ (const char *)uc.args[0], __FILE__,
+ uc.args[1], uc.args[2], uc.args[3]);
+ default:
+ TEST_ASSERT(false, "Unexpected exit: %s",
+ exit_reason_str(vcpu_state(vm, vcpuid)->exit_reason));
+ }
+ }
+}
+
+static struct kvm_vm *create_vm(void)
+{
+ struct kvm_vm *vm;
+ uint64_t vcpu_pages = (DEFAULT_STACK_PGS) * 2;
+ uint64_t extra_pg_pages = vcpu_pages / PTES_PER_MIN_PAGE * N_VCPU;
+ uint64_t pages = DEFAULT_GUEST_PHY_PAGES + vcpu_pages + extra_pg_pages;
+
+ pages = vm_adjust_num_guest_pages(VM_MODE_DEFAULT, pages);
+ vm = vm_create(VM_MODE_DEFAULT, pages, O_RDWR);
+
+ kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
+ vm_create_irqchip(vm);
+
+ return vm;
+}
+
+static void add_x86_vcpu(struct kvm_vm *vm, uint32_t vcpuid, bool bsp_code)
+{
+ if (bsp_code)
+ vm_vcpu_add_default(vm, vcpuid, guest_bsp_vcpu);
+ else
+ vm_vcpu_add_default(vm, vcpuid, guest_not_bsp_vcpu);
+
+ vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
+}
+
+static void run_vm_bsp(uint32_t bsp_vcpu)
+{
+ struct kvm_vm *vm;
+ bool is_bsp_vcpu1 = bsp_vcpu == VCPU_ID1;
+
+ vm = create_vm();
+
+ if (is_bsp_vcpu1)
+ vm_ioctl(vm, KVM_SET_BOOT_CPU_ID, (void *) VCPU_ID1);
+
+ add_x86_vcpu(vm, VCPU_ID0, !is_bsp_vcpu1);
+ add_x86_vcpu(vm, VCPU_ID1, is_bsp_vcpu1);
+
+ run_vcpu(vm, VCPU_ID0);
+ run_vcpu(vm, VCPU_ID1);
+
+ kvm_vm_free(vm);
+}
+
+static void check_set_bsp_busy(void)
+{
+ struct kvm_vm *vm;
+ int res;
+
+ vm = create_vm();
+
+ add_x86_vcpu(vm, VCPU_ID0, true);
+ add_x86_vcpu(vm, VCPU_ID1, false);
+
+ res = _vm_ioctl(vm, KVM_SET_BOOT_CPU_ID, (void *) VCPU_ID1);
+ TEST_ASSERT(res == -1 && errno == EBUSY, "KVM_SET_BOOT_CPU_ID set after adding vcpu");
+
+ run_vcpu(vm, VCPU_ID0);
+ run_vcpu(vm, VCPU_ID1);
+
+ res = _vm_ioctl(vm, KVM_SET_BOOT_CPU_ID, (void *) VCPU_ID1);
+ TEST_ASSERT(res == -1 && errno == EBUSY, "KVM_SET_BOOT_CPU_ID set to a terminated vcpu");
+
+ kvm_vm_free(vm);
+}
+
+int main(int argc, char *argv[])
+{
+ if (!kvm_check_cap(KVM_CAP_SET_BOOT_CPU_ID)) {
+ print_skip("set_boot_cpu_id not available");
+ return 0;
+ }
+
+ run_vm_bsp(VCPU_ID0);
+ run_vm_bsp(VCPU_ID1);
+ run_vm_bsp(VCPU_ID0);
+
+ check_set_bsp_busy();
+}