summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu.c
diff options
context:
space:
mode:
authorJunaid Shahid <junaids@google.com>2016-12-06 16:46:13 -0800
committerRadim Krčmář <rkrcmar@redhat.com>2017-01-09 14:46:08 +0100
commit83ef6c8155c0ecb4c1a7e6bfbe425c85f7cb676d (patch)
tree8d6dad3e1e0d101c8774b6005a530de141db8822 /arch/x86/kvm/mmu.c
parent97dceba29a6acbb28d16c8c5757ae9f4e1e482ea (diff)
downloadlwn-83ef6c8155c0ecb4c1a7e6bfbe425c85f7cb676d.tar.gz
lwn-83ef6c8155c0ecb4c1a7e6bfbe425c85f7cb676d.zip
kvm: x86: mmu: Refactor accessed/dirty checks in mmu_spte_update/clear
This simplifies mmu_spte_update() a little bit. The checks for clearing of accessed and dirty bits are refactored into separate functions, which are used inside both mmu_spte_update() and mmu_spte_clear_track_bits(), as well as kvm_test_age_rmapp(). The new helper functions handle both the case when A/D bits are supported in hardware and the case when they are not. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'arch/x86/kvm/mmu.c')
-rw-r--r--arch/x86/kvm/mmu.c66
1 files changed, 31 insertions, 35 deletions
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index f6d3505c8d18..cfef95969335 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -504,14 +504,16 @@ static bool spte_has_volatile_bits(u64 spte)
return true;
}
-static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
+static bool is_accessed_spte(u64 spte)
{
- return (old_spte & bit_mask) && !(new_spte & bit_mask);
+ return shadow_accessed_mask ? spte & shadow_accessed_mask
+ : true;
}
-static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
+static bool is_dirty_spte(u64 spte)
{
- return (old_spte & bit_mask) != (new_spte & bit_mask);
+ return shadow_dirty_mask ? spte & shadow_dirty_mask
+ : spte & PT_WRITABLE_MASK;
}
/* Rules for using mmu_spte_set:
@@ -534,17 +536,19 @@ static void mmu_spte_set(u64 *sptep, u64 new_spte)
* will find a read-only spte, even though the writable spte
* might be cached on a CPU's TLB, the return value indicates this
* case.
+ *
+ * Returns true if the TLB needs to be flushed
*/
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
u64 old_spte = *sptep;
- bool ret = false;
+ bool flush = false;
WARN_ON(!is_shadow_present_pte(new_spte));
if (!is_shadow_present_pte(old_spte)) {
mmu_spte_set(sptep, new_spte);
- return ret;
+ return flush;
}
if (!spte_has_volatile_bits(old_spte))
@@ -552,6 +556,8 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte)
else
old_spte = __update_clear_spte_slow(sptep, new_spte);
+ WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
+
/*
* For the spte updated out of mmu-lock is safe, since
* we always atomically update it, see the comments in
@@ -559,38 +565,31 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte)
*/
if (spte_can_locklessly_be_made_writable(old_spte) &&
!is_writable_pte(new_spte))
- ret = true;
-
- if (!shadow_accessed_mask) {
- /*
- * We don't set page dirty when dropping non-writable spte.
- * So do it now if the new spte is becoming non-writable.
- */
- if (ret)
- kvm_set_pfn_dirty(spte_to_pfn(old_spte));
- return ret;
- }
+ flush = true;
/*
- * Flush TLB when accessed/dirty bits are changed in the page tables,
+ * Flush TLB when accessed/dirty states are changed in the page tables,
* to guarantee consistency between TLB and page tables.
*/
- if (spte_is_bit_changed(old_spte, new_spte,
- shadow_accessed_mask | shadow_dirty_mask))
- ret = true;
- if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
+ if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
+ flush = true;
kvm_set_pfn_accessed(spte_to_pfn(old_spte));
- if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
+ }
+
+ if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
+ flush = true;
kvm_set_pfn_dirty(spte_to_pfn(old_spte));
+ }
- return ret;
+ return flush;
}
/*
* Rules for using mmu_spte_clear_track_bits:
* It sets the sptep from present to nonpresent, and track the
* state bits, it is used to clear the last level sptep.
+ * Returns non-zero if the PTE was previously valid.
*/
static int mmu_spte_clear_track_bits(u64 *sptep)
{
@@ -614,11 +613,12 @@ static int mmu_spte_clear_track_bits(u64 *sptep)
*/
WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
- if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
+ if (is_accessed_spte(old_spte))
kvm_set_pfn_accessed(pfn);
- if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
- PT_WRITABLE_MASK))
+
+ if (is_dirty_spte(old_spte))
kvm_set_pfn_dirty(pfn);
+
return 1;
}
@@ -1616,7 +1616,6 @@ static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
{
u64 *sptep;
struct rmap_iterator iter;
- int young = 0;
/*
* If there's no access bit in the secondary pte set by the
@@ -1626,14 +1625,11 @@ static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
if (!shadow_accessed_mask)
goto out;
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- if (*sptep & shadow_accessed_mask) {
- young = 1;
- break;
- }
- }
+ for_each_rmap_spte(rmap_head, &iter, sptep)
+ if (is_accessed_spte(*sptep))
+ return 1;
out:
- return young;
+ return 0;
}
#define RMAP_RECYCLE_THRESHOLD 1000