summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorMichel Lespinasse <walken@google.com>2012-10-08 16:31:30 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2012-10-09 16:22:40 +0900
commit147e615f83c2c36caf89e7a3bf78090ade6f266c (patch)
tree0cd64fd67f4b55bbe364217911a8100827c8b04f /Documentation
parent85d3a316c714197f94e75c1e5b2d37607d66e5de (diff)
downloadlwn-147e615f83c2c36caf89e7a3bf78090ade6f266c.tar.gz
lwn-147e615f83c2c36caf89e7a3bf78090ade6f266c.zip
prio_tree: remove
After both prio_tree users have been converted to use red-black trees, there is no need to keep around the prio tree library anymore. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/00-INDEX2
-rw-r--r--Documentation/prio_tree.txt107
2 files changed, 0 insertions, 109 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index 49c051380daf..f54273e2ac97 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -270,8 +270,6 @@ preempt-locking.txt
- info on locking under a preemptive kernel.
printk-formats.txt
- how to get printk format specifiers right
-prio_tree.txt
- - info on radix-priority-search-tree use for indexing vmas.
ramoops.txt
- documentation of the ramoops oops/panic logging module.
rbtree.txt
diff --git a/Documentation/prio_tree.txt b/Documentation/prio_tree.txt
deleted file mode 100644
index 3aa68f9a117b..000000000000
--- a/Documentation/prio_tree.txt
+++ /dev/null
@@ -1,107 +0,0 @@
-The prio_tree.c code indexes vmas using 3 different indexes:
- * heap_index = vm_pgoff + vm_size_in_pages : end_vm_pgoff
- * radix_index = vm_pgoff : start_vm_pgoff
- * size_index = vm_size_in_pages
-
-A regular radix-priority-search-tree indexes vmas using only heap_index and
-radix_index. The conditions for indexing are:
- * ->heap_index >= ->left->heap_index &&
- ->heap_index >= ->right->heap_index
- * if (->heap_index == ->left->heap_index)
- then ->radix_index < ->left->radix_index;
- * if (->heap_index == ->right->heap_index)
- then ->radix_index < ->right->radix_index;
- * nodes are hashed to left or right subtree using radix_index
- similar to a pure binary radix tree.
-
-A regular radix-priority-search-tree helps to store and query
-intervals (vmas). However, a regular radix-priority-search-tree is only
-suitable for storing vmas with different radix indices (vm_pgoff).
-
-Therefore, the prio_tree.c extends the regular radix-priority-search-tree
-to handle many vmas with the same vm_pgoff. Such vmas are handled in
-2 different ways: 1) All vmas with the same radix _and_ heap indices are
-linked using vm_set.list, 2) if there are many vmas with the same radix
-index, but different heap indices and if the regular radix-priority-search
-tree cannot index them all, we build an overflow-sub-tree that indexes such
-vmas using heap and size indices instead of heap and radix indices. For
-example, in the figure below some vmas with vm_pgoff = 0 (zero) are
-indexed by regular radix-priority-search-tree whereas others are pushed
-into an overflow-subtree. Note that all vmas in an overflow-sub-tree have
-the same vm_pgoff (radix_index) and if necessary we build different
-overflow-sub-trees to handle each possible radix_index. For example,
-in figure we have 3 overflow-sub-trees corresponding to radix indices
-0, 2, and 4.
-
-In the final tree the first few (prio_tree_root->index_bits) levels
-are indexed using heap and radix indices whereas the overflow-sub-trees below
-those levels (i.e. levels prio_tree_root->index_bits + 1 and higher) are
-indexed using heap and size indices. In overflow-sub-trees the size_index
-is used for hashing the nodes to appropriate places.
-
-Now, an example prio_tree:
-
- vmas are represented [radix_index, size_index, heap_index]
- i.e., [start_vm_pgoff, vm_size_in_pages, end_vm_pgoff]
-
-level prio_tree_root->index_bits = 3
------
- _
- 0 [0,7,7] |
- / \ |
- ------------------ ------------ | Regular
- / \ | radix priority
- 1 [1,6,7] [4,3,7] | search tree
- / \ / \ |
- ------- ----- ------ ----- | heap-and-radix
- / \ / \ | indexed
- 2 [0,6,6] [2,5,7] [5,2,7] [6,1,7] |
- / \ / \ / \ / \ |
- 3 [0,5,5] [1,5,6] [2,4,6] [3,4,7] [4,2,6] [5,1,6] [6,0,6] [7,0,7] |
- / / / _
- / / / _
- 4 [0,4,4] [2,3,5] [4,1,5] |
- / / / |
- 5 [0,3,3] [2,2,4] [4,0,4] | Overflow-sub-trees
- / / |
- 6 [0,2,2] [2,1,3] | heap-and-size
- / / | indexed
- 7 [0,1,1] [2,0,2] |
- / |
- 8 [0,0,0] |
- _
-
-Note that we use prio_tree_root->index_bits to optimize the height
-of the heap-and-radix indexed tree. Since prio_tree_root->index_bits is
-set according to the maximum end_vm_pgoff mapped, we are sure that all
-bits (in vm_pgoff) above prio_tree_root->index_bits are 0 (zero). Therefore,
-we only use the first prio_tree_root->index_bits as radix_index.
-Whenever index_bits is increased in prio_tree_expand, we shuffle the tree
-to make sure that the first prio_tree_root->index_bits levels of the tree
-is indexed properly using heap and radix indices.
-
-We do not optimize the height of overflow-sub-trees using index_bits.
-The reason is: there can be many such overflow-sub-trees and all of
-them have to be suffled whenever the index_bits increases. This may involve
-walking the whole prio_tree in prio_tree_insert->prio_tree_expand code
-path which is not desirable. Hence, we do not optimize the height of the
-heap-and-size indexed overflow-sub-trees using prio_tree->index_bits.
-Instead the overflow sub-trees are indexed using full BITS_PER_LONG bits
-of size_index. This may lead to skewed sub-trees because most of the
-higher significant bits of the size_index are likely to be 0 (zero). In
-the example above, all 3 overflow-sub-trees are skewed. This may marginally
-affect the performance. However, processes rarely map many vmas with the
-same start_vm_pgoff but different end_vm_pgoffs. Therefore, we normally
-do not require overflow-sub-trees to index all vmas.
-
-From the above discussion it is clear that the maximum height of
-a prio_tree can be prio_tree_root->index_bits + BITS_PER_LONG.
-However, in most of the common cases we do not need overflow-sub-trees,
-so the tree height in the common cases will be prio_tree_root->index_bits.
-
-It is fair to mention here that the prio_tree_root->index_bits
-is increased on demand, however, the index_bits is not decreased when
-vmas are removed from the prio_tree. That's tricky to do. Hence, it's
-left as a home work problem.
-
-