summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGang Li <gang.li@linux.dev>2024-02-22 22:04:14 +0800
committerAndrew Morton <akpm@linux-foundation.org>2024-03-06 13:04:17 -0800
commitfc37bbb3289f61e23e3f866eeeb6c865ee4d3088 (patch)
treec7c9fda6a28faae559a93f526db4eaa59cc25815
parent26e93839d6d9d9c6169fa7559b8d1577e42d4ace (diff)
downloadlwn-fc37bbb3289f61e23e3f866eeeb6c865ee4d3088.tar.gz
lwn-fc37bbb3289f61e23e3f866eeeb6c865ee4d3088.zip
hugetlb: code clean for hugetlb_hstate_alloc_pages
Patch series "hugetlb: parallelize hugetlb page init on boot", v6. Introduction ------------ Hugetlb initialization during boot takes up a considerable amount of time. For instance, on a 2TB system, initializing 1,800 1GB huge pages takes 1-2 seconds out of 10 seconds. Initializing 11,776 1GB pages on a 12TB Intel host takes more than 1 minute[1]. This is a noteworthy figure. Inspired by [2] and [3], hugetlb initialization can also be accelerated through parallelization. Kernel already has infrastructure like padata_do_multithreaded, this patch uses it to achieve effective results by minimal modifications. [1] https://lore.kernel.org/all/783f8bac-55b8-5b95-eb6a-11a583675000@google.com/ [2] https://lore.kernel.org/all/20200527173608.2885243-1-daniel.m.jordan@oracle.com/ [3] https://lore.kernel.org/all/20230906112605.2286994-1-usama.arif@bytedance.com/ [4] https://lore.kernel.org/all/76becfc1-e609-e3e8-2966-4053143170b6@google.com/ max_threads ----------- This patch use `padata_do_multithreaded` like this: ``` job.max_threads = num_node_state(N_MEMORY) * multiplier; padata_do_multithreaded(&job); ``` To fully utilize the CPU, the number of parallel threads needs to be carefully considered. `max_threads = num_node_state(N_MEMORY)` does not fully utilize the CPU, so we need to multiply it by a multiplier. Tests below indicate that a multiplier of 2 significantly improves performance, and although larger values also provide improvements, the gains are marginal. multiplier 1 2 3 4 5 ------------ ------- ------- ------- ------- ------- 256G 2node 358ms 215ms 157ms 134ms 126ms 2T 4node 979ms 679ms 543ms 489ms 481ms 50G 2node 71ms 44ms 37ms 30ms 31ms Therefore, choosing 2 as the multiplier strikes a good balance between enhancing parallel processing capabilities and maintaining efficient resource management. Test result ----------- test case no patch(ms) patched(ms) saved ------------------- -------------- ------------- -------- 256c2T(4 node) 1G 4745 2024 57.34% 128c1T(2 node) 1G 3358 1712 49.02% 12T 1G 77000 18300 76.23% 256c2T(4 node) 2M 3336 1051 68.52% 128c1T(2 node) 2M 1943 716 63.15% This patch (of 8): The readability of `hugetlb_hstate_alloc_pages` is poor. By cleaning the code, its readability can be improved, facilitating future modifications. This patch extracts two functions to reduce the complexity of `hugetlb_hstate_alloc_pages` and has no functional changes. - hugetlb_hstate_alloc_pages_node_specific() to handle iterates through each online node and performs allocation if necessary. - hugetlb_hstate_alloc_pages_report() report error during allocation. And the value of h->max_huge_pages is updated accordingly. Link: https://lkml.kernel.org/r/20240222140422.393911-1-gang.li@linux.dev Link: https://lkml.kernel.org/r/20240222140422.393911-2-gang.li@linux.dev Signed-off-by: Gang Li <ligang.bdlg@bytedance.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-rw-r--r--mm/hugetlb.c46
1 files changed, 29 insertions, 17 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index c3d68671cbae..1ee4d11e09d8 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -3482,6 +3482,33 @@ static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
h->max_huge_pages_node[nid] = i;
}
+static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
+{
+ int i;
+ bool node_specific_alloc = false;
+
+ for_each_online_node(i) {
+ if (h->max_huge_pages_node[i] > 0) {
+ hugetlb_hstate_alloc_pages_onenode(h, i);
+ node_specific_alloc = true;
+ }
+ }
+
+ return node_specific_alloc;
+}
+
+static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
+{
+ if (allocated < h->max_huge_pages) {
+ char buf[32];
+
+ string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
+ pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
+ h->max_huge_pages, buf, allocated);
+ h->max_huge_pages = allocated;
+ }
+}
+
/*
* NOTE: this routine is called in different contexts for gigantic and
* non-gigantic pages.
@@ -3499,7 +3526,6 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
struct folio *folio;
LIST_HEAD(folio_list);
nodemask_t *node_alloc_noretry;
- bool node_specific_alloc = false;
/* skip gigantic hugepages allocation if hugetlb_cma enabled */
if (hstate_is_gigantic(h) && hugetlb_cma_size) {
@@ -3508,14 +3534,7 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
}
/* do node specific alloc */
- for_each_online_node(i) {
- if (h->max_huge_pages_node[i] > 0) {
- hugetlb_hstate_alloc_pages_onenode(h, i);
- node_specific_alloc = true;
- }
- }
-
- if (node_specific_alloc)
+ if (hugetlb_hstate_alloc_pages_specific_nodes(h))
return;
/* below will do all node balanced alloc */
@@ -3558,14 +3577,7 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
/* list will be empty if hstate_is_gigantic */
prep_and_add_allocated_folios(h, &folio_list);
- if (i < h->max_huge_pages) {
- char buf[32];
-
- string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
- pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
- h->max_huge_pages, buf, i);
- h->max_huge_pages = i;
- }
+ hugetlb_hstate_alloc_pages_errcheck(i, h);
kfree(node_alloc_noretry);
}