diff options
author | Valentin Schneider <valentin.schneider@arm.com> | 2020-10-13 15:01:16 +0100 |
---|---|---|
committer | Peter Zijlstra <peterz@infradead.org> | 2020-11-10 18:39:02 +0100 |
commit | c777d847107e80df24dae87fc9cf4b4c0bf4dfed (patch) | |
tree | c7a33755378e62f212e1275bfea2c69e6992b330 | |
parent | 885b3ba47aa5cc16550beb8a42181ad5e8302ceb (diff) | |
download | lwn-c777d847107e80df24dae87fc9cf4b4c0bf4dfed.tar.gz lwn-c777d847107e80df24dae87fc9cf4b4c0bf4dfed.zip |
sched: Comment affine_move_task()
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201013140116.26651-2-valentin.schneider@arm.com
-rw-r--r-- | kernel/sched/core.c | 81 |
1 files changed, 79 insertions, 2 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 88c6fcb3bb65..c6409f34fa2d 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -2076,7 +2076,75 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) } /* - * This function is wildly self concurrent, consider at least 3 times. + * This function is wildly self concurrent; here be dragons. + * + * + * When given a valid mask, __set_cpus_allowed_ptr() must block until the + * designated task is enqueued on an allowed CPU. If that task is currently + * running, we have to kick it out using the CPU stopper. + * + * Migrate-Disable comes along and tramples all over our nice sandcastle. + * Consider: + * + * Initial conditions: P0->cpus_mask = [0, 1] + * + * P0@CPU0 P1 + * + * migrate_disable(); + * <preempted> + * set_cpus_allowed_ptr(P0, [1]); + * + * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes + * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). + * This means we need the following scheme: + * + * P0@CPU0 P1 + * + * migrate_disable(); + * <preempted> + * set_cpus_allowed_ptr(P0, [1]); + * <blocks> + * <resumes> + * migrate_enable(); + * __set_cpus_allowed_ptr(); + * <wakes local stopper> + * `--> <woken on migration completion> + * + * Now the fun stuff: there may be several P1-like tasks, i.e. multiple + * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any + * task p are serialized by p->pi_lock, which we can leverage: the one that + * should come into effect at the end of the Migrate-Disable region is the last + * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), + * but we still need to properly signal those waiting tasks at the appropriate + * moment. + * + * This is implemented using struct set_affinity_pending. The first + * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will + * setup an instance of that struct and install it on the targeted task_struct. + * Any and all further callers will reuse that instance. Those then wait for + * a completion signaled at the tail of the CPU stopper callback (1), triggered + * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). + * + * + * (1) In the cases covered above. There is one more where the completion is + * signaled within affine_move_task() itself: when a subsequent affinity request + * cancels the need for an active migration. Consider: + * + * Initial conditions: P0->cpus_mask = [0, 1] + * + * P0@CPU0 P1 P2 + * + * migrate_disable(); + * <preempted> + * set_cpus_allowed_ptr(P0, [1]); + * <blocks> + * set_cpus_allowed_ptr(P0, [0, 1]); + * <signal completion> + * <awakes> + * + * Note that the above is safe vs a concurrent migrate_enable(), as any + * pending affinity completion is preceded by an uninstallation of + * p->migration_pending done with p->pi_lock held. */ static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, int dest_cpu, unsigned int flags) @@ -2120,6 +2188,7 @@ static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flag if (!(flags & SCA_MIGRATE_ENABLE)) { /* serialized by p->pi_lock */ if (!p->migration_pending) { + /* Install the request */ refcount_set(&my_pending.refs, 1); init_completion(&my_pending.done); p->migration_pending = &my_pending; @@ -2165,7 +2234,11 @@ static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flag } if (task_running(rq, p) || p->state == TASK_WAKING) { - + /* + * Lessen races (and headaches) by delegating + * is_migration_disabled(p) checks to the stopper, which will + * run on the same CPU as said p. + */ task_rq_unlock(rq, p, rf); stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); @@ -2190,6 +2263,10 @@ do_complete: if (refcount_dec_and_test(&pending->refs)) wake_up_var(&pending->refs); + /* + * Block the original owner of &pending until all subsequent callers + * have seen the completion and decremented the refcount + */ wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); return 0; |