summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-05-13 10:40:15 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2024-05-13 10:40:15 -0700
commitb19239143e393d4b52b3b9a17c7ac07138f2cfd4 (patch)
tree61bf41aa899dae5e2e8ba3cdbe98a9a011220c90
parentc024814828f72b1ae9cc2c338997b2d9826c80f6 (diff)
parent1d479e3cd6520085832a6b432d521eeead2691ba (diff)
downloadlwn-b19239143e393d4b52b3b9a17c7ac07138f2cfd4.tar.gz
lwn-b19239143e393d4b52b3b9a17c7ac07138f2cfd4.zip
Merge tag 'tpmdd-next-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd
Pull TPM updates from Jarkko Sakkinen: "These are the changes for the TPM driver with a single major new feature: TPM bus encryption and integrity protection. The key pair on TPM side is generated from so called null random seed per power on of the machine [1]. This supports the TPM encryption of the hard drive by adding layer of protection against bus interposer attacks. Other than that, a few minor fixes and documentation for tpm_tis to clarify basics of TPM localities for future patch review discussions (will be extended and refined over times, just a seed)" Link: https://lore.kernel.org/linux-integrity/20240429202811.13643-1-James.Bottomley@HansenPartnership.com/ [1] * tag 'tpmdd-next-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd: (28 commits) Documentation: tpm: Add TPM security docs toctree entry tpm: disable the TPM if NULL name changes Documentation: add tpm-security.rst tpm: add the null key name as a sysfs export KEYS: trusted: Add session encryption protection to the seal/unseal path tpm: add session encryption protection to tpm2_get_random() tpm: add hmac checks to tpm2_pcr_extend() tpm: Add the rest of the session HMAC API tpm: Add HMAC session name/handle append tpm: Add HMAC session start and end functions tpm: Add TCG mandated Key Derivation Functions (KDFs) tpm: Add NULL primary creation tpm: export the context save and load commands tpm: add buffer function to point to returned parameters crypto: lib - implement library version of AES in CFB mode KEYS: trusted: tpm2: Use struct tpm_buf for sized buffers tpm: Add tpm_buf_read_{u8,u16,u32} tpm: TPM2B formatted buffers tpm: Store the length of the tpm_buf data separately. tpm: Update struct tpm_buf documentation comments ...
-rw-r--r--Documentation/devicetree/bindings/tpm/tcg,tpm-tis-i2c.yaml1
-rw-r--r--Documentation/security/tpm/index.rst2
-rw-r--r--Documentation/security/tpm/tpm-security.rst216
-rw-r--r--Documentation/security/tpm/tpm_tis.rst46
-rw-r--r--drivers/char/tpm/Kconfig17
-rw-r--r--drivers/char/tpm/Makefile2
-rw-r--r--drivers/char/tpm/eventlog/acpi.c1
-rw-r--r--drivers/char/tpm/tpm-buf.c252
-rw-r--r--drivers/char/tpm/tpm-chip.c6
-rw-r--r--drivers/char/tpm/tpm-interface.c26
-rw-r--r--drivers/char/tpm/tpm-sysfs.c18
-rw-r--r--drivers/char/tpm/tpm.h14
-rw-r--r--drivers/char/tpm/tpm2-cmd.c53
-rw-r--r--drivers/char/tpm/tpm2-sessions.c1286
-rw-r--r--drivers/char/tpm/tpm2-space.c11
-rw-r--r--drivers/char/tpm/tpm_infineon.c14
-rw-r--r--drivers/char/tpm/tpm_tis_core.c19
-rw-r--r--include/crypto/aes.h5
-rw-r--r--include/keys/trusted_tpm.h2
-rw-r--r--include/linux/tpm.h316
-rw-r--r--lib/crypto/Kconfig5
-rw-r--r--lib/crypto/Makefile3
-rw-r--r--lib/crypto/aescfb.c257
-rw-r--r--security/keys/trusted-keys/trusted_tpm1.c23
-rw-r--r--security/keys/trusted-keys/trusted_tpm2.c136
25 files changed, 2519 insertions, 212 deletions
diff --git a/Documentation/devicetree/bindings/tpm/tcg,tpm-tis-i2c.yaml b/Documentation/devicetree/bindings/tpm/tcg,tpm-tis-i2c.yaml
index 3ab4434b7352..af7720dc4a12 100644
--- a/Documentation/devicetree/bindings/tpm/tcg,tpm-tis-i2c.yaml
+++ b/Documentation/devicetree/bindings/tpm/tcg,tpm-tis-i2c.yaml
@@ -32,6 +32,7 @@ properties:
- enum:
- infineon,slb9673
- nuvoton,npct75x
+ - st,st33ktpm2xi2c
- const: tcg,tpm-tis-i2c
- description: TPM 1.2 and 2.0 chips with vendor-specific I²C interface
diff --git a/Documentation/security/tpm/index.rst b/Documentation/security/tpm/index.rst
index fc40e9f23c85..fa593d960040 100644
--- a/Documentation/security/tpm/index.rst
+++ b/Documentation/security/tpm/index.rst
@@ -5,6 +5,8 @@ Trusted Platform Module documentation
.. toctree::
tpm_event_log
+ tpm-security
+ tpm_tis
tpm_vtpm_proxy
xen-tpmfront
tpm_ftpm_tee
diff --git a/Documentation/security/tpm/tpm-security.rst b/Documentation/security/tpm/tpm-security.rst
new file mode 100644
index 000000000000..4f633f251033
--- /dev/null
+++ b/Documentation/security/tpm/tpm-security.rst
@@ -0,0 +1,216 @@
+.. SPDX-License-Identifier: GPL-2.0-only
+
+TPM Security
+============
+
+The object of this document is to describe how we make the kernel's
+use of the TPM reasonably robust in the face of external snooping and
+packet alteration attacks (called passive and active interposer attack
+in the literature). The current security document is for TPM 2.0.
+
+Introduction
+------------
+
+The TPM is usually a discrete chip attached to a PC via some type of
+low bandwidth bus. There are exceptions to this such as the Intel
+PTT, which is a software TPM running inside a software environment
+close to the CPU, which are subject to different attacks, but right at
+the moment, most hardened security environments require a discrete
+hardware TPM, which is the use case discussed here.
+
+Snooping and Alteration Attacks against the bus
+-----------------------------------------------
+
+The current state of the art for snooping the `TPM Genie`_ hardware
+interposer which is a simple external device that can be installed in
+a couple of seconds on any system or laptop. Recently attacks were
+successfully demonstrated against the `Windows Bitlocker TPM`_ system.
+Most recently the same `attack against TPM based Linux disk
+encryption`_ schemes. The next phase of research seems to be hacking
+existing devices on the bus to act as interposers, so the fact that
+the attacker requires physical access for a few seconds might
+evaporate. However, the goal of this document is to protect TPM
+secrets and integrity as far as we are able in this environment and to
+try to insure that if we can't prevent the attack then at least we can
+detect it.
+
+Unfortunately, most of the TPM functionality, including the hardware
+reset capability can be controlled by an attacker who has access to
+the bus, so we'll discuss some of the disruption possibilities below.
+
+Measurement (PCR) Integrity
+---------------------------
+
+Since the attacker can send their own commands to the TPM, they can
+send arbitrary PCR extends and thus disrupt the measurement system,
+which would be an annoying denial of service attack. However, there
+are two, more serious, classes of attack aimed at entities sealed to
+trust measurements.
+
+1. The attacker could intercept all PCR extends coming from the system
+ and completely substitute their own values, producing a replay of
+ an untampered state that would cause PCR measurements to attest to
+ a trusted state and release secrets
+
+2. At some point in time the attacker could reset the TPM, clearing
+ the PCRs and then send down their own measurements which would
+ effectively overwrite the boot time measurements the TPM has
+ already done.
+
+The first can be thwarted by always doing HMAC protection of the PCR
+extend and read command meaning measurement values cannot be
+substituted without producing a detectable HMAC failure in the
+response. However, the second can only really be detected by relying
+on some sort of mechanism for protection which would change over TPM
+reset.
+
+Secrets Guarding
+----------------
+
+Certain information passing in and out of the TPM, such as key sealing
+and private key import and random number generation, is vulnerable to
+interception which HMAC protection alone cannot protect against, so
+for these types of command we must also employ request and response
+encryption to prevent the loss of secret information.
+
+Establishing Initial Trust with the TPM
+---------------------------------------
+
+In order to provide security from the beginning, an initial shared or
+asymmetric secret must be established which must also be unknown to
+the attacker. The most obvious avenues for this are the endorsement
+and storage seeds, which can be used to derive asymmetric keys.
+However, using these keys is difficult because the only way to pass
+them into the kernel would be on the command line, which requires
+extensive support in the boot system, and there's no guarantee that
+either hierarchy would not have some type of authorization.
+
+The mechanism chosen for the Linux Kernel is to derive the primary
+elliptic curve key from the null seed using the standard storage seed
+parameters. The null seed has two advantages: firstly the hierarchy
+physically cannot have an authorization, so we are always able to use
+it and secondly, the null seed changes across TPM resets, meaning if
+we establish trust on the null seed at start of day, all sessions
+salted with the derived key will fail if the TPM is reset and the seed
+changes.
+
+Obviously using the null seed without any other prior shared secrets,
+we have to create and read the initial public key which could, of
+course, be intercepted and substituted by the bus interposer.
+However, the TPM has a key certification mechanism (using the EK
+endorsement certificate, creating an attestation identity key and
+certifying the null seed primary with that key) which is too complex
+to run within the kernel, so we keep a copy of the null primary key
+name, which is what is exported via sysfs so user-space can run the
+full certification when it boots. The definitive guarantee here is
+that if the null primary key certifies correctly, you know all your
+TPM transactions since start of day were secure and if it doesn't, you
+know there's an interposer on your system (and that any secret used
+during boot may have been leaked).
+
+Stacking Trust
+--------------
+
+In the current null primary scenario, the TPM must be completely
+cleared before handing it on to the next consumer. However the kernel
+hands to user-space the name of the derived null seed key which can
+then be verified by certification in user-space. Therefore, this chain
+of name handoff can be used between the various boot components as
+well (via an unspecified mechanism). For instance, grub could use the
+null seed scheme for security and hand the name off to the kernel in
+the boot area. The kernel could make its own derivation of the key
+and the name and know definitively that if they differ from the handed
+off version that tampering has occurred. Thus it becomes possible to
+chain arbitrary boot components together (UEFI to grub to kernel) via
+the name handoff provided each successive component knows how to
+collect the name and verifies it against its derived key.
+
+Session Properties
+------------------
+
+All TPM commands the kernel uses allow sessions. HMAC sessions may be
+used to check the integrity of requests and responses and decrypt and
+encrypt flags may be used to shield parameters and responses. The
+HMAC and encryption keys are usually derived from the shared
+authorization secret, but for a lot of kernel operations that is well
+known (and usually empty). Thus, every HMAC session used by the
+kernel must be created using the null primary key as the salt key
+which thus provides a cryptographic input into the session key
+derivation. Thus, the kernel creates the null primary key once (as a
+volatile TPM handle) and keeps it around in a saved context stored in
+tpm_chip for every in-kernel use of the TPM. Currently, because of a
+lack of de-gapping in the in-kernel resource manager, the session must
+be created and destroyed for each operation, but, in future, a single
+session may also be reused for the in-kernel HMAC, encryption and
+decryption sessions.
+
+Protection Types
+----------------
+
+For every in-kernel operation we use null primary salted HMAC to
+protect the integrity. Additionally, we use parameter encryption to
+protect key sealing and parameter decryption to protect key unsealing
+and random number generation.
+
+Null Primary Key Certification in Userspace
+===========================================
+
+Every TPM comes shipped with a couple of X.509 certificates for the
+primary endorsement key. This document assumes that the Elliptic
+Curve version of the certificate exists at 01C00002, but will work
+equally well with the RSA certificate (at 01C00001).
+
+The first step in the certification is primary creation using the
+template from the `TCG EK Credential Profile`_ which allows comparison
+of the generated primary key against the one in the certificate (the
+public key must match). Note that generation of the EK primary
+requires the EK hierarchy password, but a pre-generated version of the
+EC primary should exist at 81010002 and a TPM2_ReadPublic() may be
+performed on this without needing the key authority. Next, the
+certificate itself must be verified to chain back to the manufacturer
+root (which should be published on the manufacturer website). Once
+this is done, an attestation key (AK) is generated within the TPM and
+it's name and the EK public key can be used to encrypt a secret using
+TPM2_MakeCredential. The TPM then runs TPM2_ActivateCredential which
+will only recover the secret if the binding between the TPM, the EK
+and the AK is true. the generated AK may now be used to run a
+certification of the null primary key whose name the kernel has
+exported. Since TPM2_MakeCredential/ActivateCredential are somewhat
+complicated, a more simplified process involving an externally
+generated private key is described below.
+
+This process is a simplified abbreviation of the usual privacy CA
+based attestation process. The assumption here is that the
+attestation is done by the TPM owner who thus has access to only the
+owner hierarchy. The owner creates an external public/private key
+pair (assume elliptic curve in this case) and wraps the private key
+for import using an inner wrapping process and parented to the EC
+derived storage primary. The TPM2_Import() is done using a parameter
+decryption HMAC session salted to the EK primary (which also does not
+require the EK key authority) meaning that the inner wrapping key is
+the encrypted parameter and thus the TPM will not be able to perform
+the import unless is possesses the certified EK so if the command
+succeeds and the HMAC verifies on return we know we have a loadable
+copy of the private key only for the certified TPM. This key is now
+loaded into the TPM and the Storage primary flushed (to free up space
+for the null key generation).
+
+The null EC primary is now generated using the Storage profile
+outlined in the `TCG TPM v2.0 Provisioning Guidance`_; the name of
+this key (the hash of the public area) is computed and compared to the
+null seed name presented by the kernel in
+/sys/class/tpm/tpm0/null_name. If the names do not match, the TPM is
+compromised. If the names match, the user performs a TPM2_Certify()
+using the null primary as the object handle and the loaded private key
+as the sign handle and providing randomized qualifying data. The
+signature of the returned certifyInfo is verified against the public
+part of the loaded private key and the qualifying data checked to
+prevent replay. If all of these tests pass, the user is now assured
+that TPM integrity and privacy was preserved across the entire boot
+sequence of this kernel.
+
+.. _TPM Genie: https://www.nccgroup.trust/globalassets/about-us/us/documents/tpm-genie.pdf
+.. _Windows Bitlocker TPM: https://dolosgroup.io/blog/2021/7/9/from-stolen-laptop-to-inside-the-company-network
+.. _attack against TPM based Linux disk encryption: https://www.secura.com/blog/tpm-sniffing-attacks-against-non-bitlocker-targets
+.. _TCG EK Credential Profile: https://trustedcomputinggroup.org/resource/tcg-ek-credential-profile-for-tpm-family-2-0/
+.. _TCG TPM v2.0 Provisioning Guidance: https://trustedcomputinggroup.org/resource/tcg-tpm-v2-0-provisioning-guidance/
diff --git a/Documentation/security/tpm/tpm_tis.rst b/Documentation/security/tpm/tpm_tis.rst
new file mode 100644
index 000000000000..b9637f295638
--- /dev/null
+++ b/Documentation/security/tpm/tpm_tis.rst
@@ -0,0 +1,46 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=========================
+TPM FIFO interface driver
+=========================
+
+TCG PTP Specification defines two interface types: FIFO and CRB. The former is
+based on sequenced read and write operations, and the latter is based on a
+buffer containing the full command or response.
+
+FIFO (First-In-First-Out) interface is used by the tpm_tis_core dependent
+drivers. Originally Linux had only a driver called tpm_tis, which covered
+memory mapped (aka MMIO) interface but it was later on extended to cover other
+physical interfaces supported by the TCG standard.
+
+For historical reasons above the original MMIO driver is called tpm_tis and the
+framework for FIFO drivers is named as tpm_tis_core. The postfix "tis" in
+tpm_tis comes from the TPM Interface Specification, which is the hardware
+interface specification for TPM 1.x chips.
+
+Communication is based on a 20 KiB buffer shared by the TPM chip through a
+hardware bus or memory map, depending on the physical wiring. The buffer is
+further split into five equal-size 4 KiB buffers, which provide equivalent
+sets of registers for communication between the CPU and TPM. These
+communication endpoints are called localities in the TCG terminology.
+
+When the kernel wants to send commands to the TPM chip, it first reserves
+locality 0 by setting the requestUse bit in the TPM_ACCESS register. The bit is
+cleared by the chip when the access is granted. Once it completes its
+communication, the kernel writes the TPM_ACCESS.activeLocality bit. This
+informs the chip that the locality has been relinquished.
+
+Pending localities are served in order by the chip in descending order, one at
+a time:
+
+- Locality 0 has the lowest priority.
+- Locality 5 has the highest priority.
+
+Further information on the purpose and meaning of the localities can be found
+in section 3.2 of the TCG PC Client Platform TPM Profile Specification.
+
+References
+==========
+
+TCG PC Client Platform TPM Profile (PTP) Specification
+https://trustedcomputinggroup.org/resource/pc-client-platform-tpm-profile-ptp-specification/
diff --git a/drivers/char/tpm/Kconfig b/drivers/char/tpm/Kconfig
index 927088b2c3d3..e63a6a17793c 100644
--- a/drivers/char/tpm/Kconfig
+++ b/drivers/char/tpm/Kconfig
@@ -27,6 +27,20 @@ menuconfig TCG_TPM
if TCG_TPM
+config TCG_TPM2_HMAC
+ bool "Use HMAC and encrypted transactions on the TPM bus"
+ default y
+ select CRYPTO_ECDH
+ select CRYPTO_LIB_AESCFB
+ select CRYPTO_LIB_SHA256
+ help
+ Setting this causes us to deploy a scheme which uses request
+ and response HMACs in addition to encryption for
+ communicating with the TPM to prevent or detect bus snooping
+ and interposer attacks (see tpm-security.rst). Saying Y
+ here adds some encryption overhead to all kernel to TPM
+ transactions.
+
config HW_RANDOM_TPM
bool "TPM HW Random Number Generator support"
depends on TCG_TPM && HW_RANDOM && !(TCG_TPM=y && HW_RANDOM=m)
@@ -149,6 +163,7 @@ config TCG_NSC
config TCG_ATMEL
tristate "Atmel TPM Interface"
depends on PPC64 || HAS_IOPORT_MAP
+ depends on HAS_IOPORT
help
If you have a TPM security chip from Atmel say Yes and it
will be accessible from within Linux. To compile this driver
@@ -156,7 +171,7 @@ config TCG_ATMEL
config TCG_INFINEON
tristate "Infineon Technologies TPM Interface"
- depends on PNP
+ depends on PNP || COMPILE_TEST
help
If you have a TPM security chip from Infineon Technologies
(either SLD 9630 TT 1.1 or SLB 9635 TT 1.2) say Yes and it
diff --git a/drivers/char/tpm/Makefile b/drivers/char/tpm/Makefile
index 0222b1ddb310..4c695b0388f3 100644
--- a/drivers/char/tpm/Makefile
+++ b/drivers/char/tpm/Makefile
@@ -15,7 +15,9 @@ tpm-y += tpm-sysfs.o
tpm-y += eventlog/common.o
tpm-y += eventlog/tpm1.o
tpm-y += eventlog/tpm2.o
+tpm-y += tpm-buf.o
+tpm-$(CONFIG_TCG_TPM2_HMAC) += tpm2-sessions.o
tpm-$(CONFIG_ACPI) += tpm_ppi.o eventlog/acpi.o
tpm-$(CONFIG_EFI) += eventlog/efi.o
tpm-$(CONFIG_OF) += eventlog/of.o
diff --git a/drivers/char/tpm/eventlog/acpi.c b/drivers/char/tpm/eventlog/acpi.c
index bd757d836c5c..69533d0bfb51 100644
--- a/drivers/char/tpm/eventlog/acpi.c
+++ b/drivers/char/tpm/eventlog/acpi.c
@@ -142,7 +142,6 @@ int tpm_read_log_acpi(struct tpm_chip *chip)
log->bios_event_log_end = log->bios_event_log + len;
- ret = -EIO;
virt = acpi_os_map_iomem(start, len);
if (!virt) {
dev_warn(&chip->dev, "%s: Failed to map ACPI memory\n", __func__);
diff --git a/drivers/char/tpm/tpm-buf.c b/drivers/char/tpm/tpm-buf.c
new file mode 100644
index 000000000000..647c6ca92ac3
--- /dev/null
+++ b/drivers/char/tpm/tpm-buf.c
@@ -0,0 +1,252 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Handling of TPM command and other buffers.
+ */
+
+#include <linux/tpm_command.h>
+#include <linux/module.h>
+#include <linux/tpm.h>
+
+/**
+ * tpm_buf_init() - Allocate and initialize a TPM command
+ * @buf: A &tpm_buf
+ * @tag: TPM_TAG_RQU_COMMAND, TPM2_ST_NO_SESSIONS or TPM2_ST_SESSIONS
+ * @ordinal: A command ordinal
+ *
+ * Return: 0 or -ENOMEM
+ */
+int tpm_buf_init(struct tpm_buf *buf, u16 tag, u32 ordinal)
+{
+ buf->data = (u8 *)__get_free_page(GFP_KERNEL);
+ if (!buf->data)
+ return -ENOMEM;
+
+ tpm_buf_reset(buf, tag, ordinal);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(tpm_buf_init);
+
+/**
+ * tpm_buf_reset() - Initialize a TPM command
+ * @buf: A &tpm_buf
+ * @tag: TPM_TAG_RQU_COMMAND, TPM2_ST_NO_SESSIONS or TPM2_ST_SESSIONS
+ * @ordinal: A command ordinal
+ */
+void tpm_buf_reset(struct tpm_buf *buf, u16 tag, u32 ordinal)
+{
+ struct tpm_header *head = (struct tpm_header *)buf->data;
+
+ WARN_ON(tag != TPM_TAG_RQU_COMMAND && tag != TPM2_ST_NO_SESSIONS &&
+ tag != TPM2_ST_SESSIONS && tag != 0);
+
+ buf->flags = 0;
+ buf->length = sizeof(*head);
+ head->tag = cpu_to_be16(tag);
+ head->length = cpu_to_be32(sizeof(*head));
+ head->ordinal = cpu_to_be32(ordinal);
+ buf->handles = 0;
+}
+EXPORT_SYMBOL_GPL(tpm_buf_reset);
+
+/**
+ * tpm_buf_init_sized() - Allocate and initialize a sized (TPM2B) buffer
+ * @buf: A @tpm_buf
+ *
+ * Return: 0 or -ENOMEM
+ */
+int tpm_buf_init_sized(struct tpm_buf *buf)
+{
+ buf->data = (u8 *)__get_free_page(GFP_KERNEL);
+ if (!buf->data)
+ return -ENOMEM;
+
+ tpm_buf_reset_sized(buf);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(tpm_buf_init_sized);
+
+/**
+ * tpm_buf_reset_sized() - Initialize a sized buffer
+ * @buf: A &tpm_buf
+ */
+void tpm_buf_reset_sized(struct tpm_buf *buf)
+{
+ buf->flags = TPM_BUF_TPM2B;
+ buf->length = 2;
+ buf->data[0] = 0;
+ buf->data[1] = 0;
+}
+EXPORT_SYMBOL_GPL(tpm_buf_reset_sized);
+
+void tpm_buf_destroy(struct tpm_buf *buf)
+{
+ free_page((unsigned long)buf->data);
+}
+EXPORT_SYMBOL_GPL(tpm_buf_destroy);
+
+/**
+ * tpm_buf_length() - Return the number of bytes consumed by the data
+ * @buf: A &tpm_buf
+ *
+ * Return: The number of bytes consumed by the buffer
+ */
+u32 tpm_buf_length(struct tpm_buf *buf)
+{
+ return buf->length;
+}
+EXPORT_SYMBOL_GPL(tpm_buf_length);
+
+/**
+ * tpm_buf_append() - Append data to an initialized buffer
+ * @buf: A &tpm_buf
+ * @new_data: A data blob
+ * @new_length: Size of the appended data
+ */
+void tpm_buf_append(struct tpm_buf *buf, const u8 *new_data, u16 new_length)
+{
+ /* Return silently if overflow has already happened. */
+ if (buf->flags & TPM_BUF_OVERFLOW)
+ return;
+
+ if ((buf->length + new_length) > PAGE_SIZE) {
+ WARN(1, "tpm_buf: write overflow\n");
+ buf->flags |= TPM_BUF_OVERFLOW;
+ return;
+ }
+
+ memcpy(&buf->data[buf->length], new_data, new_length);
+ buf->length += new_length;
+
+ if (buf->flags & TPM_BUF_TPM2B)
+ ((__be16 *)buf->data)[0] = cpu_to_be16(buf->length - 2);
+ else
+ ((struct tpm_header *)buf->data)->length = cpu_to_be32(buf->length);
+}
+EXPORT_SYMBOL_GPL(tpm_buf_append);
+
+void tpm_buf_append_u8(struct tpm_buf *buf, const u8 value)
+{
+ tpm_buf_append(buf, &value, 1);
+}
+EXPORT_SYMBOL_GPL(tpm_buf_append_u8);
+
+void tpm_buf_append_u16(struct tpm_buf *buf, const u16 value)
+{
+ __be16 value2 = cpu_to_be16(value);
+
+ tpm_buf_append(buf, (u8 *)&value2, 2);
+}
+EXPORT_SYMBOL_GPL(tpm_buf_append_u16);
+
+void tpm_buf_append_u32(struct tpm_buf *buf, const u32 value)
+{
+ __be32 value2 = cpu_to_be32(value);
+
+ tpm_buf_append(buf, (u8 *)&value2, 4);
+}
+EXPORT_SYMBOL_GPL(tpm_buf_append_u32);
+
+/**
+ * tpm_buf_read() - Read from a TPM buffer
+ * @buf: &tpm_buf instance
+ * @offset: offset within the buffer
+ * @count: the number of bytes to read
+ * @output: the output buffer
+ */
+static void tpm_buf_read(struct tpm_buf *buf, off_t *offset, size_t count, void *output)
+{
+ off_t next_offset;
+
+ /* Return silently if overflow has already happened. */
+ if (buf->flags & TPM_BUF_BOUNDARY_ERROR)
+ return;
+
+ next_offset = *offset + count;
+ if (next_offset > buf->length) {
+ WARN(1, "tpm_buf: read out of boundary\n");
+ buf->flags |= TPM_BUF_BOUNDARY_ERROR;
+ return;
+ }
+
+ memcpy(output, &buf->data[*offset], count);
+ *offset = next_offset;
+}
+
+/**
+ * tpm_buf_read_u8() - Read 8-bit word from a TPM buffer
+ * @buf: &tpm_buf instance
+ * @offset: offset within the buffer
+ *
+ * Return: next 8-bit word
+ */
+u8 tpm_buf_read_u8(struct tpm_buf *buf, off_t *offset)
+{
+ u8 value;
+
+ tpm_buf_read(buf, offset, sizeof(value), &value);
+
+ return value;
+}
+EXPORT_SYMBOL_GPL(tpm_buf_read_u8);
+
+/**
+ * tpm_buf_read_u16() - Read 16-bit word from a TPM buffer
+ * @buf: &tpm_buf instance
+ * @offset: offset within the buffer
+ *
+ * Return: next 16-bit word
+ */
+u16 tpm_buf_read_u16(struct tpm_buf *buf, off_t *offset)
+{
+ u16 value;
+
+ tpm_buf_read(buf, offset, sizeof(value), &value);
+
+ return be16_to_cpu(value);
+}
+EXPORT_SYMBOL_GPL(tpm_buf_read_u16);
+
+/**
+ * tpm_buf_read_u32() - Read 32-bit word from a TPM buffer
+ * @buf: &tpm_buf instance
+ * @offset: offset within the buffer
+ *
+ * Return: next 32-bit word
+ */
+u32 tpm_buf_read_u32(struct tpm_buf *buf, off_t *offset)
+{
+ u32 value;
+
+ tpm_buf_read(buf, offset, sizeof(value), &value);
+
+ return be32_to_cpu(value);
+}
+EXPORT_SYMBOL_GPL(tpm_buf_read_u32);
+
+static u16 tpm_buf_tag(struct tpm_buf *buf)
+{
+ struct tpm_header *head = (struct tpm_header *)buf->data;
+
+ return be16_to_cpu(head->tag);
+}
+
+/**
+ * tpm_buf_parameters - return the TPM response parameters area of the tpm_buf
+ * @buf: tpm_buf to use
+ *
+ * Where the parameters are located depends on the tag of a TPM
+ * command (it's immediately after the header for TPM_ST_NO_SESSIONS
+ * or 4 bytes after for TPM_ST_SESSIONS). Evaluate this and return a
+ * pointer to the first byte of the parameters area.
+ *
+ * @return: pointer to parameters area
+ */
+u8 *tpm_buf_parameters(struct tpm_buf *buf)
+{
+ int offset = TPM_HEADER_SIZE;
+
+ if (tpm_buf_tag(buf) == TPM2_ST_SESSIONS)
+ offset += 4;
+
+ return &buf->data[offset];
+}
diff --git a/drivers/char/tpm/tpm-chip.c b/drivers/char/tpm/tpm-chip.c
index 42b1062e33cd..854546000c92 100644
--- a/drivers/char/tpm/tpm-chip.c
+++ b/drivers/char/tpm/tpm-chip.c
@@ -158,6 +158,9 @@ int tpm_try_get_ops(struct tpm_chip *chip)
{
int rc = -EIO;
+ if (chip->flags & TPM_CHIP_FLAG_DISABLE)
+ return rc;
+
get_device(&chip->dev);
down_read(&chip->ops_sem);
@@ -275,6 +278,9 @@ static void tpm_dev_release(struct device *dev)
kfree(chip->work_space.context_buf);
kfree(chip->work_space.session_buf);
kfree(chip->allocated_banks);
+#ifdef CONFIG_TCG_TPM2_HMAC
+ kfree(chip->auth);
+#endif
kfree(chip);
}
diff --git a/drivers/char/tpm/tpm-interface.c b/drivers/char/tpm/tpm-interface.c
index 757336324c90..5da134f12c9a 100644
--- a/drivers/char/tpm/tpm-interface.c
+++ b/drivers/char/tpm/tpm-interface.c
@@ -232,6 +232,7 @@ ssize_t tpm_transmit_cmd(struct tpm_chip *chip, struct tpm_buf *buf,
if (len < min_rsp_body_length + TPM_HEADER_SIZE)
return -EFAULT;
+ buf->length = len;
return 0;
}
EXPORT_SYMBOL_GPL(tpm_transmit_cmd);
@@ -342,31 +343,6 @@ out:
}
EXPORT_SYMBOL_GPL(tpm_pcr_extend);
-/**
- * tpm_send - send a TPM command
- * @chip: a &struct tpm_chip instance, %NULL for the default chip
- * @cmd: a TPM command buffer
- * @buflen: the length of the TPM command buffer
- *
- * Return: same as with tpm_transmit_cmd()
- */
-int tpm_send(struct tpm_chip *chip, void *cmd, size_t buflen)
-{
- struct tpm_buf buf;
- int rc;
-
- chip = tpm_find_get_ops(chip);
- if (!chip)
- return -ENODEV;
-
- buf.data = cmd;
- rc = tpm_transmit_cmd(chip, &buf, 0, "attempting to a send a command");
-
- tpm_put_ops(chip);
- return rc;
-}
-EXPORT_SYMBOL_GPL(tpm_send);
-
int tpm_auto_startup(struct tpm_chip *chip)
{
int rc;
diff --git a/drivers/char/tpm/tpm-sysfs.c b/drivers/char/tpm/tpm-sysfs.c
index 54c71473aa29..94231f052ea7 100644
--- a/drivers/char/tpm/tpm-sysfs.c
+++ b/drivers/char/tpm/tpm-sysfs.c
@@ -309,6 +309,21 @@ static ssize_t tpm_version_major_show(struct device *dev,
}
static DEVICE_ATTR_RO(tpm_version_major);
+#ifdef CONFIG_TCG_TPM2_HMAC
+static ssize_t null_name_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct tpm_chip *chip = to_tpm_chip(dev);
+ int size = TPM2_NAME_SIZE;
+
+ bin2hex(buf, chip->null_key_name, size);
+ size *= 2;
+ buf[size++] = '\n';
+ return size;
+}
+static DEVICE_ATTR_RO(null_name);
+#endif
+
static struct attribute *tpm1_dev_attrs[] = {
&dev_attr_pubek.attr,
&dev_attr_pcrs.attr,
@@ -326,6 +341,9 @@ static struct attribute *tpm1_dev_attrs[] = {
static struct attribute *tpm2_dev_attrs[] = {
&dev_attr_tpm_version_major.attr,
+#ifdef CONFIG_TCG_TPM2_HMAC
+ &dev_attr_null_name.attr,
+#endif
NULL
};
diff --git a/drivers/char/tpm/tpm.h b/drivers/char/tpm/tpm.h
index 61445f1dc46d..6b8b9956ba69 100644
--- a/drivers/char/tpm/tpm.h
+++ b/drivers/char/tpm/tpm.h
@@ -312,9 +312,23 @@ int tpm2_commit_space(struct tpm_chip *chip, struct tpm_space *space, void *buf,
size_t *bufsiz);
int tpm_devs_add(struct tpm_chip *chip);
void tpm_devs_remove(struct tpm_chip *chip);
+int tpm2_save_context(struct tpm_chip *chip, u32 handle, u8 *buf,
+ unsigned int buf_size, unsigned int *offset);
+int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
+ unsigned int *offset, u32 *handle);
void tpm_bios_log_setup(struct tpm_chip *chip);
void tpm_bios_log_teardown(struct tpm_chip *chip);
int tpm_dev_common_init(void);
void tpm_dev_common_exit(void);
+
+#ifdef CONFIG_TCG_TPM2_HMAC
+int tpm2_sessions_init(struct tpm_chip *chip);
+#else
+static inline int tpm2_sessions_init(struct tpm_chip *chip)
+{
+ return 0;
+}
+#endif
+
#endif
diff --git a/drivers/char/tpm/tpm2-cmd.c b/drivers/char/tpm/tpm2-cmd.c
index 93545be190a5..0cdf892ec2a7 100644
--- a/drivers/char/tpm/tpm2-cmd.c
+++ b/drivers/char/tpm/tpm2-cmd.c
@@ -216,13 +216,6 @@ out:
return rc;
}
-struct tpm2_null_auth_area {
- __be32 handle;
- __be16 nonce_size;
- u8 attributes;
- __be16 auth_size;
-} __packed;
-
/**
* tpm2_pcr_extend() - extend a PCR value
*
@@ -236,24 +229,22 @@ int tpm2_pcr_extend(struct tpm_chip *chip, u32 pcr_idx,
struct tpm_digest *digests)
{
struct tpm_buf buf;
- struct tpm2_null_auth_area auth_area;
int rc;
int i;
- rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_PCR_EXTEND);
+ rc = tpm2_start_auth_session(chip);
if (rc)
return rc;
- tpm_buf_append_u32(&buf, pcr_idx);
+ rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_PCR_EXTEND);
+ if (rc) {
+ tpm2_end_auth_session(chip);
+ return rc;
+ }
- auth_area.handle = cpu_to_be32(TPM2_RS_PW);
- auth_area.nonce_size = 0;
- auth_area.attributes = 0;
- auth_area.auth_size = 0;
+ tpm_buf_append_name(chip, &buf, pcr_idx, NULL);
+ tpm_buf_append_hmac_session(chip, &buf, 0, NULL, 0);
- tpm_buf_append_u32(&buf, sizeof(struct tpm2_null_auth_area));
- tpm_buf_append(&buf, (const unsigned char *)&auth_area,
- sizeof(auth_area));
tpm_buf_append_u32(&buf, chip->nr_allocated_banks);
for (i = 0; i < chip->nr_allocated_banks; i++) {
@@ -262,7 +253,9 @@ int tpm2_pcr_extend(struct tpm_chip *chip, u32 pcr_idx,
chip->allocated_banks[i].digest_size);
}
+ tpm_buf_fill_hmac_session(chip, &buf);
rc = tpm_transmit_cmd(chip, &buf, 0, "attempting extend a PCR value");
+ rc = tpm_buf_check_hmac_response(chip, &buf, rc);
tpm_buf_destroy(&buf);
@@ -299,25 +292,35 @@ int tpm2_get_random(struct tpm_chip *chip, u8 *dest, size_t max)
if (!num_bytes || max > TPM_MAX_RNG_DATA)
return -EINVAL;
- err = tpm_buf_init(&buf, 0, 0);
+ err = tpm2_start_auth_session(chip);
if (err)
return err;
+ err = tpm_buf_init(&buf, 0, 0);
+ if (err) {
+ tpm2_end_auth_session(chip);
+ return err;
+ }
+
do {
- tpm_buf_reset(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_GET_RANDOM);
+ tpm_buf_reset(&buf, TPM2_ST_SESSIONS, TPM2_CC_GET_RANDOM);
+ tpm_buf_append_hmac_session_opt(chip, &buf, TPM2_SA_ENCRYPT
+ | TPM2_SA_CONTINUE_SESSION,
+ NULL, 0);
tpm_buf_append_u16(&buf, num_bytes);
+ tpm_buf_fill_hmac_session(chip, &buf);
err = tpm_transmit_cmd(chip, &buf,
offsetof(struct tpm2_get_random_out,
buffer),
"attempting get random");
+ err = tpm_buf_check_hmac_response(chip, &buf, err);
if (err) {
if (err > 0)
err = -EIO;
goto out;
}
- out = (struct tpm2_get_random_out *)
- &buf.data[TPM_HEADER_SIZE];
+ out = (struct tpm2_get_random_out *)tpm_buf_parameters(&buf);
recd = min_t(u32, be16_to_cpu(out->size), num_bytes);
if (tpm_buf_length(&buf) <
TPM_HEADER_SIZE +
@@ -334,9 +337,12 @@ int tpm2_get_random(struct tpm_chip *chip, u8 *dest, size_t max)
} while (retries-- && total < max);
tpm_buf_destroy(&buf);
+ tpm2_end_auth_session(chip);
+
return total ? total : -EIO;
out:
tpm_buf_destroy(&buf);
+ tpm2_end_auth_session(chip);
return err;
}
@@ -759,6 +765,11 @@ int tpm2_auto_startup(struct tpm_chip *chip)
rc = 0;
}
+ if (rc)
+ goto out;
+
+ rc = tpm2_sessions_init(chip);
+
out:
/*
* Infineon TPM in field upgrade mode will return no data for the number
diff --git a/drivers/char/tpm/tpm2-sessions.c b/drivers/char/tpm/tpm2-sessions.c
new file mode 100644
index 000000000000..ea8860661876
--- /dev/null
+++ b/drivers/char/tpm/tpm2-sessions.c
@@ -0,0 +1,1286 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright (C) 2018 James.Bottomley@HansenPartnership.com
+ *
+ * Cryptographic helper routines for handling TPM2 sessions for
+ * authorization HMAC and request response encryption.
+ *
+ * The idea is to ensure that every TPM command is HMAC protected by a
+ * session, meaning in-flight tampering would be detected and in
+ * addition all sensitive inputs and responses should be encrypted.
+ *
+ * The basic way this works is to use a TPM feature called salted
+ * sessions where a random secret used in session construction is
+ * encrypted to the public part of a known TPM key. The problem is we
+ * have no known keys, so initially a primary Elliptic Curve key is
+ * derived from the NULL seed (we use EC because most TPMs generate
+ * these keys much faster than RSA ones). The curve used is NIST_P256
+ * because that's now mandated to be present in 'TCG TPM v2.0
+ * Provisioning Guidance'
+ *
+ * Threat problems: the initial TPM2_CreatePrimary is not (and cannot
+ * be) session protected, so a clever Man in the Middle could return a
+ * public key they control to this command and from there intercept
+ * and decode all subsequent session based transactions. The kernel
+ * cannot mitigate this threat but, after boot, userspace can get
+ * proof this has not happened by asking the TPM to certify the NULL
+ * key. This certification would chain back to the TPM Endorsement
+ * Certificate and prove the NULL seed primary had not been tampered
+ * with and thus all sessions must have been cryptographically secure.
+ * To assist with this, the initial NULL seed public key name is made
+ * available in a sysfs file.
+ *
+ * Use of these functions:
+ *
+ * The design is all the crypto, hash and hmac gunk is confined in this
+ * file and never needs to be seen even by the kernel internal user. To
+ * the user there's an init function tpm2_sessions_init() that needs to
+ * be called once per TPM which generates the NULL seed primary key.
+ *
+ * These are the usage functions:
+ *
+ * tpm2_start_auth_session() which allocates the opaque auth structure
+ * and gets a session from the TPM. This must be called before
+ * any of the following functions. The session is protected by a
+ * session_key which is derived from a random salt value
+ * encrypted to the NULL seed.
+ * tpm2_end_auth_session() kills the session and frees the resources.
+ * Under normal operation this function is done by
+ * tpm_buf_check_hmac_response(), so this is only to be used on
+ * error legs where the latter is not executed.
+ * tpm_buf_append_name() to add a handle to the buffer. This must be
+ * used in place of the usual tpm_buf_append_u32() for adding
+ * handles because handles have to be processed specially when
+ * calculating the HMAC. In particular, for NV, volatile and
+ * permanent objects you now need to provide the name.
+ * tpm_buf_append_hmac_session() which appends the hmac session to the
+ * buf in the same way tpm_buf_append_auth does().
+ * tpm_buf_fill_hmac_session() This calculates the correct hash and
+ * places it in the buffer. It must be called after the complete
+ * command buffer is finalized so it can fill in the correct HMAC
+ * based on the parameters.
+ * tpm_buf_check_hmac_response() which checks the session response in
+ * the buffer and calculates what it should be. If there's a
+ * mismatch it will log a warning and return an error. If
+ * tpm_buf_append_hmac_session() did not specify
+ * TPM_SA_CONTINUE_SESSION then the session will be closed (if it
+ * hasn't been consumed) and the auth structure freed.
+ */
+
+#include "tpm.h"
+#include <linux/random.h>
+#include <linux/scatterlist.h>
+#include <asm/unaligned.h>
+#include <crypto/kpp.h>
+#include <crypto/ecdh.h>
+#include <crypto/hash.h>
+#include <crypto/hmac.h>
+
+/* maximum number of names the TPM must remember for authorization */
+#define AUTH_MAX_NAMES 3
+
+static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
+ u32 *handle, u8 *name);
+
+/*
+ * This is the structure that carries all the auth information (like
+ * session handle, nonces, session key and auth) from use to use it is
+ * designed to be opaque to anything outside.
+ */
+struct tpm2_auth {
+ u32 handle;
+ /*
+ * This has two meanings: before tpm_buf_fill_hmac_session()
+ * it marks the offset in the buffer of the start of the
+ * sessions (i.e. after all the handles). Once the buffer has
+ * been filled it markes the session number of our auth
+ * session so we can find it again in the response buffer.
+ *
+ * The two cases are distinguished because the first offset
+ * must always be greater than TPM_HEADER_SIZE and the second
+ * must be less than or equal to 5.
+ */
+ u32 session;
+ /*
+ * the size here is variable and set by the size of our_nonce
+ * which must be between 16 and the name hash length. we set
+ * the maximum sha256 size for the greatest protection
+ */
+ u8 our_nonce[SHA256_DIGEST_SIZE];
+ u8 tpm_nonce[SHA256_DIGEST_SIZE];
+ /*
+ * the salt is only used across the session command/response
+ * after that it can be used as a scratch area
+ */
+ union {
+ u8 salt[EC_PT_SZ];
+ /* scratch for key + IV */
+ u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
+ };
+ /*
+ * the session key and passphrase are the same size as the
+ * name digest (sha256 again). The session key is constant
+ * for the use of the session and the passphrase can change
+ * with every invocation.
+ *
+ * Note: these fields must be adjacent and in this order
+ * because several HMAC/KDF schemes use the combination of the
+ * session_key and passphrase.
+ */
+ u8 session_key[SHA256_DIGEST_SIZE];
+ u8 passphrase[SHA256_DIGEST_SIZE];
+ int passphrase_len;
+ struct crypto_aes_ctx aes_ctx;
+ /* saved session attributes: */
+ u8 attrs;
+ __be32 ordinal;
+
+ /*
+ * memory for three authorization handles. We know them by
+ * handle, but they are part of the session by name, which
+ * we must compute and remember
+ */
+ u32 name_h[AUTH_MAX_NAMES];
+ u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
+};
+
+/*
+ * Name Size based on TPM algorithm (assumes no hash bigger than 255)
+ */
+static u8 name_size(const u8 *name)
+{
+ static u8 size_map[] = {
+ [TPM_ALG_SHA1] = SHA1_DIGEST_SIZE,
+ [TPM_ALG_SHA256] = SHA256_DIGEST_SIZE,
+ [TPM_ALG_SHA384] = SHA384_DIGEST_SIZE,
+ [TPM_ALG_SHA512] = SHA512_DIGEST_SIZE,
+ };
+ u16 alg = get_unaligned_be16(name);
+ return size_map[alg] + 2;
+}
+
+/*
+ * It turns out the crypto hmac(sha256) is hard for us to consume
+ * because it assumes a fixed key and the TPM seems to change the key
+ * on every operation, so we weld the hmac init and final functions in
+ * here to give it the same usage characteristics as a regular hash
+ */
+static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len)
+{
+ u8 pad[SHA256_BLOCK_SIZE];
+ int i;
+
+ sha256_init(sctx);
+ for (i = 0; i < sizeof(pad); i++) {
+ if (i < key_len)
+ pad[i] = key[i];
+ else
+ pad[i] = 0;
+ pad[i] ^= HMAC_IPAD_VALUE;
+ }
+ sha256_update(sctx, pad, sizeof(pad));
+}
+
+static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len,
+ u8 *out)
+{
+ u8 pad[SHA256_BLOCK_SIZE];
+ int i;
+
+ for (i = 0; i < sizeof(pad); i++) {
+ if (i < key_len)
+ pad[i] = key[i];
+ else
+ pad[i] = 0;
+ pad[i] ^= HMAC_OPAD_VALUE;
+ }
+
+ /* collect the final hash; use out as temporary storage */
+ sha256_final(sctx, out);
+
+ sha256_init(sctx);
+ sha256_update(sctx, pad, sizeof(pad));
+ sha256_update(sctx, out, SHA256_DIGEST_SIZE);
+ sha256_final(sctx, out);
+}
+
+/*
+ * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
+ * otherwise standard tpm2_KDFa. Note output is in bytes not bits.
+ */
+static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
+ u8 *v, u32 bytes, u8 *out)
+{
+ u32 counter = 1;
+ const __be32 bits = cpu_to_be32(bytes * 8);
+
+ while (bytes > 0) {
+ struct sha256_state sctx;
+ __be32 c = cpu_to_be32(counter);
+
+ tpm2_hmac_init(&sctx, key, key_len);
+ sha256_update(&sctx, (u8 *)&c, sizeof(c));
+ sha256_update(&sctx, label, strlen(label)+1);
+ sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
+ sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
+ sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
+ tpm2_hmac_final(&sctx, key, key_len, out);
+
+ bytes -= SHA256_DIGEST_SIZE;
+ counter++;
+ out += SHA256_DIGEST_SIZE;
+ }
+}
+
+/*
+ * Somewhat of a bastardization of the real KDFe. We're assuming
+ * we're working with known point sizes for the input parameters and
+ * the hash algorithm is fixed at sha256. Because we know that the
+ * point size is 32 bytes like the hash size, there's no need to loop
+ * in this KDF.
+ */
+static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
+ u8 *out)
+{
+ struct sha256_state sctx;
+ /*
+ * this should be an iterative counter, but because we know
+ * we're only taking 32 bytes for the point using a sha256
+ * hash which is also 32 bytes, there's only one loop
+ */
+ __be32 c = cpu_to_be32(1);
+
+ sha256_init(&sctx);
+ /* counter (BE) */
+ sha256_update(&sctx, (u8 *)&c, sizeof(c));
+ /* secret value */
+ sha256_update(&sctx, z, EC_PT_SZ);
+ /* string including trailing zero */
+ sha256_update(&sctx, str, strlen(str)+1);
+ sha256_update(&sctx, pt_u, EC_PT_SZ);
+ sha256_update(&sctx, pt_v, EC_PT_SZ);
+ sha256_final(&sctx, out);
+}
+
+static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
+{
+ struct crypto_kpp *kpp;
+ struct kpp_request *req;
+ struct scatterlist s[2], d[1];
+ struct ecdh p = {0};
+ u8 encoded_key[EC_PT_SZ], *x, *y;
+ unsigned int buf_len;
+
+ /* secret is two sized points */
+ tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
+ /*
+ * we cheat here and append uninitialized data to form
+ * the points. All we care about is getting the two
+ * co-ordinate pointers, which will be used to overwrite
+ * the uninitialized data
+ */
+ tpm_buf_append_u16(buf, EC_PT_SZ);
+ x = &buf->data[tpm_buf_length(buf)];
+ tpm_buf_append(buf, encoded_key, EC_PT_SZ);
+ tpm_buf_append_u16(buf, EC_PT_SZ);
+ y = &buf->data[tpm_buf_length(buf)];
+ tpm_buf_append(buf, encoded_key, EC_PT_SZ);
+ sg_init_table(s, 2);
+ sg_set_buf(&s[0], x, EC_PT_SZ);
+ sg_set_buf(&s[1], y, EC_PT_SZ);
+
+ kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
+ if (IS_ERR(kpp)) {
+ dev_err(&chip->dev, "crypto ecdh allocation failed\n");
+ return;
+ }
+
+ buf_len = crypto_ecdh_key_len(&p);
+ if (sizeof(encoded_key) < buf_len) {
+ dev_err(&chip->dev, "salt buffer too small needs %d\n",
+ buf_len);
+ goto out;
+ }
+ crypto_ecdh_encode_key(encoded_key, buf_len, &p);
+ /* this generates a random private key */
+ crypto_kpp_set_secret(kpp, encoded_key, buf_len);
+
+ /* salt is now the public point of this private key */
+ req = kpp_request_alloc(kpp, GFP_KERNEL);
+ if (!req)
+ goto out;
+ kpp_request_set_input(req, NULL, 0);
+ kpp_request_set_output(req, s, EC_PT_SZ*2);
+ crypto_kpp_generate_public_key(req);
+ /*
+ * we're not done: now we have to compute the shared secret
+ * which is our private key multiplied by the tpm_key public
+ * point, we actually only take the x point and discard the y
+ * point and feed it through KDFe to get the final secret salt
+ */
+ sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
+ sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
+ kpp_request_set_input(req, s, EC_PT_SZ*2);
+ sg_init_one(d, chip->auth->salt, EC_PT_SZ);
+ kpp_request_set_output(req, d, EC_PT_SZ);
+ crypto_kpp_compute_shared_secret(req);
+ kpp_request_free(req);
+
+ /*
+ * pass the shared secret through KDFe for salt. Note salt
+ * area is used both for input shared secret and output salt.
+ * This works because KDFe fully consumes the secret before it
+ * writes the salt
+ */
+ tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x,
+ chip->auth->salt);
+
+ out:
+ crypto_free_kpp(kpp);
+}
+
+/**
+ * tpm_buf_append_hmac_session() - Append a TPM session element
+ * @chip: the TPM chip structure
+ * @buf: The buffer to be appended
+ * @attributes: The session attributes
+ * @passphrase: The session authority (NULL if none)
+ * @passphrase_len: The length of the session authority (0 if none)
+ *
+ * This fills in a session structure in the TPM command buffer, except
+ * for the HMAC which cannot be computed until the command buffer is
+ * complete. The type of session is controlled by the @attributes,
+ * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
+ * session won't terminate after tpm_buf_check_hmac_response(),
+ * TPM2_SA_DECRYPT which means this buffers first parameter should be
+ * encrypted with a session key and TPM2_SA_ENCRYPT, which means the
+ * response buffer's first parameter needs to be decrypted (confusing,
+ * but the defines are written from the point of view of the TPM).
+ *
+ * Any session appended by this command must be finalized by calling
+ * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
+ * and the TPM will reject the command.
+ *
+ * As with most tpm_buf operations, success is assumed because failure
+ * will be caused by an incorrect programming model and indicated by a
+ * kernel message.
+ */
+void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
+ u8 attributes, u8 *passphrase,
+ int passphrase_len)
+{
+ u8 nonce[SHA256_DIGEST_SIZE];
+ u32 len;
+ struct tpm2_auth *auth = chip->auth;
+
+ /*
+ * The Architecture Guide requires us to strip trailing zeros
+ * before computing the HMAC
+ */
+ while (passphrase && passphrase_len > 0
+ && passphrase[passphrase_len - 1] == '\0')
+ passphrase_len--;
+
+ auth->attrs = attributes;
+ auth->passphrase_len = passphrase_len;
+ if (passphrase_len)
+ memcpy(auth->passphrase, passphrase, passphrase_len);
+
+ if (auth->session != tpm_buf_length(buf)) {
+ /* we're not the first session */
+ len = get_unaligned_be32(&buf->data[auth->session]);
+ if (4 + len + auth->session != tpm_buf_length(buf)) {
+ WARN(1, "session length mismatch, cannot append");
+ return;
+ }
+
+ /* add our new session */
+ len += 9 + 2 * SHA256_DIGEST_SIZE;
+ put_unaligned_be32(len, &buf->data[auth->session]);
+ } else {
+ tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
+ }
+
+ /* random number for our nonce */
+ get_random_bytes(nonce, sizeof(nonce));
+ memcpy(auth->our_nonce, nonce, sizeof(nonce));
+ tpm_buf_append_u32(buf, auth->handle);
+ /* our new nonce */
+ tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
+ tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
+ tpm_buf_append_u8(buf, auth->attrs);
+ /* and put a placeholder for the hmac */
+ tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
+ tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
+}
+EXPORT_SYMBOL(tpm_buf_append_hmac_session);
+
+/**
+ * tpm_buf_fill_hmac_session() - finalize the session HMAC
+ * @chip: the TPM chip structure
+ * @buf: The buffer to be appended
+ *
+ * This command must not be called until all of the parameters have
+ * been appended to @buf otherwise the computed HMAC will be
+ * incorrect.
+ *
+ * This function computes and fills in the session HMAC using the
+ * session key and, if TPM2_SA_DECRYPT was specified, computes the
+ * encryption key and encrypts the first parameter of the command
+ * buffer with it.
+ *
+ * As with most tpm_buf operations, success is assumed because failure
+ * will be caused by an incorrect programming model and indicated by a
+ * kernel message.
+ */
+void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
+{
+ u32 cc, handles, val;
+ struct tpm2_auth *auth = chip->auth;
+ int i;
+ struct tpm_header *head = (struct tpm_header *)buf->data;
+ off_t offset_s = TPM_HEADER_SIZE, offset_p;
+ u8 *hmac = NULL;
+ u32 attrs;
+ u8 cphash[SHA256_DIGEST_SIZE];
+ struct sha256_state sctx;
+
+ /* save the command code in BE format */
+ auth->ordinal = head->ordinal;
+
+ cc = be32_to_cpu(head->ordinal);
+
+ i = tpm2_find_cc(chip, cc);
+ if (i < 0) {
+ dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc);
+ return;
+ }
+ attrs = chip->cc_attrs_tbl[i];
+
+ handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
+
+ /*
+ * just check the names, it's easy to make mistakes. This
+ * would happen if someone added a handle via
+ * tpm_buf_append_u32() instead of tpm_buf_append_name()
+ */
+ for (i = 0; i < handles; i++) {
+ u32 handle = tpm_buf_read_u32(buf, &offset_s);
+
+ if (auth->name_h[i] != handle) {
+ dev_err(&chip->dev, "TPM: handle %d wrong for name\n",
+ i);
+ return;
+ }
+ }
+ /* point offset_s to the start of the sessions */
+ val = tpm_buf_read_u32(buf, &offset_s);
+ /* point offset_p to the start of the parameters */
+ offset_p = offset_s + val;
+ for (i = 1; offset_s < offset_p; i++) {
+ u32 handle = tpm_buf_read_u32(buf, &offset_s);
+ u16 len;
+ u8 a;
+
+ /* nonce (already in auth) */
+ len = tpm_buf_read_u16(buf, &offset_s);
+ offset_s += len;
+
+ a = tpm_buf_read_u8(buf, &offset_s);
+
+ len = tpm_buf_read_u16(buf, &offset_s);
+ if (handle == auth->handle && auth->attrs == a) {
+ hmac = &buf->data[offset_s];
+ /*
+ * save our session number so we know which
+ * session in the response belongs to us
+ */
+ auth->session = i;
+ }
+
+ offset_s += len;
+ }
+ if (offset_s != offset_p) {
+ dev_err(&chip->dev, "TPM session length is incorrect\n");
+ return;
+ }
+ if (!hmac) {
+ dev_err(&chip->dev, "TPM could not find HMAC session\n");
+ return;
+ }
+
+ /* encrypt before HMAC */
+ if (auth->attrs & TPM2_SA_DECRYPT) {
+ u16 len;
+
+ /* need key and IV */
+ tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
+ + auth->passphrase_len, "CFB", auth->our_nonce,
+ auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
+ auth->scratch);
+
+ len = tpm_buf_read_u16(buf, &offset_p);
+ aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
+ aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p],
+ &buf->data[offset_p], len,
+ auth->scratch + AES_KEY_BYTES);
+ /* reset p to beginning of parameters for HMAC */
+ offset_p -= 2;
+ }
+
+ sha256_init(&sctx);
+ /* ordinal is already BE */
+ sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
+ /* add the handle names */
+ for (i = 0; i < handles; i++) {
+ enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
+
+ if (mso == TPM2_MSO_PERSISTENT ||
+ mso == TPM2_MSO_VOLATILE ||
+ mso == TPM2_MSO_NVRAM) {
+ sha256_update(&sctx, auth->name[i],
+ name_size(auth->name[i]));
+ } else {
+ __be32 h = cpu_to_be32(auth->name_h[i]);
+
+ sha256_update(&sctx, (u8 *)&h, 4);
+ }
+ }
+ if (offset_s != tpm_buf_length(buf))
+ sha256_update(&sctx, &buf->data[offset_s],
+ tpm_buf_length(buf) - offset_s);
+ sha256_final(&sctx, cphash);
+
+ /* now calculate the hmac */
+ tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
+ + auth->passphrase_len);
+ sha256_update(&sctx, cphash, sizeof(cphash));
+ sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
+ sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
+ sha256_update(&sctx, &auth->attrs, 1);
+ tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
+ + auth->passphrase_len, hmac);
+}
+EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
+
+static int tpm2_parse_read_public(char *name, struct tpm_buf *buf)
+{
+ struct tpm_header *head = (struct tpm_header *)buf->data;
+ off_t offset = TPM_HEADER_SIZE;
+ u32 tot_len = be32_to_cpu(head->length);
+ u32 val;
+
+ /* we're starting after the header so adjust the length */
+ tot_len -= TPM_HEADER_SIZE;
+
+ /* skip public */
+ val = tpm_buf_read_u16(buf, &offset);
+ if (val > tot_len)
+ return -EINVAL;
+ offset += val;
+ /* name */
+ val = tpm_buf_read_u16(buf, &offset);
+ if (val != name_size(&buf->data[offset]))
+ return -EINVAL;
+ memcpy(name, &buf->data[offset], val);
+ /* forget the rest */
+ return 0;
+}
+
+static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name)
+{
+ struct tpm_buf buf;
+ int rc;
+
+ rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
+ if (rc)
+ return rc;
+
+ tpm_buf_append_u32(&buf, handle);
+ rc = tpm_transmit_cmd(chip, &buf, 0, "read public");
+ if (rc == TPM2_RC_SUCCESS)
+ rc = tpm2_parse_read_public(name, &buf);
+
+ tpm_buf_destroy(&buf);
+
+ return rc;
+}
+
+/**
+ * tpm_buf_append_name() - add a handle area to the buffer
+ * @chip: the TPM chip structure
+ * @buf: The buffer to be appended
+ * @handle: The handle to be appended
+ * @name: The name of the handle (may be NULL)
+ *
+ * In order to compute session HMACs, we need to know the names of the
+ * objects pointed to by the handles. For most objects, this is simply
+ * the actual 4 byte handle or an empty buf (in these cases @name
+ * should be NULL) but for volatile objects, permanent objects and NV
+ * areas, the name is defined as the hash (according to the name
+ * algorithm which should be set to sha256) of the public area to
+ * which the two byte algorithm id has been appended. For these
+ * objects, the @name pointer should point to this. If a name is
+ * required but @name is NULL, then TPM2_ReadPublic() will be called
+ * on the handle to obtain the name.
+ *
+ * As with most tpm_buf operations, success is assumed because failure
+ * will be caused by an incorrect programming model and indicated by a
+ * kernel message.
+ */
+void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
+ u32 handle, u8 *name)
+{
+ enum tpm2_mso_type mso = tpm2_handle_mso(handle);
+ struct tpm2_auth *auth = chip->auth;
+ int slot;
+
+ slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE)/4;
+ if (slot >= AUTH_MAX_NAMES) {
+ dev_err(&chip->dev, "TPM: too many handles\n");
+ return;
+ }
+ WARN(auth->session != tpm_buf_length(buf),
+ "name added in wrong place\n");
+ tpm_buf_append_u32(buf, handle);
+ auth->session += 4;
+
+ if (mso == TPM2_MSO_PERSISTENT ||
+ mso == TPM2_MSO_VOLATILE ||
+ mso == TPM2_MSO_NVRAM) {
+ if (!name)
+ tpm2_read_public(chip, handle, auth->name[slot]);
+ } else {
+ if (name)
+ dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n");
+ }
+
+ auth->name_h[slot] = handle;
+ if (name)
+ memcpy(auth->name[slot], name, name_size(name));
+}
+EXPORT_SYMBOL(tpm_buf_append_name);
+
+/**
+ * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
+ * @chip: the TPM chip structure
+ * @buf: the original command buffer (which now contains the response)
+ * @rc: the return code from tpm_transmit_cmd
+ *
+ * If @rc is non zero, @buf may not contain an actual return, so @rc
+ * is passed through as the return and the session cleaned up and
+ * de-allocated if required (this is required if
+ * TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
+ *
+ * If @rc is zero, the response HMAC is computed against the returned
+ * @buf and matched to the TPM one in the session area. If there is a
+ * mismatch, an error is logged and -EINVAL returned.
+ *
+ * The reason for this is that the command issue and HMAC check
+ * sequence should look like:
+ *
+ * rc = tpm_transmit_cmd(...);
+ * rc = tpm_buf_check_hmac_response(&buf, auth, rc);
+ * if (rc)
+ * ...
+ *
+ * Which is easily layered into the current contrl flow.
+ *
+ * Returns: 0 on success or an error.
+ */
+int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
+ int rc)
+{
+ struct tpm_header *head = (struct tpm_header *)buf->data;
+ struct tpm2_auth *auth = chip->auth;
+ off_t offset_s, offset_p;
+ u8 rphash[SHA256_DIGEST_SIZE];
+ u32 attrs;
+ struct sha256_state sctx;
+ u16 tag = be16_to_cpu(head->tag);
+ u32 cc = be32_to_cpu(auth->ordinal);
+ int parm_len, len, i, handles;
+
+ if (auth->session >= TPM_HEADER_SIZE) {
+ WARN(1, "tpm session not filled correctly\n");
+ goto out;
+ }
+
+ if (rc != 0)
+ /* pass non success rc through and close the session */
+ goto out;
+
+ rc = -EINVAL;
+ if (tag != TPM2_ST_SESSIONS) {
+ dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
+ goto out;
+ }
+
+ i = tpm2_find_cc(chip, cc);
+ if (i < 0)
+ goto out;
+ attrs = chip->cc_attrs_tbl[i];
+ handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
+
+ /* point to area beyond handles */
+ offset_s = TPM_HEADER_SIZE + handles * 4;
+ parm_len = tpm_buf_read_u32(buf, &offset_s);
+ offset_p = offset_s;
+ offset_s += parm_len;
+ /* skip over any sessions before ours */
+ for (i = 0; i < auth->session - 1; i++) {
+ len = tpm_buf_read_u16(buf, &offset_s);
+ offset_s += len + 1;
+ len = tpm_buf_read_u16(buf, &offset_s);
+ offset_s += len;
+ }
+ /* TPM nonce */
+ len = tpm_buf_read_u16(buf, &offset_s);
+ if (offset_s + len > tpm_buf_length(buf))
+ goto out;
+ if (len != SHA256_DIGEST_SIZE)
+ goto out;
+ memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
+ offset_s += len;
+ attrs = tpm_buf_read_u8(buf, &offset_s);
+ len = tpm_buf_read_u16(buf, &offset_s);
+ if (offset_s + len != tpm_buf_length(buf))
+ goto out;
+ if (len != SHA256_DIGEST_SIZE)
+ goto out;
+ /*
+ * offset_s points to the HMAC. now calculate comparison, beginning
+ * with rphash
+ */
+ sha256_init(&sctx);
+ /* yes, I know this is now zero, but it's what the standard says */
+ sha256_update(&sctx, (u8 *)&head->return_code,
+ sizeof(head->return_code));
+ /* ordinal is already BE */
+ sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
+ sha256_update(&sctx, &buf->data[offset_p], parm_len);
+ sha256_final(&sctx, rphash);
+
+ /* now calculate the hmac */
+ tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
+ + auth->passphrase_len);
+ sha256_update(&sctx, rphash, sizeof(rphash));
+ sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
+ sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
+ sha256_update(&sctx, &auth->attrs, 1);
+ /* we're done with the rphash, so put our idea of the hmac there */
+ tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
+ + auth->passphrase_len, rphash);
+ if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) {
+ rc = 0;
+ } else {
+ dev_err(&chip->dev, "TPM: HMAC check failed\n");
+ goto out;
+ }
+
+ /* now do response decryption */
+ if (auth->attrs & TPM2_SA_ENCRYPT) {
+ /* need key and IV */
+ tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
+ + auth->passphrase_len, "CFB", auth->tpm_nonce,
+ auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
+ auth->scratch);
+
+ len = tpm_buf_read_u16(buf, &offset_p);
+ aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
+ aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p],
+ &buf->data[offset_p], len,
+ auth->scratch + AES_KEY_BYTES);
+ }
+
+ out:
+ if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
+ if (rc)
+ /* manually close the session if it wasn't consumed */
+ tpm2_flush_context(chip, auth->handle);
+ memzero_explicit(auth, sizeof(*auth));
+ } else {
+ /* reset for next use */
+ auth->session = TPM_HEADER_SIZE;
+ }
+
+ return rc;
+}
+EXPORT_SYMBOL(tpm_buf_check_hmac_response);
+
+/**
+ * tpm2_end_auth_session() - kill the allocated auth session
+ * @chip: the TPM chip structure
+ *
+ * ends the session started by tpm2_start_auth_session and frees all
+ * the resources. Under normal conditions,
+ * tpm_buf_check_hmac_response() will correctly end the session if
+ * required, so this function is only for use in error legs that will
+ * bypass the normal invocation of tpm_buf_check_hmac_response().
+ */
+void tpm2_end_auth_session(struct tpm_chip *chip)
+{
+ tpm2_flush_context(chip, chip->auth->handle);
+ memzero_explicit(chip->auth, sizeof(*chip->auth));
+}
+EXPORT_SYMBOL(tpm2_end_auth_session);
+
+static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
+ struct tpm_buf *buf)
+{
+ struct tpm_header *head = (struct tpm_header *)buf->data;
+ u32 tot_len = be32_to_cpu(head->length);
+ off_t offset = TPM_HEADER_SIZE;
+ u32 val;
+
+ /* we're starting after the header so adjust the length */
+ tot_len -= TPM_HEADER_SIZE;
+
+ /* should have handle plus nonce */
+ if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
+ return -EINVAL;
+
+ auth->handle = tpm_buf_read_u32(buf, &offset);
+ val = tpm_buf_read_u16(buf, &offset);
+ if (val != sizeof(auth->tpm_nonce))
+ return -EINVAL;
+ memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
+ /* now compute the session key from the nonces */
+ tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
+ auth->our_nonce, sizeof(auth->session_key),
+ auth->session_key);
+
+ return 0;
+}
+
+static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
+{
+ int rc;
+ unsigned int offset = 0; /* dummy offset for null seed context */
+ u8 name[SHA256_DIGEST_SIZE + 2];
+
+ rc = tpm2_load_context(chip, chip->null_key_context, &offset,
+ null_key);
+ if (rc != -EINVAL)
+ return rc;
+
+ /* an integrity failure may mean the TPM has been reset */
+ dev_err(&chip->dev, "NULL key integrity failure!\n");
+ /* check the null name against what we know */
+ tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name);
+ if (memcmp(name, chip->null_key_name, sizeof(name)) == 0)
+ /* name unchanged, assume transient integrity failure */
+ return rc;
+ /*
+ * Fatal TPM failure: the NULL seed has actually changed, so
+ * the TPM must have been illegally reset. All in-kernel TPM
+ * operations will fail because the NULL primary can't be
+ * loaded to salt the sessions, but disable the TPM anyway so
+ * userspace programmes can't be compromised by it.
+ */
+ dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n");
+ chip->flags |= TPM_CHIP_FLAG_DISABLE;
+
+ return rc;
+}
+
+/**
+ * tpm2_start_auth_session() - create a HMAC authentication session with the TPM
+ * @chip: the TPM chip structure to create the session with
+ *
+ * This function loads the NULL seed from its saved context and starts
+ * an authentication session on the null seed, fills in the
+ * @chip->auth structure to contain all the session details necessary
+ * for performing the HMAC, encrypt and decrypt operations and
+ * returns. The NULL seed is flushed before this function returns.
+ *
+ * Return: zero on success or actual error encountered.
+ */
+int tpm2_start_auth_session(struct tpm_chip *chip)
+{
+ struct tpm_buf buf;
+ struct tpm2_auth *auth = chip->auth;
+ int rc;
+ u32 null_key;
+
+ rc = tpm2_load_null(chip, &null_key);
+ if (rc)
+ goto out;
+
+ auth->session = TPM_HEADER_SIZE;
+
+ rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
+ if (rc)
+ goto out;
+
+ /* salt key handle */
+ tpm_buf_append_u32(&buf, null_key);
+ /* bind key handle */
+ tpm_buf_append_u32(&buf, TPM2_RH_NULL);
+ /* nonce caller */
+ get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
+ tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
+ tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
+
+ /* append encrypted salt and squirrel away unencrypted in auth */
+ tpm_buf_append_salt(&buf, chip);
+ /* session type (HMAC, audit or policy) */
+ tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
+
+ /* symmetric encryption parameters */
+ /* symmetric algorithm */
+ tpm_buf_append_u16(&buf, TPM_ALG_AES);
+ /* bits for symmetric algorithm */
+ tpm_buf_append_u16(&buf, AES_KEY_BITS);
+ /* symmetric algorithm mode (must be CFB) */
+ tpm_buf_append_u16(&buf, TPM_ALG_CFB);
+ /* hash algorithm for session */
+ tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
+
+ rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session");
+ tpm2_flush_context(chip, null_key);
+
+ if (rc == TPM2_RC_SUCCESS)
+ rc = tpm2_parse_start_auth_session(auth, &buf);
+
+ tpm_buf_destroy(&buf);
+
+ if (rc)
+ goto out;
+
+ out:
+ return rc;
+}
+EXPORT_SYMBOL(tpm2_start_auth_session);
+
+/**
+ * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
+ *
+ * @chip: The TPM the primary was created under
+ * @buf: The response buffer from the chip
+ * @handle: pointer to be filled in with the return handle of the primary
+ * @hierarchy: The hierarchy the primary was created for
+ * @name: pointer to be filled in with the primary key name
+ *
+ * Return:
+ * * 0 - OK
+ * * -errno - A system error
+ * * TPM_RC - A TPM error
+ */
+static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
+ u32 *handle, u32 hierarchy, u8 *name)
+{
+ struct tpm_header *head = (struct tpm_header *)buf->data;
+ off_t offset_r = TPM_HEADER_SIZE, offset_t;
+ u16 len = TPM_HEADER_SIZE;
+ u32 total_len = be32_to_cpu(head->length);
+ u32 val, param_len, keyhandle;
+
+ keyhandle = tpm_buf_read_u32(buf, &offset_r);
+ if (handle)
+ *handle = keyhandle;
+ else
+ tpm2_flush_context(chip, keyhandle);
+
+ param_len = tpm_buf_read_u32(buf, &offset_r);
+ /*
+ * param_len doesn't include the header, but all the other
+ * lengths and offsets do, so add it to parm len to make
+ * the comparisons easier
+ */
+ param_len += TPM_HEADER_SIZE;
+
+ if (param_len + 8 > total_len)
+ return -EINVAL;
+ len = tpm_buf_read_u16(buf, &offset_r);
+ offset_t = offset_r;
+ if (name) {
+ /*
+ * now we have the public area, compute the name of
+ * the object
+ */
+ put_unaligned_be16(TPM_ALG_SHA256, name);
+ sha256(&buf->data[offset_r], len, name + 2);
+ }
+
+ /* validate the public key */
+ val = tpm_buf_read_u16(buf, &offset_t);
+
+ /* key type (must be what we asked for) */
+ if (val != TPM_ALG_ECC)
+ return -EINVAL;
+ val = tpm_buf_read_u16(buf, &offset_t);
+
+ /* name algorithm */
+ if (val != TPM_ALG_SHA256)
+ return -EINVAL;
+ val = tpm_buf_read_u32(buf, &offset_t);
+
+ /* object properties */
+ if (val != TPM2_OA_TMPL)
+ return -EINVAL;
+
+ /* auth policy (empty) */
+ val = tpm_buf_read_u16(buf, &offset_t);
+ if (val != 0)
+ return -EINVAL;
+
+ /* symmetric key parameters */
+ val = tpm_buf_read_u16(buf, &offset_t);
+ if (val != TPM_ALG_AES)
+ return -EINVAL;
+
+ /* symmetric key length */
+ val = tpm_buf_read_u16(buf, &offset_t);
+ if (val != AES_KEY_BITS)
+ return -EINVAL;
+
+ /* symmetric encryption scheme */
+ val = tpm_buf_read_u16(buf, &offset_t);
+ if (val != TPM_ALG_CFB)
+ return -EINVAL;
+
+ /* signing scheme */
+ val = tpm_buf_read_u16(buf, &offset_t);
+ if (val != TPM_ALG_NULL)
+ return -EINVAL;
+
+ /* ECC Curve */
+ val = tpm_buf_read_u16(buf, &offset_t);
+ if (val != TPM2_ECC_NIST_P256)
+ return -EINVAL;
+
+ /* KDF Scheme */
+ val = tpm_buf_read_u16(buf, &offset_t);
+ if (val != TPM_ALG_NULL)
+ return -EINVAL;
+
+ /* extract public key (x and y points) */
+ val = tpm_buf_read_u16(buf, &offset_t);
+ if (val != EC_PT_SZ)
+ return -EINVAL;
+ memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
+ offset_t += val;
+ val = tpm_buf_read_u16(buf, &offset_t);
+ if (val != EC_PT_SZ)
+ return -EINVAL;
+ memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
+ offset_t += val;
+
+ /* original length of the whole TPM2B */
+ offset_r += len;
+
+ /* should have exactly consumed the TPM2B public structure */
+ if (offset_t != offset_r)
+ return -EINVAL;
+ if (offset_r > param_len)
+ return -EINVAL;
+
+ /* creation data (skip) */
+ len = tpm_buf_read_u16(buf, &offset_r);
+ offset_r += len;
+ if (offset_r > param_len)
+ return -EINVAL;
+
+ /* creation digest (must be sha256) */
+ len = tpm_buf_read_u16(buf, &offset_r);
+ offset_r += len;
+ if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
+ return -EINVAL;
+
+ /* TPMT_TK_CREATION follows */
+ /* tag, must be TPM_ST_CREATION (0x8021) */
+ val = tpm_buf_read_u16(buf, &offset_r);
+ if (val != TPM2_ST_CREATION || offset_r > param_len)
+ return -EINVAL;
+
+ /* hierarchy */
+ val = tpm_buf_read_u32(buf, &offset_r);
+ if (val != hierarchy || offset_r > param_len)
+ return -EINVAL;
+
+ /* the ticket digest HMAC (might not be sha256) */
+ len = tpm_buf_read_u16(buf, &offset_r);
+ offset_r += len;
+ if (offset_r > param_len)
+ return -EINVAL;
+
+ /*
+ * finally we have the name, which is a sha256 digest plus a 2
+ * byte algorithm type
+ */
+ len = tpm_buf_read_u16(buf, &offset_r);
+ if (offset_r + len != param_len + 8)
+ return -EINVAL;
+ if (len != SHA256_DIGEST_SIZE + 2)
+ return -EINVAL;
+
+ if (memcmp(chip->null_key_name, &buf->data[offset_r],
+ SHA256_DIGEST_SIZE + 2) != 0) {
+ dev_err(&chip->dev, "NULL Seed name comparison failed\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * tpm2_create_primary() - create a primary key using a fixed P-256 template
+ *
+ * @chip: the TPM chip to create under
+ * @hierarchy: The hierarchy handle to create under
+ * @handle: The returned volatile handle on success
+ * @name: The name of the returned key
+ *
+ * For platforms that might not have a persistent primary, this can be
+ * used to create one quickly on the fly (it uses Elliptic Curve not
+ * RSA, so even slow TPMs can create one fast). The template uses the
+ * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
+ * elliptic curve (the only current one all TPM2s are required to
+ * have) a sha256 name hash and no policy.
+ *
+ * Return:
+ * * 0 - OK
+ * * -errno - A system error
+ * * TPM_RC - A TPM error
+ */
+static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
+ u32 *handle, u8 *name)
+{
+ int rc;
+ struct tpm_buf buf;
+ struct tpm_buf template;
+
+ rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
+ if (rc)
+ return rc;
+
+ rc = tpm_buf_init_sized(&template);
+ if (rc) {
+ tpm_buf_destroy(&buf);
+ return rc;
+ }
+
+ /*
+ * create the template. Note: in order for userspace to
+ * verify the security of the system, it will have to create
+ * and certify this NULL primary, meaning all the template
+ * parameters will have to be identical, so conform exactly to
+ * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
+ * key H template (H has zero size unique points)
+ */
+
+ /* key type */
+ tpm_buf_append_u16(&template, TPM_ALG_ECC);
+
+ /* name algorithm */
+ tpm_buf_append_u16(&template, TPM_ALG_SHA256);
+
+ /* object properties */
+ tpm_buf_append_u32(&template, TPM2_OA_TMPL);
+
+ /* sauth policy (empty) */
+ tpm_buf_append_u16(&template, 0);
+
+ /* BEGIN parameters: key specific; for ECC*/
+
+ /* symmetric algorithm */
+ tpm_buf_append_u16(&template, TPM_ALG_AES);
+
+ /* bits for symmetric algorithm */
+ tpm_buf_append_u16(&template, AES_KEY_BITS);
+
+ /* algorithm mode (must be CFB) */
+ tpm_buf_append_u16(&template, TPM_ALG_CFB);
+
+ /* scheme (NULL means any scheme) */
+ tpm_buf_append_u16(&template, TPM_ALG_NULL);
+
+ /* ECC Curve ID */
+ tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
+
+ /* KDF Scheme */
+ tpm_buf_append_u16(&template, TPM_ALG_NULL);
+
+ /* unique: key specific; for ECC it is two zero size points */
+ tpm_buf_append_u16(&template, 0);
+ tpm_buf_append_u16(&template, 0);
+
+ /* END parameters */
+
+ /* primary handle */
+ tpm_buf_append_u32(&buf, hierarchy);
+ tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
+
+ /* sensitive create size is 4 for two empty buffers */
+ tpm_buf_append_u16(&buf, 4);
+
+ /* sensitive create auth data (empty) */
+ tpm_buf_append_u16(&buf, 0);
+
+ /* sensitive create sensitive data (empty) */
+ tpm_buf_append_u16(&buf, 0);
+
+ /* the public template */
+ tpm_buf_append(&buf, template.data, template.length);
+ tpm_buf_destroy(&template);
+
+ /* outside info (empty) */
+ tpm_buf_append_u16(&buf, 0);
+
+ /* creation PCR (none) */
+ tpm_buf_append_u32(&buf, 0);
+
+ rc = tpm_transmit_cmd(chip, &buf, 0,
+ "attempting to create NULL primary");
+
+ if (rc == TPM2_RC_SUCCESS)
+ rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
+ name);
+
+ tpm_buf_destroy(&buf);
+
+ return rc;
+}
+
+static int tpm2_create_null_primary(struct tpm_chip *chip)
+{
+ u32 null_key;
+ int rc;
+
+ rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
+ chip->null_key_name);
+
+ if (rc == TPM2_RC_SUCCESS) {
+ unsigned int offset = 0; /* dummy offset for null key context */
+
+ rc = tpm2_save_context(chip, null_key, chip->null_key_context,
+ sizeof(chip->null_key_context), &offset);
+ tpm2_flush_context(chip, null_key);
+ }
+
+ return rc;
+}
+
+/**
+ * tpm2_sessions_init() - start of day initialization for the sessions code
+ * @chip: TPM chip
+ *
+ * Derive and context save the null primary and allocate memory in the
+ * struct tpm_chip for the authorizations.
+ */
+int tpm2_sessions_init(struct tpm_chip *chip)
+{
+ int rc;
+
+ rc = tpm2_create_null_primary(chip);
+ if (rc)
+ dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc);
+
+ chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL);
+ if (!chip->auth)
+ return -ENOMEM;
+
+ return rc;
+}
diff --git a/drivers/char/tpm/tpm2-space.c b/drivers/char/tpm/tpm2-space.c
index 363afdd4d1d3..4892d491da8d 100644
--- a/drivers/char/tpm/tpm2-space.c
+++ b/drivers/char/tpm/tpm2-space.c
@@ -68,8 +68,8 @@ void tpm2_del_space(struct tpm_chip *chip, struct tpm_space *space)
kfree(space->session_buf);
}
-static int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
- unsigned int *offset, u32 *handle)
+int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
+ unsigned int *offset, u32 *handle)
{
struct tpm_buf tbuf;
struct tpm2_context *ctx;
@@ -105,6 +105,9 @@ static int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
*handle = 0;
tpm_buf_destroy(&tbuf);
return -ENOENT;
+ } else if (tpm2_rc_value(rc) == TPM2_RC_INTEGRITY) {
+ tpm_buf_destroy(&tbuf);
+ return -EINVAL;
} else if (rc > 0) {
dev_warn(&chip->dev, "%s: failed with a TPM error 0x%04X\n",
__func__, rc);
@@ -119,8 +122,8 @@ static int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
return 0;
}
-static int tpm2_save_context(struct tpm_chip *chip, u32 handle, u8 *buf,
- unsigned int buf_size, unsigned int *offset)
+int tpm2_save_context(struct tpm_chip *chip, u32 handle, u8 *buf,
+ unsigned int buf_size, unsigned int *offset)
{
struct tpm_buf tbuf;
unsigned int body_size;
diff --git a/drivers/char/tpm/tpm_infineon.c b/drivers/char/tpm/tpm_infineon.c
index 9c924a1440a9..2d2ae37153ba 100644
--- a/drivers/char/tpm/tpm_infineon.c
+++ b/drivers/char/tpm/tpm_infineon.c
@@ -51,34 +51,40 @@ static struct tpm_inf_dev tpm_dev;
static inline void tpm_data_out(unsigned char data, unsigned char offset)
{
+#ifdef CONFIG_HAS_IOPORT
if (tpm_dev.iotype == TPM_INF_IO_PORT)
outb(data, tpm_dev.data_regs + offset);
else
+#endif
writeb(data, tpm_dev.mem_base + tpm_dev.data_regs + offset);
}
static inline unsigned char tpm_data_in(unsigned char offset)
{
+#ifdef CONFIG_HAS_IOPORT
if (tpm_dev.iotype == TPM_INF_IO_PORT)
return inb(tpm_dev.data_regs + offset);
- else
- return readb(tpm_dev.mem_base + tpm_dev.data_regs + offset);
+#endif
+ return readb(tpm_dev.mem_base + tpm_dev.data_regs + offset);
}
static inline void tpm_config_out(unsigned char data, unsigned char offset)
{
+#ifdef CONFIG_HAS_IOPORT
if (tpm_dev.iotype == TPM_INF_IO_PORT)
outb(data, tpm_dev.config_port + offset);
else
+#endif
writeb(data, tpm_dev.mem_base + tpm_dev.index_off + offset);
}
static inline unsigned char tpm_config_in(unsigned char offset)
{
+#ifdef CONFIG_HAS_IOPORT
if (tpm_dev.iotype == TPM_INF_IO_PORT)
return inb(tpm_dev.config_port + offset);
- else
- return readb(tpm_dev.mem_base + tpm_dev.index_off + offset);
+#endif
+ return readb(tpm_dev.mem_base + tpm_dev.index_off + offset);
}
/* TPM header definitions */
diff --git a/drivers/char/tpm/tpm_tis_core.c b/drivers/char/tpm/tpm_tis_core.c
index 714070ebb6e7..176cd8dbf1db 100644
--- a/drivers/char/tpm/tpm_tis_core.c
+++ b/drivers/char/tpm/tpm_tis_core.c
@@ -1057,11 +1057,6 @@ static void tpm_tis_clkrun_enable(struct tpm_chip *chip, bool value)
clkrun_val &= ~LPC_CLKRUN_EN;
iowrite32(clkrun_val, data->ilb_base_addr + LPC_CNTRL_OFFSET);
- /*
- * Write any random value on port 0x80 which is on LPC, to make
- * sure LPC clock is running before sending any TPM command.
- */
- outb(0xCC, 0x80);
} else {
data->clkrun_enabled--;
if (data->clkrun_enabled)
@@ -1072,13 +1067,15 @@ static void tpm_tis_clkrun_enable(struct tpm_chip *chip, bool value)
/* Enable LPC CLKRUN# */
clkrun_val |= LPC_CLKRUN_EN;
iowrite32(clkrun_val, data->ilb_base_addr + LPC_CNTRL_OFFSET);
-
- /*
- * Write any random value on port 0x80 which is on LPC, to make
- * sure LPC clock is running before sending any TPM command.
- */
- outb(0xCC, 0x80);
}
+
+#ifdef CONFIG_HAS_IOPORT
+ /*
+ * Write any random value on port 0x80 which is on LPC, to make
+ * sure LPC clock is running before sending any TPM command.
+ */
+ outb(0xCC, 0x80);
+#endif
}
static const struct tpm_class_ops tpm_tis = {
diff --git a/include/crypto/aes.h b/include/crypto/aes.h
index 2090729701ab..9339da7c20a8 100644
--- a/include/crypto/aes.h
+++ b/include/crypto/aes.h
@@ -87,4 +87,9 @@ void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in);
extern const u8 crypto_aes_sbox[];
extern const u8 crypto_aes_inv_sbox[];
+void aescfb_encrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
+ int len, const u8 iv[AES_BLOCK_SIZE]);
+void aescfb_decrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
+ int len, const u8 iv[AES_BLOCK_SIZE]);
+
#endif
diff --git a/include/keys/trusted_tpm.h b/include/keys/trusted_tpm.h
index 7769b726863a..a088b33fd0e3 100644
--- a/include/keys/trusted_tpm.h
+++ b/include/keys/trusted_tpm.h
@@ -6,8 +6,6 @@
#include <linux/tpm_command.h>
/* implementation specific TPM constants */
-#define MAX_BUF_SIZE 1024
-#define TPM_GETRANDOM_SIZE 14
#define TPM_SIZE_OFFSET 2
#define TPM_RETURN_OFFSET 6
#define TPM_DATA_OFFSET 10
diff --git a/include/linux/tpm.h b/include/linux/tpm.h
index 4ee9d13749ad..c17e4efbb2e5 100644
--- a/include/linux/tpm.h
+++ b/include/linux/tpm.h
@@ -23,6 +23,7 @@
#include <linux/fs.h>
#include <linux/highmem.h>
#include <crypto/hash_info.h>
+#include <crypto/aes.h>
#define TPM_DIGEST_SIZE 20 /* Max TPM v1.2 PCR size */
#define TPM_MAX_DIGEST_SIZE SHA512_DIGEST_SIZE
@@ -30,17 +31,28 @@
struct tpm_chip;
struct trusted_key_payload;
struct trusted_key_options;
+/* opaque structure, holds auth session parameters like the session key */
+struct tpm2_auth;
+
+enum tpm2_session_types {
+ TPM2_SE_HMAC = 0x00,
+ TPM2_SE_POLICY = 0x01,
+ TPM2_SE_TRIAL = 0x02,
+};
/* if you add a new hash to this, increment TPM_MAX_HASHES below */
enum tpm_algorithms {
TPM_ALG_ERROR = 0x0000,
TPM_ALG_SHA1 = 0x0004,
+ TPM_ALG_AES = 0x0006,
TPM_ALG_KEYEDHASH = 0x0008,
TPM_ALG_SHA256 = 0x000B,
TPM_ALG_SHA384 = 0x000C,
TPM_ALG_SHA512 = 0x000D,
TPM_ALG_NULL = 0x0010,
TPM_ALG_SM3_256 = 0x0012,
+ TPM_ALG_ECC = 0x0023,
+ TPM_ALG_CFB = 0x0043,
};
/*
@@ -49,6 +61,11 @@ enum tpm_algorithms {
*/
#define TPM_MAX_HASHES 5
+enum tpm2_curves {
+ TPM2_ECC_NONE = 0x0000,
+ TPM2_ECC_NIST_P256 = 0x0003,
+};
+
struct tpm_digest {
u16 alg_id;
u8 digest[TPM_MAX_DIGEST_SIZE];
@@ -116,6 +133,20 @@ struct tpm_chip_seqops {
const struct seq_operations *seqops;
};
+/* fixed define for the curve we use which is NIST_P256 */
+#define EC_PT_SZ 32
+
+/*
+ * fixed define for the size of a name. This is actually HASHALG size
+ * plus 2, so 32 for SHA256
+ */
+#define TPM2_NAME_SIZE 34
+
+/*
+ * The maximum size for an object context
+ */
+#define TPM2_MAX_CONTEXT_SIZE 4096
+
struct tpm_chip {
struct device dev;
struct device devs;
@@ -170,6 +201,18 @@ struct tpm_chip {
/* active locality */
int locality;
+
+#ifdef CONFIG_TCG_TPM2_HMAC
+ /* details for communication security via sessions */
+
+ /* saved context for NULL seed */
+ u8 null_key_context[TPM2_MAX_CONTEXT_SIZE];
+ /* name of NULL seed */
+ u8 null_key_name[TPM2_NAME_SIZE];
+ u8 null_ec_key_x[EC_PT_SZ];
+ u8 null_ec_key_y[EC_PT_SZ];
+ struct tpm2_auth *auth;
+#endif
};
#define TPM_HEADER_SIZE 10
@@ -194,6 +237,7 @@ enum tpm2_timeouts {
enum tpm2_structures {
TPM2_ST_NO_SESSIONS = 0x8001,
TPM2_ST_SESSIONS = 0x8002,
+ TPM2_ST_CREATION = 0x8021,
};
/* Indicates from what layer of the software stack the error comes from */
@@ -204,6 +248,7 @@ enum tpm2_return_codes {
TPM2_RC_SUCCESS = 0x0000,
TPM2_RC_HASH = 0x0083, /* RC_FMT1 */
TPM2_RC_HANDLE = 0x008B,
+ TPM2_RC_INTEGRITY = 0x009F,
TPM2_RC_INITIALIZE = 0x0100, /* RC_VER1 */
TPM2_RC_FAILURE = 0x0101,
TPM2_RC_DISABLED = 0x0120,
@@ -231,6 +276,8 @@ enum tpm2_command_codes {
TPM2_CC_CONTEXT_LOAD = 0x0161,
TPM2_CC_CONTEXT_SAVE = 0x0162,
TPM2_CC_FLUSH_CONTEXT = 0x0165,
+ TPM2_CC_READ_PUBLIC = 0x0173,
+ TPM2_CC_START_AUTH_SESS = 0x0176,
TPM2_CC_VERIFY_SIGNATURE = 0x0177,
TPM2_CC_GET_CAPABILITY = 0x017A,
TPM2_CC_GET_RANDOM = 0x017B,
@@ -243,9 +290,25 @@ enum tpm2_command_codes {
};
enum tpm2_permanent_handles {
+ TPM2_RH_NULL = 0x40000007,
TPM2_RS_PW = 0x40000009,
};
+/* Most Significant Octet for key types */
+enum tpm2_mso_type {
+ TPM2_MSO_NVRAM = 0x01,
+ TPM2_MSO_SESSION = 0x02,
+ TPM2_MSO_POLICY = 0x03,
+ TPM2_MSO_PERMANENT = 0x40,
+ TPM2_MSO_VOLATILE = 0x80,
+ TPM2_MSO_PERSISTENT = 0x81,
+};
+
+static inline enum tpm2_mso_type tpm2_handle_mso(u32 handle)
+{
+ return handle >> 24;
+}
+
enum tpm2_capabilities {
TPM2_CAP_HANDLES = 1,
TPM2_CAP_COMMANDS = 2,
@@ -284,6 +347,7 @@ enum tpm_chip_flags {
TPM_CHIP_FLAG_FIRMWARE_UPGRADE = BIT(7),
TPM_CHIP_FLAG_SUSPENDED = BIT(8),
TPM_CHIP_FLAG_HWRNG_DISABLED = BIT(9),
+ TPM_CHIP_FLAG_DISABLE = BIT(10),
};
#define to_tpm_chip(d) container_of(d, struct tpm_chip, dev)
@@ -297,28 +361,61 @@ struct tpm_header {
};
} __packed;
-/* A string buffer type for constructing TPM commands. This is based on the
- * ideas of string buffer code in security/keys/trusted.h but is heap based
- * in order to keep the stack usage minimal.
- */
-
enum tpm_buf_flags {
+ /* the capacity exceeded: */
TPM_BUF_OVERFLOW = BIT(0),
+ /* TPM2B format: */
+ TPM_BUF_TPM2B = BIT(1),
+ /* read out of boundary: */
+ TPM_BUF_BOUNDARY_ERROR = BIT(2),
};
+/*
+ * A string buffer type for constructing TPM commands.
+ */
struct tpm_buf {
- unsigned int flags;
+ u32 flags;
+ u32 length;
u8 *data;
+ u8 handles;
};
enum tpm2_object_attributes {
TPM2_OA_FIXED_TPM = BIT(1),
+ TPM2_OA_ST_CLEAR = BIT(2),
TPM2_OA_FIXED_PARENT = BIT(4),
+ TPM2_OA_SENSITIVE_DATA_ORIGIN = BIT(5),
TPM2_OA_USER_WITH_AUTH = BIT(6),
+ TPM2_OA_ADMIN_WITH_POLICY = BIT(7),
+ TPM2_OA_NO_DA = BIT(10),
+ TPM2_OA_ENCRYPTED_DUPLICATION = BIT(11),
+ TPM2_OA_RESTRICTED = BIT(16),
+ TPM2_OA_DECRYPT = BIT(17),
+ TPM2_OA_SIGN = BIT(18),
};
+/*
+ * definitions for the canonical template. These are mandated
+ * by the TCG key template documents
+ */
+
+#define AES_KEY_BYTES AES_KEYSIZE_128
+#define AES_KEY_BITS (AES_KEY_BYTES*8)
+#define TPM2_OA_TMPL (TPM2_OA_NO_DA | \
+ TPM2_OA_FIXED_TPM | \
+ TPM2_OA_FIXED_PARENT | \
+ TPM2_OA_SENSITIVE_DATA_ORIGIN | \
+ TPM2_OA_USER_WITH_AUTH | \
+ TPM2_OA_DECRYPT | \
+ TPM2_OA_RESTRICTED)
+
enum tpm2_session_attributes {
TPM2_SA_CONTINUE_SESSION = BIT(0),
+ TPM2_SA_AUDIT_EXCLUSIVE = BIT(1),
+ TPM2_SA_AUDIT_RESET = BIT(3),
+ TPM2_SA_DECRYPT = BIT(5),
+ TPM2_SA_ENCRYPT = BIT(6),
+ TPM2_SA_AUDIT = BIT(7),
};
struct tpm2_hash {
@@ -326,84 +423,21 @@ struct tpm2_hash {
unsigned int tpm_id;
};
-static inline void tpm_buf_reset(struct tpm_buf *buf, u16 tag, u32 ordinal)
-{
- struct tpm_header *head = (struct tpm_header *)buf->data;
-
- head->tag = cpu_to_be16(tag);
- head->length = cpu_to_be32(sizeof(*head));
- head->ordinal = cpu_to_be32(ordinal);
-}
-
-static inline int tpm_buf_init(struct tpm_buf *buf, u16 tag, u32 ordinal)
-{
- buf->data = (u8 *)__get_free_page(GFP_KERNEL);
- if (!buf->data)
- return -ENOMEM;
-
- buf->flags = 0;
- tpm_buf_reset(buf, tag, ordinal);
- return 0;
-}
-
-static inline void tpm_buf_destroy(struct tpm_buf *buf)
-{
- free_page((unsigned long)buf->data);
-}
-
-static inline u32 tpm_buf_length(struct tpm_buf *buf)
-{
- struct tpm_header *head = (struct tpm_header *)buf->data;
-
- return be32_to_cpu(head->length);
-}
-
-static inline u16 tpm_buf_tag(struct tpm_buf *buf)
-{
- struct tpm_header *head = (struct tpm_header *)buf->data;
-
- return be16_to_cpu(head->tag);
-}
-
-static inline void tpm_buf_append(struct tpm_buf *buf,
- const unsigned char *new_data,
- unsigned int new_len)
-{
- struct tpm_header *head = (struct tpm_header *)buf->data;
- u32 len = tpm_buf_length(buf);
-
- /* Return silently if overflow has already happened. */
- if (buf->flags & TPM_BUF_OVERFLOW)
- return;
-
- if ((len + new_len) > PAGE_SIZE) {
- WARN(1, "tpm_buf: overflow\n");
- buf->flags |= TPM_BUF_OVERFLOW;
- return;
- }
-
- memcpy(&buf->data[len], new_data, new_len);
- head->length = cpu_to_be32(len + new_len);
-}
-
-static inline void tpm_buf_append_u8(struct tpm_buf *buf, const u8 value)
-{
- tpm_buf_append(buf, &value, 1);
-}
-
-static inline void tpm_buf_append_u16(struct tpm_buf *buf, const u16 value)
-{
- __be16 value2 = cpu_to_be16(value);
-
- tpm_buf_append(buf, (u8 *) &value2, 2);
-}
-
-static inline void tpm_buf_append_u32(struct tpm_buf *buf, const u32 value)
-{
- __be32 value2 = cpu_to_be32(value);
-
- tpm_buf_append(buf, (u8 *) &value2, 4);
-}
+int tpm_buf_init(struct tpm_buf *buf, u16 tag, u32 ordinal);
+void tpm_buf_reset(struct tpm_buf *buf, u16 tag, u32 ordinal);
+int tpm_buf_init_sized(struct tpm_buf *buf);
+void tpm_buf_reset_sized(struct tpm_buf *buf);
+void tpm_buf_destroy(struct tpm_buf *buf);
+u32 tpm_buf_length(struct tpm_buf *buf);
+void tpm_buf_append(struct tpm_buf *buf, const u8 *new_data, u16 new_length);
+void tpm_buf_append_u8(struct tpm_buf *buf, const u8 value);
+void tpm_buf_append_u16(struct tpm_buf *buf, const u16 value);
+void tpm_buf_append_u32(struct tpm_buf *buf, const u32 value);
+u8 tpm_buf_read_u8(struct tpm_buf *buf, off_t *offset);
+u16 tpm_buf_read_u16(struct tpm_buf *buf, off_t *offset);
+u32 tpm_buf_read_u32(struct tpm_buf *buf, off_t *offset);
+
+u8 *tpm_buf_parameters(struct tpm_buf *buf);
/*
* Check if TPM device is in the firmware upgrade mode.
@@ -415,7 +449,7 @@ static inline bool tpm_is_firmware_upgrade(struct tpm_chip *chip)
static inline u32 tpm2_rc_value(u32 rc)
{
- return (rc & BIT(7)) ? rc & 0xff : rc;
+ return (rc & BIT(7)) ? rc & 0xbf : rc;
}
#if defined(CONFIG_TCG_TPM) || defined(CONFIG_TCG_TPM_MODULE)
@@ -429,10 +463,19 @@ extern int tpm_pcr_read(struct tpm_chip *chip, u32 pcr_idx,
struct tpm_digest *digest);
extern int tpm_pcr_extend(struct tpm_chip *chip, u32 pcr_idx,
struct tpm_digest *digests);
-extern int tpm_send(struct tpm_chip *chip, void *cmd, size_t buflen);
extern int tpm_get_random(struct tpm_chip *chip, u8 *data, size_t max);
extern struct tpm_chip *tpm_default_chip(void);
void tpm2_flush_context(struct tpm_chip *chip, u32 handle);
+
+static inline void tpm_buf_append_empty_auth(struct tpm_buf *buf, u32 handle)
+{
+ /* simple authorization for empty auth */
+ tpm_buf_append_u32(buf, 9); /* total length of auth */
+ tpm_buf_append_u32(buf, handle);
+ tpm_buf_append_u16(buf, 0); /* nonce len */
+ tpm_buf_append_u8(buf, 0); /* attributes */
+ tpm_buf_append_u16(buf, 0); /* hmac len */
+}
#else
static inline int tpm_is_tpm2(struct tpm_chip *chip)
{
@@ -450,10 +493,6 @@ static inline int tpm_pcr_extend(struct tpm_chip *chip, u32 pcr_idx,
return -ENODEV;
}
-static inline int tpm_send(struct tpm_chip *chip, void *cmd, size_t buflen)
-{
- return -ENODEV;
-}
static inline int tpm_get_random(struct tpm_chip *chip, u8 *data, size_t max)
{
return -ENODEV;
@@ -463,5 +502,102 @@ static inline struct tpm_chip *tpm_default_chip(void)
{
return NULL;
}
+
+static inline void tpm_buf_append_empty_auth(struct tpm_buf *buf, u32 handle)
+{
+}
#endif
+#ifdef CONFIG_TCG_TPM2_HMAC
+
+int tpm2_start_auth_session(struct tpm_chip *chip);
+void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
+ u32 handle, u8 *name);
+void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
+ u8 attributes, u8 *passphrase,
+ int passphraselen);
+static inline void tpm_buf_append_hmac_session_opt(struct tpm_chip *chip,
+ struct tpm_buf *buf,
+ u8 attributes,
+ u8 *passphrase,
+ int passphraselen)
+{
+ tpm_buf_append_hmac_session(chip, buf, attributes, passphrase,
+ passphraselen);
+}
+void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf);
+int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
+ int rc);
+void tpm2_end_auth_session(struct tpm_chip *chip);
+#else
+#include <asm/unaligned.h>
+
+static inline int tpm2_start_auth_session(struct tpm_chip *chip)
+{
+ return 0;
+}
+static inline void tpm2_end_auth_session(struct tpm_chip *chip)
+{
+}
+static inline void tpm_buf_append_name(struct tpm_chip *chip,
+ struct tpm_buf *buf,
+ u32 handle, u8 *name)
+{
+ tpm_buf_append_u32(buf, handle);
+ /* count the number of handles in the upper bits of flags */
+ buf->handles++;
+}
+static inline void tpm_buf_append_hmac_session(struct tpm_chip *chip,
+ struct tpm_buf *buf,
+ u8 attributes, u8 *passphrase,
+ int passphraselen)
+{
+ /* offset tells us where the sessions area begins */
+ int offset = buf->handles * 4 + TPM_HEADER_SIZE;
+ u32 len = 9 + passphraselen;
+
+ if (tpm_buf_length(buf) != offset) {
+ /* not the first session so update the existing length */
+ len += get_unaligned_be32(&buf->data[offset]);
+ put_unaligned_be32(len, &buf->data[offset]);
+ } else {
+ tpm_buf_append_u32(buf, len);
+ }
+ /* auth handle */
+ tpm_buf_append_u32(buf, TPM2_RS_PW);
+ /* nonce */
+ tpm_buf_append_u16(buf, 0);
+ /* attributes */
+ tpm_buf_append_u8(buf, 0);
+ /* passphrase */
+ tpm_buf_append_u16(buf, passphraselen);
+ tpm_buf_append(buf, passphrase, passphraselen);
+}
+static inline void tpm_buf_append_hmac_session_opt(struct tpm_chip *chip,
+ struct tpm_buf *buf,
+ u8 attributes,
+ u8 *passphrase,
+ int passphraselen)
+{
+ int offset = buf->handles * 4 + TPM_HEADER_SIZE;
+ struct tpm_header *head = (struct tpm_header *) buf->data;
+
+ /*
+ * if the only sessions are optional, the command tag
+ * must change to TPM2_ST_NO_SESSIONS
+ */
+ if (tpm_buf_length(buf) == offset)
+ head->tag = cpu_to_be16(TPM2_ST_NO_SESSIONS);
+}
+static inline void tpm_buf_fill_hmac_session(struct tpm_chip *chip,
+ struct tpm_buf *buf)
+{
+}
+static inline int tpm_buf_check_hmac_response(struct tpm_chip *chip,
+ struct tpm_buf *buf,
+ int rc)
+{
+ return rc;
+}
+#endif /* CONFIG_TCG_TPM2_HMAC */
+
#endif
diff --git a/lib/crypto/Kconfig b/lib/crypto/Kconfig
index 45436bfc6dff..b01253cac70a 100644
--- a/lib/crypto/Kconfig
+++ b/lib/crypto/Kconfig
@@ -8,6 +8,11 @@ config CRYPTO_LIB_UTILS
config CRYPTO_LIB_AES
tristate
+config CRYPTO_LIB_AESCFB
+ tristate
+ select CRYPTO_LIB_AES
+ select CRYPTO_LIB_UTILS
+
config CRYPTO_LIB_AESGCM
tristate
select CRYPTO_LIB_AES
diff --git a/lib/crypto/Makefile b/lib/crypto/Makefile
index 8d1446c2be71..969baab8c805 100644
--- a/lib/crypto/Makefile
+++ b/lib/crypto/Makefile
@@ -10,6 +10,9 @@ obj-$(CONFIG_CRYPTO_LIB_CHACHA_GENERIC) += libchacha.o
obj-$(CONFIG_CRYPTO_LIB_AES) += libaes.o
libaes-y := aes.o
+obj-$(CONFIG_CRYPTO_LIB_AESCFB) += libaescfb.o
+libaescfb-y := aescfb.o
+
obj-$(CONFIG_CRYPTO_LIB_AESGCM) += libaesgcm.o
libaesgcm-y := aesgcm.o
diff --git a/lib/crypto/aescfb.c b/lib/crypto/aescfb.c
new file mode 100644
index 000000000000..749dc1258a44
--- /dev/null
+++ b/lib/crypto/aescfb.c
@@ -0,0 +1,257 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Minimal library implementation of AES in CFB mode
+ *
+ * Copyright 2023 Google LLC
+ */
+
+#include <linux/module.h>
+
+#include <crypto/algapi.h>
+#include <crypto/aes.h>
+
+#include <asm/irqflags.h>
+
+static void aescfb_encrypt_block(const struct crypto_aes_ctx *ctx, void *dst,
+ const void *src)
+{
+ unsigned long flags;
+
+ /*
+ * In AES-CFB, the AES encryption operates on known 'plaintext' (the IV
+ * and ciphertext), making it susceptible to timing attacks on the
+ * encryption key. The AES library already mitigates this risk to some
+ * extent by pulling the entire S-box into the caches before doing any
+ * substitutions, but this strategy is more effective when running with
+ * interrupts disabled.
+ */
+ local_irq_save(flags);
+ aes_encrypt(ctx, dst, src);
+ local_irq_restore(flags);
+}
+
+/**
+ * aescfb_encrypt - Perform AES-CFB encryption on a block of data
+ *
+ * @ctx: The AES-CFB key schedule
+ * @dst: Pointer to the ciphertext output buffer
+ * @src: Pointer the plaintext (may equal @dst for encryption in place)
+ * @len: The size in bytes of the plaintext and ciphertext.
+ * @iv: The initialization vector (IV) to use for this block of data
+ */
+void aescfb_encrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
+ int len, const u8 iv[AES_BLOCK_SIZE])
+{
+ u8 ks[AES_BLOCK_SIZE];
+ const u8 *v = iv;
+
+ while (len > 0) {
+ aescfb_encrypt_block(ctx, ks, v);
+ crypto_xor_cpy(dst, src, ks, min(len, AES_BLOCK_SIZE));
+ v = dst;
+
+ dst += AES_BLOCK_SIZE;
+ src += AES_BLOCK_SIZE;
+ len -= AES_BLOCK_SIZE;
+ }
+
+ memzero_explicit(ks, sizeof(ks));
+}
+EXPORT_SYMBOL(aescfb_encrypt);
+
+/**
+ * aescfb_decrypt - Perform AES-CFB decryption on a block of data
+ *
+ * @ctx: The AES-CFB key schedule
+ * @dst: Pointer to the plaintext output buffer
+ * @src: Pointer the ciphertext (may equal @dst for decryption in place)
+ * @len: The size in bytes of the plaintext and ciphertext.
+ * @iv: The initialization vector (IV) to use for this block of data
+ */
+void aescfb_decrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
+ int len, const u8 iv[AES_BLOCK_SIZE])
+{
+ u8 ks[2][AES_BLOCK_SIZE];
+
+ aescfb_encrypt_block(ctx, ks[0], iv);
+
+ for (int i = 0; len > 0; i ^= 1) {
+ if (len > AES_BLOCK_SIZE)
+ /*
+ * Generate the keystream for the next block before
+ * performing the XOR, as that may update in place and
+ * overwrite the ciphertext.
+ */
+ aescfb_encrypt_block(ctx, ks[!i], src);
+
+ crypto_xor_cpy(dst, src, ks[i], min(len, AES_BLOCK_SIZE));
+
+ dst += AES_BLOCK_SIZE;
+ src += AES_BLOCK_SIZE;
+ len -= AES_BLOCK_SIZE;
+ }
+
+ memzero_explicit(ks, sizeof(ks));
+}
+EXPORT_SYMBOL(aescfb_decrypt);
+
+MODULE_DESCRIPTION("Generic AES-CFB library");
+MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>");
+MODULE_LICENSE("GPL");
+
+#ifndef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
+
+/*
+ * Test code below. Vectors taken from crypto/testmgr.h
+ */
+
+static struct {
+ u8 ptext[64];
+ u8 ctext[64];
+
+ u8 key[AES_MAX_KEY_SIZE];
+ u8 iv[AES_BLOCK_SIZE];
+
+ int klen;
+ int len;
+} const aescfb_tv[] __initconst = {
+ { /* From NIST SP800-38A */
+ .key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
+ "\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
+ .klen = 16,
+ .iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
+ "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
+ .ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
+ "\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
+ "\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
+ "\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
+ "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
+ "\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
+ "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
+ "\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
+ .ctext = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
+ "\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
+ "\xc8\xa6\x45\x37\xa0\xb3\xa9\x3f"
+ "\xcd\xe3\xcd\xad\x9f\x1c\xe5\x8b"
+ "\x26\x75\x1f\x67\xa3\xcb\xb1\x40"
+ "\xb1\x80\x8c\xf1\x87\xa4\xf4\xdf"
+ "\xc0\x4b\x05\x35\x7c\x5d\x1c\x0e"
+ "\xea\xc4\xc6\x6f\x9f\xf7\xf2\xe6",
+ .len = 64,
+ }, {
+ .key = "\x8e\x73\xb0\xf7\xda\x0e\x64\x52"
+ "\xc8\x10\xf3\x2b\x80\x90\x79\xe5"
+ "\x62\xf8\xea\xd2\x52\x2c\x6b\x7b",
+ .klen = 24,
+ .iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
+ "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
+ .ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
+ "\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
+ "\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
+ "\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
+ "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
+ "\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
+ "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
+ "\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
+ .ctext = "\xcd\xc8\x0d\x6f\xdd\xf1\x8c\xab"
+ "\x34\xc2\x59\x09\xc9\x9a\x41\x74"
+ "\x67\xce\x7f\x7f\x81\x17\x36\x21"
+ "\x96\x1a\x2b\x70\x17\x1d\x3d\x7a"
+ "\x2e\x1e\x8a\x1d\xd5\x9b\x88\xb1"
+ "\xc8\xe6\x0f\xed\x1e\xfa\xc4\xc9"
+ "\xc0\x5f\x9f\x9c\xa9\x83\x4f\xa0"
+ "\x42\xae\x8f\xba\x58\x4b\x09\xff",
+ .len = 64,
+ }, {
+ .key = "\x60\x3d\xeb\x10\x15\xca\x71\xbe"
+ "\x2b\x73\xae\xf0\x85\x7d\x77\x81"
+ "\x1f\x35\x2c\x07\x3b\x61\x08\xd7"
+ "\x2d\x98\x10\xa3\x09\x14\xdf\xf4",
+ .klen = 32,
+ .iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
+ "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
+ .ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
+ "\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
+ "\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
+ "\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
+ "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
+ "\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
+ "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
+ "\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
+ .ctext = "\xdc\x7e\x84\xbf\xda\x79\x16\x4b"
+ "\x7e\xcd\x84\x86\x98\x5d\x38\x60"
+ "\x39\xff\xed\x14\x3b\x28\xb1\xc8"
+ "\x32\x11\x3c\x63\x31\xe5\x40\x7b"
+ "\xdf\x10\x13\x24\x15\xe5\x4b\x92"
+ "\xa1\x3e\xd0\xa8\x26\x7a\xe2\xf9"
+ "\x75\xa3\x85\x74\x1a\xb9\xce\xf8"
+ "\x20\x31\x62\x3d\x55\xb1\xe4\x71",
+ .len = 64,
+ }, { /* > 16 bytes, not a multiple of 16 bytes */
+ .key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
+ "\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
+ .klen = 16,
+ .iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
+ "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
+ .ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
+ "\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
+ "\xae",
+ .ctext = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
+ "\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
+ "\xc8",
+ .len = 17,
+ }, { /* < 16 bytes */
+ .key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
+ "\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
+ .klen = 16,
+ .iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
+ "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
+ .ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f",
+ .ctext = "\x3b\x3f\xd9\x2e\xb7\x2d\xad",
+ .len = 7,
+ },
+};
+
+static int __init libaescfb_init(void)
+{
+ for (int i = 0; i < ARRAY_SIZE(aescfb_tv); i++) {
+ struct crypto_aes_ctx ctx;
+ u8 buf[64];
+
+ if (aes_expandkey(&ctx, aescfb_tv[i].key, aescfb_tv[i].klen)) {
+ pr_err("aes_expandkey() failed on vector %d\n", i);
+ return -ENODEV;
+ }
+
+ aescfb_encrypt(&ctx, buf, aescfb_tv[i].ptext, aescfb_tv[i].len,
+ aescfb_tv[i].iv);
+ if (memcmp(buf, aescfb_tv[i].ctext, aescfb_tv[i].len)) {
+ pr_err("aescfb_encrypt() #1 failed on vector %d\n", i);
+ return -ENODEV;
+ }
+
+ /* decrypt in place */
+ aescfb_decrypt(&ctx, buf, buf, aescfb_tv[i].len, aescfb_tv[i].iv);
+ if (memcmp(buf, aescfb_tv[i].ptext, aescfb_tv[i].len)) {
+ pr_err("aescfb_decrypt() failed on vector %d\n", i);
+ return -ENODEV;
+ }
+
+ /* encrypt in place */
+ aescfb_encrypt(&ctx, buf, buf, aescfb_tv[i].len, aescfb_tv[i].iv);
+ if (memcmp(buf, aescfb_tv[i].ctext, aescfb_tv[i].len)) {
+ pr_err("aescfb_encrypt() #2 failed on vector %d\n", i);
+
+ return -ENODEV;
+ }
+
+ }
+ return 0;
+}
+module_init(libaescfb_init);
+
+static void __exit libaescfb_exit(void)
+{
+}
+module_exit(libaescfb_exit);
+#endif
diff --git a/security/keys/trusted-keys/trusted_tpm1.c b/security/keys/trusted-keys/trusted_tpm1.c
index aa108bea6739..89c9798d1800 100644
--- a/security/keys/trusted-keys/trusted_tpm1.c
+++ b/security/keys/trusted-keys/trusted_tpm1.c
@@ -356,17 +356,28 @@ out:
*/
int trusted_tpm_send(unsigned char *cmd, size_t buflen)
{
+ struct tpm_buf buf;
int rc;
if (!chip)
return -ENODEV;
+ rc = tpm_try_get_ops(chip);
+ if (rc)
+ return rc;
+
+ buf.flags = 0;
+ buf.length = buflen;
+ buf.data = cmd;
dump_tpm_buf(cmd);
- rc = tpm_send(chip, cmd, buflen);
+ rc = tpm_transmit_cmd(chip, &buf, 4, "sending data");
dump_tpm_buf(cmd);
+
if (rc > 0)
- /* Can't return positive return codes values to keyctl */
+ /* TPM error */
rc = -EPERM;
+
+ tpm_put_ops(chip);
return rc;
}
EXPORT_SYMBOL_GPL(trusted_tpm_send);
@@ -407,7 +418,7 @@ static int osap(struct tpm_buf *tb, struct osapsess *s,
tpm_buf_append_u32(tb, handle);
tpm_buf_append(tb, ononce, TPM_NONCE_SIZE);
- ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
+ ret = trusted_tpm_send(tb->data, tb->length);
if (ret < 0)
return ret;
@@ -431,7 +442,7 @@ int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
return -ENODEV;
tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OIAP);
- ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
+ ret = trusted_tpm_send(tb->data, tb->length);
if (ret < 0)
return ret;
@@ -543,7 +554,7 @@ static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
tpm_buf_append_u8(tb, cont);
tpm_buf_append(tb, td->pubauth, SHA1_DIGEST_SIZE);
- ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
+ ret = trusted_tpm_send(tb->data, tb->length);
if (ret < 0)
goto out;
@@ -634,7 +645,7 @@ static int tpm_unseal(struct tpm_buf *tb,
tpm_buf_append_u8(tb, cont);
tpm_buf_append(tb, authdata2, SHA1_DIGEST_SIZE);
- ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
+ ret = trusted_tpm_send(tb->data, tb->length);
if (ret < 0) {
pr_info("authhmac failed (%d)\n", ret);
return ret;
diff --git a/security/keys/trusted-keys/trusted_tpm2.c b/security/keys/trusted-keys/trusted_tpm2.c
index bc700f85f80b..dfeec06301ce 100644
--- a/security/keys/trusted-keys/trusted_tpm2.c
+++ b/security/keys/trusted-keys/trusted_tpm2.c
@@ -228,8 +228,9 @@ int tpm2_seal_trusted(struct tpm_chip *chip,
struct trusted_key_payload *payload,
struct trusted_key_options *options)
{
+ off_t offset = TPM_HEADER_SIZE;
+ struct tpm_buf buf, sized;
int blob_len = 0;
- struct tpm_buf buf;
u32 hash;
u32 flags;
int i;
@@ -252,50 +253,58 @@ int tpm2_seal_trusted(struct tpm_chip *chip,
if (rc)
return rc;
+ rc = tpm2_start_auth_session(chip);
+ if (rc)
+ goto out_put;
+
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE);
if (rc) {
- tpm_put_ops(chip);
- return rc;
+ tpm2_end_auth_session(chip);
+ goto out_put;
}
- tpm_buf_append_u32(&buf, options->keyhandle);
- tpm2_buf_append_auth(&buf, TPM2_RS_PW,
- NULL /* nonce */, 0,
- 0 /* session_attributes */,
- options->keyauth /* hmac */,
- TPM_DIGEST_SIZE);
+ rc = tpm_buf_init_sized(&sized);
+ if (rc) {
+ tpm_buf_destroy(&buf);
+ tpm2_end_auth_session(chip);
+ goto out_put;
+ }
+
+ tpm_buf_append_name(chip, &buf, options->keyhandle, NULL);
+ tpm_buf_append_hmac_session(chip, &buf, TPM2_SA_DECRYPT,
+ options->keyauth, TPM_DIGEST_SIZE);
/* sensitive */
- tpm_buf_append_u16(&buf, 4 + options->blobauth_len + payload->key_len);
+ tpm_buf_append_u16(&sized, options->blobauth_len);
- tpm_buf_append_u16(&buf, options->blobauth_len);
if (options->blobauth_len)
- tpm_buf_append(&buf, options->blobauth, options->blobauth_len);
+ tpm_buf_append(&sized, options->blobauth, options->blobauth_len);
- tpm_buf_append_u16(&buf, payload->key_len);
- tpm_buf_append(&buf, payload->key, payload->key_len);
+ tpm_buf_append_u16(&sized, payload->key_len);
+ tpm_buf_append(&sized, payload->key, payload->key_len);
+ tpm_buf_append(&buf, sized.data, sized.length);
/* public */
- tpm_buf_append_u16(&buf, 14 + options->policydigest_len);
- tpm_buf_append_u16(&buf, TPM_ALG_KEYEDHASH);
- tpm_buf_append_u16(&buf, hash);
+ tpm_buf_reset_sized(&sized);
+ tpm_buf_append_u16(&sized, TPM_ALG_KEYEDHASH);
+ tpm_buf_append_u16(&sized, hash);
/* key properties */
flags = 0;
flags |= options->policydigest_len ? 0 : TPM2_OA_USER_WITH_AUTH;
- flags |= payload->migratable ? 0 : (TPM2_OA_FIXED_TPM |
- TPM2_OA_FIXED_PARENT);
- tpm_buf_append_u32(&buf, flags);
+ flags |= payload->migratable ? 0 : (TPM2_OA_FIXED_TPM | TPM2_OA_FIXED_PARENT);
+ tpm_buf_append_u32(&sized, flags);
/* policy */
- tpm_buf_append_u16(&buf, options->policydigest_len);
+ tpm_buf_append_u16(&sized, options->policydigest_len);
if (options->policydigest_len)
- tpm_buf_append(&buf, options->policydigest,
- options->policydigest_len);
+ tpm_buf_append(&sized, options->policydigest, options->policydigest_len);
/* public parameters */
- tpm_buf_append_u16(&buf, TPM_ALG_NULL);
- tpm_buf_append_u16(&buf, 0);
+ tpm_buf_append_u16(&sized, TPM_ALG_NULL);
+ tpm_buf_append_u16(&sized, 0);
+
+ tpm_buf_append(&buf, sized.data, sized.length);
/* outside info */
tpm_buf_append_u16(&buf, 0);
@@ -305,28 +314,30 @@ int tpm2_seal_trusted(struct tpm_chip *chip,
if (buf.flags & TPM_BUF_OVERFLOW) {
rc = -E2BIG;
+ tpm2_end_auth_session(chip);
goto out;
}
+ tpm_buf_fill_hmac_session(chip, &buf);
rc = tpm_transmit_cmd(chip, &buf, 4, "sealing data");
+ rc = tpm_buf_check_hmac_response(chip, &buf, rc);
if (rc)
goto out;
- blob_len = be32_to_cpup((__be32 *) &buf.data[TPM_HEADER_SIZE]);
- if (blob_len > MAX_BLOB_SIZE) {
+ blob_len = tpm_buf_read_u32(&buf, &offset);
+ if (blob_len > MAX_BLOB_SIZE || buf.flags & TPM_BUF_BOUNDARY_ERROR) {
rc = -E2BIG;
goto out;
}
- if (tpm_buf_length(&buf) < TPM_HEADER_SIZE + 4 + blob_len) {
+ if (buf.length - offset < blob_len) {
rc = -EFAULT;
goto out;
}
- blob_len = tpm2_key_encode(payload, options,
- &buf.data[TPM_HEADER_SIZE + 4],
- blob_len);
+ blob_len = tpm2_key_encode(payload, options, &buf.data[offset], blob_len);
out:
+ tpm_buf_destroy(&sized);
tpm_buf_destroy(&buf);
if (rc > 0) {
@@ -340,6 +351,7 @@ out:
else
payload->blob_len = blob_len;
+out_put:
tpm_put_ops(chip);
return rc;
}
@@ -409,25 +421,31 @@ static int tpm2_load_cmd(struct tpm_chip *chip,
if (blob_len > payload->blob_len)
return -E2BIG;
- rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_LOAD);
+ rc = tpm2_start_auth_session(chip);
if (rc)
return rc;
- tpm_buf_append_u32(&buf, options->keyhandle);
- tpm2_buf_append_auth(&buf, TPM2_RS_PW,
- NULL /* nonce */, 0,
- 0 /* session_attributes */,
- options->keyauth /* hmac */,
- TPM_DIGEST_SIZE);
+ rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_LOAD);
+ if (rc) {
+ tpm2_end_auth_session(chip);
+ return rc;
+ }
+
+ tpm_buf_append_name(chip, &buf, options->keyhandle, NULL);
+ tpm_buf_append_hmac_session(chip, &buf, 0, options->keyauth,
+ TPM_DIGEST_SIZE);
tpm_buf_append(&buf, blob, blob_len);
if (buf.flags & TPM_BUF_OVERFLOW) {
rc = -E2BIG;
+ tpm2_end_auth_session(chip);
goto out;
}
+ tpm_buf_fill_hmac_session(chip, &buf);
rc = tpm_transmit_cmd(chip, &buf, 4, "loading blob");
+ rc = tpm_buf_check_hmac_response(chip, &buf, rc);
if (!rc)
*blob_handle = be32_to_cpup(
(__be32 *) &buf.data[TPM_HEADER_SIZE]);
@@ -465,20 +483,44 @@ static int tpm2_unseal_cmd(struct tpm_chip *chip,
u8 *data;
int rc;
- rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_UNSEAL);
+ rc = tpm2_start_auth_session(chip);
if (rc)
return rc;
- tpm_buf_append_u32(&buf, blob_handle);
- tpm2_buf_append_auth(&buf,
- options->policyhandle ?
- options->policyhandle : TPM2_RS_PW,
- NULL /* nonce */, 0,
- TPM2_SA_CONTINUE_SESSION,
- options->blobauth /* hmac */,
- options->blobauth_len);
+ rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_UNSEAL);
+ if (rc) {
+ tpm2_end_auth_session(chip);
+ return rc;
+ }
+
+ tpm_buf_append_name(chip, &buf, blob_handle, NULL);
+
+ if (!options->policyhandle) {
+ tpm_buf_append_hmac_session(chip, &buf, TPM2_SA_ENCRYPT,
+ options->blobauth,
+ options->blobauth_len);
+ } else {
+ /*
+ * FIXME: The policy session was generated outside the
+ * kernel so we don't known the nonce and thus can't
+ * calculate a HMAC on it. Therefore, the user can
+ * only really use TPM2_PolicyPassword and we must
+ * send down the plain text password, which could be
+ * intercepted. We can still encrypt the returned
+ * key, but that's small comfort since the interposer
+ * could repeat our actions with the exfiltrated
+ * password.
+ */
+ tpm2_buf_append_auth(&buf, options->policyhandle,
+ NULL /* nonce */, 0, 0,
+ options->blobauth, options->blobauth_len);
+ tpm_buf_append_hmac_session_opt(chip, &buf, TPM2_SA_ENCRYPT,
+ NULL, 0);
+ }
+ tpm_buf_fill_hmac_session(chip, &buf);
rc = tpm_transmit_cmd(chip, &buf, 6, "unsealing");
+ rc = tpm_buf_check_hmac_response(chip, &buf, rc);
if (rc > 0)
rc = -EPERM;