diff options
author | Changbin Du <changbin.du@intel.com> | 2018-02-17 13:39:43 +0800 |
---|---|---|
committer | Jonathan Corbet <corbet@lwn.net> | 2018-03-07 10:25:54 -0700 |
commit | 3cdd868ec6fd24b103e0c7a435a99f5bd75ba6d9 (patch) | |
tree | a7442a91a9bf19ff2a29b29e85e386028482d7f5 | |
parent | 73d9812781fcdf49f279875dd8f13d31b84ccb02 (diff) | |
download | lwn-3cdd868ec6fd24b103e0c7a435a99f5bd75ba6d9.tar.gz lwn-3cdd868ec6fd24b103e0c7a435a99f5bd75ba6d9.zip |
trace doc: convert trace/events-kmem.txt to rst format
This converts the plain text documentation to reStructuredText format and
add it into Sphinx TOC tree. No essential content change.
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Changbin Du <changbin.du@intel.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
-rw-r--r-- | Documentation/trace/events-kmem.rst (renamed from Documentation/trace/events-kmem.txt) | 50 | ||||
-rw-r--r-- | Documentation/trace/index.rst | 1 |
2 files changed, 32 insertions, 19 deletions
diff --git a/Documentation/trace/events-kmem.txt b/Documentation/trace/events-kmem.rst index 194800410061..555484110e36 100644 --- a/Documentation/trace/events-kmem.txt +++ b/Documentation/trace/events-kmem.rst @@ -1,22 +1,26 @@ - Subsystem Trace Points: kmem +============================ +Subsystem Trace Points: kmem +============================ The kmem tracing system captures events related to object and page allocation within the kernel. Broadly speaking there are five major subheadings. - o Slab allocation of small objects of unknown type (kmalloc) - o Slab allocation of small objects of known type - o Page allocation - o Per-CPU Allocator Activity - o External Fragmentation + - Slab allocation of small objects of unknown type (kmalloc) + - Slab allocation of small objects of known type + - Page allocation + - Per-CPU Allocator Activity + - External Fragmentation This document describes what each of the tracepoints is and why they might be useful. 1. Slab allocation of small objects of unknown type =================================================== -kmalloc call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s -kmalloc_node call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d -kfree call_site=%lx ptr=%p +:: + + kmalloc call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s + kmalloc_node call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d + kfree call_site=%lx ptr=%p Heavy activity for these events may indicate that a specific cache is justified, particularly if kmalloc slab pages are getting significantly @@ -27,9 +31,11 @@ the allocation sites were. 2. Slab allocation of small objects of known type ================================================= -kmem_cache_alloc call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s -kmem_cache_alloc_node call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d -kmem_cache_free call_site=%lx ptr=%p +:: + + kmem_cache_alloc call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s + kmem_cache_alloc_node call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d + kmem_cache_free call_site=%lx ptr=%p These events are similar in usage to the kmalloc-related events except that it is likely easier to pin the event down to a specific cache. At the time @@ -38,10 +44,12 @@ but the call_site can usually be used to extrapolate that information. 3. Page allocation ================== -mm_page_alloc page=%p pfn=%lu order=%d migratetype=%d gfp_flags=%s -mm_page_alloc_zone_locked page=%p pfn=%lu order=%u migratetype=%d cpu=%d percpu_refill=%d -mm_page_free page=%p pfn=%lu order=%d -mm_page_free_batched page=%p pfn=%lu order=%d cold=%d +:: + + mm_page_alloc page=%p pfn=%lu order=%d migratetype=%d gfp_flags=%s + mm_page_alloc_zone_locked page=%p pfn=%lu order=%u migratetype=%d cpu=%d percpu_refill=%d + mm_page_free page=%p pfn=%lu order=%d + mm_page_free_batched page=%p pfn=%lu order=%d cold=%d These four events deal with page allocation and freeing. mm_page_alloc is a simple indicator of page allocator activity. Pages may be allocated from @@ -65,8 +73,10 @@ contention on the zone->lru_lock. 4. Per-CPU Allocator Activity ============================= -mm_page_alloc_zone_locked page=%p pfn=%lu order=%u migratetype=%d cpu=%d percpu_refill=%d -mm_page_pcpu_drain page=%p pfn=%lu order=%d cpu=%d migratetype=%d +:: + + mm_page_alloc_zone_locked page=%p pfn=%lu order=%u migratetype=%d cpu=%d percpu_refill=%d + mm_page_pcpu_drain page=%p pfn=%lu order=%d cpu=%d migratetype=%d In front of the page allocator is a per-cpu page allocator. It exists only for order-0 pages, reduces contention on the zone->lock and reduces the @@ -92,7 +102,9 @@ can be allocated and freed on the same CPU through some algorithm change. 5. External Fragmentation ========================= -mm_page_alloc_extfrag page=%p pfn=%lu alloc_order=%d fallback_order=%d pageblock_order=%d alloc_migratetype=%d fallback_migratetype=%d fragmenting=%d change_ownership=%d +:: + + mm_page_alloc_extfrag page=%p pfn=%lu alloc_order=%d fallback_order=%d pageblock_order=%d alloc_migratetype=%d fallback_migratetype=%d fragmenting=%d change_ownership=%d External fragmentation affects whether a high-order allocation will be successful or not. For some types of hardware, this is important although diff --git a/Documentation/trace/index.rst b/Documentation/trace/index.rst index b1cb48468294..95586aaa9a5f 100644 --- a/Documentation/trace/index.rst +++ b/Documentation/trace/index.rst @@ -13,3 +13,4 @@ Linux Tracing Technologies uprobetracer tracepoints events + events-kmem |