summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2023-11-10 11:09:07 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2023-11-10 11:09:07 -0800
commit391ce5b9c46ebf23cd049bb552a899dfc0cfb838 (patch)
tree14ad276b3b32fad2f9ed94ab402950f2b0457136
parentead3b62a34d829d2df38187b93a18c22b289bd9c (diff)
parent53c87e846e335e3c18044c397cc35178163d7827 (diff)
downloadlwn-391ce5b9c46ebf23cd049bb552a899dfc0cfb838.tar.gz
lwn-391ce5b9c46ebf23cd049bb552a899dfc0cfb838.zip
Merge tag 'dma-mapping-6.7-2023-11-10' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping fixes from Christoph Hellwig: - don't leave pages decrypted for DMA in encrypted memory setups linger around on failure (Petr Tesarik) - fix an out of bounds access in the new dynamic swiotlb code (Petr Tesarik) - fix dma_addressing_limited for systems with weird physical memory layouts (Jia He) * tag 'dma-mapping-6.7-2023-11-10' of git://git.infradead.org/users/hch/dma-mapping: swiotlb: fix out-of-bounds TLB allocations with CONFIG_SWIOTLB_DYNAMIC dma-mapping: fix dma_addressing_limited() if dma_range_map can't cover all system RAM dma-mapping: move dma_addressing_limited() out of line swiotlb: do not free decrypted pages if dynamic
-rw-r--r--include/linux/dma-mapping.h19
-rw-r--r--kernel/dma/direct.c40
-rw-r--r--kernel/dma/direct.h1
-rw-r--r--kernel/dma/mapping.c22
-rw-r--r--kernel/dma/swiotlb.c28
5 files changed, 86 insertions, 24 deletions
diff --git a/include/linux/dma-mapping.h b/include/linux/dma-mapping.h
index f0ccca16a0ac..4a658de44ee9 100644
--- a/include/linux/dma-mapping.h
+++ b/include/linux/dma-mapping.h
@@ -144,6 +144,7 @@ bool dma_pci_p2pdma_supported(struct device *dev);
int dma_set_mask(struct device *dev, u64 mask);
int dma_set_coherent_mask(struct device *dev, u64 mask);
u64 dma_get_required_mask(struct device *dev);
+bool dma_addressing_limited(struct device *dev);
size_t dma_max_mapping_size(struct device *dev);
size_t dma_opt_mapping_size(struct device *dev);
bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
@@ -264,6 +265,10 @@ static inline u64 dma_get_required_mask(struct device *dev)
{
return 0;
}
+static inline bool dma_addressing_limited(struct device *dev)
+{
+ return false;
+}
static inline size_t dma_max_mapping_size(struct device *dev)
{
return 0;
@@ -465,20 +470,6 @@ static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
return dma_set_mask_and_coherent(dev, mask);
}
-/**
- * dma_addressing_limited - return if the device is addressing limited
- * @dev: device to check
- *
- * Return %true if the devices DMA mask is too small to address all memory in
- * the system, else %false. Lack of addressing bits is the prime reason for
- * bounce buffering, but might not be the only one.
- */
-static inline bool dma_addressing_limited(struct device *dev)
-{
- return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
- dma_get_required_mask(dev);
-}
-
static inline unsigned int dma_get_max_seg_size(struct device *dev)
{
if (dev->dma_parms && dev->dma_parms->max_segment_size)
diff --git a/kernel/dma/direct.c b/kernel/dma/direct.c
index ed3056eb20b8..73c95815789a 100644
--- a/kernel/dma/direct.c
+++ b/kernel/dma/direct.c
@@ -587,6 +587,46 @@ int dma_direct_supported(struct device *dev, u64 mask)
return mask >= phys_to_dma_unencrypted(dev, min_mask);
}
+/*
+ * To check whether all ram resource ranges are covered by dma range map
+ * Returns 0 when further check is needed
+ * Returns 1 if there is some RAM range can't be covered by dma_range_map
+ */
+static int check_ram_in_range_map(unsigned long start_pfn,
+ unsigned long nr_pages, void *data)
+{
+ unsigned long end_pfn = start_pfn + nr_pages;
+ const struct bus_dma_region *bdr = NULL;
+ const struct bus_dma_region *m;
+ struct device *dev = data;
+
+ while (start_pfn < end_pfn) {
+ for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
+ unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
+
+ if (start_pfn >= cpu_start_pfn &&
+ start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) {
+ bdr = m;
+ break;
+ }
+ }
+ if (!bdr)
+ return 1;
+
+ start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
+ }
+
+ return 0;
+}
+
+bool dma_direct_all_ram_mapped(struct device *dev)
+{
+ if (!dev->dma_range_map)
+ return true;
+ return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
+ check_ram_in_range_map);
+}
+
size_t dma_direct_max_mapping_size(struct device *dev)
{
/* If SWIOTLB is active, use its maximum mapping size */
diff --git a/kernel/dma/direct.h b/kernel/dma/direct.h
index 97ec892ea0b5..18d346118fe8 100644
--- a/kernel/dma/direct.h
+++ b/kernel/dma/direct.h
@@ -20,6 +20,7 @@ int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr);
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, unsigned long attrs);
+bool dma_direct_all_ram_mapped(struct device *dev);
size_t dma_direct_max_mapping_size(struct device *dev);
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
diff --git a/kernel/dma/mapping.c b/kernel/dma/mapping.c
index e323ca48f7f2..58db8fd70471 100644
--- a/kernel/dma/mapping.c
+++ b/kernel/dma/mapping.c
@@ -793,6 +793,28 @@ int dma_set_coherent_mask(struct device *dev, u64 mask)
}
EXPORT_SYMBOL(dma_set_coherent_mask);
+/**
+ * dma_addressing_limited - return if the device is addressing limited
+ * @dev: device to check
+ *
+ * Return %true if the devices DMA mask is too small to address all memory in
+ * the system, else %false. Lack of addressing bits is the prime reason for
+ * bounce buffering, but might not be the only one.
+ */
+bool dma_addressing_limited(struct device *dev)
+{
+ const struct dma_map_ops *ops = get_dma_ops(dev);
+
+ if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
+ dma_get_required_mask(dev))
+ return true;
+
+ if (unlikely(ops))
+ return false;
+ return !dma_direct_all_ram_mapped(dev);
+}
+EXPORT_SYMBOL_GPL(dma_addressing_limited);
+
size_t dma_max_mapping_size(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
diff --git a/kernel/dma/swiotlb.c b/kernel/dma/swiotlb.c
index 26202274784f..33d942615be5 100644
--- a/kernel/dma/swiotlb.c
+++ b/kernel/dma/swiotlb.c
@@ -283,7 +283,8 @@ static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
}
for (i = 0; i < mem->nslabs; i++) {
- mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
+ mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i),
+ mem->nslabs - i);
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
mem->slots[i].alloc_size = 0;
}
@@ -558,29 +559,40 @@ void __init swiotlb_exit(void)
* alloc_dma_pages() - allocate pages to be used for DMA
* @gfp: GFP flags for the allocation.
* @bytes: Size of the buffer.
+ * @phys_limit: Maximum allowed physical address of the buffer.
*
* Allocate pages from the buddy allocator. If successful, make the allocated
* pages decrypted that they can be used for DMA.
*
- * Return: Decrypted pages, or %NULL on failure.
+ * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN)
+ * if the allocated physical address was above @phys_limit.
*/
-static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes)
+static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit)
{
unsigned int order = get_order(bytes);
struct page *page;
+ phys_addr_t paddr;
void *vaddr;
page = alloc_pages(gfp, order);
if (!page)
return NULL;
- vaddr = page_address(page);
+ paddr = page_to_phys(page);
+ if (paddr + bytes - 1 > phys_limit) {
+ __free_pages(page, order);
+ return ERR_PTR(-EAGAIN);
+ }
+
+ vaddr = phys_to_virt(paddr);
if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
goto error;
return page;
error:
- __free_pages(page, order);
+ /* Intentional leak if pages cannot be encrypted again. */
+ if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
+ __free_pages(page, order);
return NULL;
}
@@ -618,11 +630,7 @@ static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
else if (phys_limit <= DMA_BIT_MASK(32))
gfp |= __GFP_DMA32;
- while ((page = alloc_dma_pages(gfp, bytes)) &&
- page_to_phys(page) + bytes - 1 > phys_limit) {
- /* allocated, but too high */
- __free_pages(page, get_order(bytes));
-
+ while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) {
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
phys_limit < DMA_BIT_MASK(64) &&
!(gfp & (__GFP_DMA32 | __GFP_DMA)))