summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSean Christopherson <seanjc@google.com>2022-09-21 00:31:58 +0000
committerPaolo Bonzini <pbonzini@redhat.com>2022-09-26 12:37:20 -0400
commit1e17a6f8721ca165e0883fae00cb6d1b95d748d6 (patch)
tree270433a5a9bf1b0a7ed4762a50104f98338e43ed
parentea2f00c6219e654ed7cdd11478001ea9df036bd4 (diff)
downloadlwn-1e17a6f8721ca165e0883fae00cb6d1b95d748d6.tar.gz
lwn-1e17a6f8721ca165e0883fae00cb6d1b95d748d6.zip
KVM: x86: Don't snapshot pending INIT/SIPI prior to checking nested events
Don't snapshot pending INIT/SIPI events prior to checking nested events, architecturally there's nothing wrong with KVM processing (dropping) a SIPI that is received immediately after synthesizing a VM-Exit. Taking and consuming the snapshot makes the flow way more subtle than it needs to be, e.g. nVMX consumes/clears events that trigger VM-Exit (INIT/SIPI), and so at first glance it appears that KVM is double-dipping on pending INITs and SIPIs. But that's not the case because INIT is blocked unconditionally in VMX root mode the CPU cannot be in wait-for_SIPI after VM-Exit, i.e. the paths that truly consume the snapshot are unreachable if apic->pending_events is modified by kvm_check_nested_events(). nSVM is a similar story as GIF is cleared by the CPU on VM-Exit; INIT is blocked regardless of whether or not it was pending prior to VM-Exit. Drop the snapshot logic so that a future fix doesn't create weirdness when kvm_vcpu_running()'s call to kvm_check_nested_events() is moved to vcpu_block(). In that case, kvm_check_nested_events() will be called immediately before kvm_apic_accept_events(), which raises the obvious question of why that change doesn't break the snapshot logic. Note, there is a subtle functional change. Previously, KVM would clear pending SIPIs if and only SIPI was pending prior to VM-Exit, whereas now KVM clears pending SIPI unconditionally if INIT+SIPI are blocked. The latter is architecturally allowed, as SIPI is ignored if the CPU is not in wait-for-SIPI mode (arguably, KVM should be even more aggressive in dropping SIPIs). It is software's responsibility to ensure the SIPI is delivered, i.e. software shouldn't be firing INIT-SIPI at a CPU until it knows with 100% certaining that the target CPU isn't in VMX root mode. Furthermore, the existing code is extra weird as SIPIs that arrive after VM-Exit _are_ dropped if there also happened to be a pending SIPI before VM-Exit. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220921003201.1441511-10-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-rw-r--r--arch/x86/kvm/lapic.c36
1 files changed, 10 insertions, 26 deletions
diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c
index 2bd90effc653..d7639d126e6c 100644
--- a/arch/x86/kvm/lapic.c
+++ b/arch/x86/kvm/lapic.c
@@ -3025,17 +3025,8 @@ int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
struct kvm_lapic *apic = vcpu->arch.apic;
u8 sipi_vector;
int r;
- unsigned long pe;
- if (!lapic_in_kernel(vcpu))
- return 0;
-
- /*
- * Read pending events before calling the check_events
- * callback.
- */
- pe = smp_load_acquire(&apic->pending_events);
- if (!pe)
+ if (!kvm_apic_has_pending_init_or_sipi(vcpu))
return 0;
if (is_guest_mode(vcpu)) {
@@ -3043,38 +3034,31 @@ int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
if (r < 0)
return r == -EBUSY ? 0 : r;
/*
- * If an event has happened and caused a vmexit,
- * we know INITs are latched and therefore
- * we will not incorrectly deliver an APIC
- * event instead of a vmexit.
+ * Continue processing INIT/SIPI even if a nested VM-Exit
+ * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
+ * are blocked as a result of transitioning to VMX root mode.
*/
}
/*
- * INITs are blocked while CPU is in specific states
- * (SMM, VMX root mode, SVM with GIF=0).
- * Because a CPU cannot be in these states immediately
- * after it has processed an INIT signal (and thus in
- * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
- * and leave the INIT pending.
+ * INITs are blocked while CPU is in specific states (SMM, VMX root
+ * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
+ * wait-for-SIPI (WFS).
*/
if (!kvm_apic_init_sipi_allowed(vcpu)) {
WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
- if (test_bit(KVM_APIC_SIPI, &pe))
- clear_bit(KVM_APIC_SIPI, &apic->pending_events);
+ clear_bit(KVM_APIC_SIPI, &apic->pending_events);
return 0;
}
- if (test_bit(KVM_APIC_INIT, &pe)) {
- clear_bit(KVM_APIC_INIT, &apic->pending_events);
+ if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
kvm_vcpu_reset(vcpu, true);
if (kvm_vcpu_is_bsp(apic->vcpu))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
else
vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
}
- if (test_bit(KVM_APIC_SIPI, &pe)) {
- clear_bit(KVM_APIC_SIPI, &apic->pending_events);
+ if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
/* evaluate pending_events before reading the vector */
smp_rmb();