// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2015-2018 Linaro Limited.
*
* Author: Tor Jeremiassen <tor@ti.com>
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/types.h>
#include <stdlib.h>
#include "auxtrace.h"
#include "color.h"
#include "cs-etm.h"
#include "cs-etm-decoder/cs-etm-decoder.h"
#include "debug.h"
#include "evlist.h"
#include "intlist.h"
#include "machine.h"
#include "map.h"
#include "perf.h"
#include "thread.h"
#include "thread_map.h"
#include "thread-stack.h"
#include "util.h"
#define MAX_TIMESTAMP (~0ULL)
/*
* A64 instructions are always 4 bytes
*
* Only A64 is supported, so can use this constant for converting between
* addresses and instruction counts, calculting offsets etc
*/
#define A64_INSTR_SIZE 4
struct cs_etm_auxtrace {
struct auxtrace auxtrace;
struct auxtrace_queues queues;
struct auxtrace_heap heap;
struct itrace_synth_opts synth_opts;
struct perf_session *session;
struct machine *machine;
struct thread *unknown_thread;
u8 timeless_decoding;
u8 snapshot_mode;
u8 data_queued;
u8 sample_branches;
u8 sample_instructions;
int num_cpu;
u32 auxtrace_type;
u64 branches_sample_type;
u64 branches_id;
u64 instructions_sample_type;
u64 instructions_sample_period;
u64 instructions_id;
u64 **metadata;
u64 kernel_start;
unsigned int pmu_type;
};
struct cs_etm_queue {
struct cs_etm_auxtrace *etm;
struct thread *thread;
struct cs_etm_decoder *decoder;
struct auxtrace_buffer *buffer;
const struct cs_etm_state *state;
union perf_event *event_buf;
unsigned int queue_nr;
pid_t pid, tid;
int cpu;
u64 time;
u64 timestamp;
u64 offset;
u64 period_instructions;
struct branch_stack *last_branch;
struct branch_stack *last_branch_rb;
size_t last_branch_pos;
struct cs_etm_packet *prev_packet;
struct cs_etm_packet *packet;
};
static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
pid_t tid, u64 time_);
static void cs_etm__packet_dump(const char *pkt_string)
{
const char *color = PERF_COLOR_BLUE;
int len = strlen(pkt_string);
if (len && (pkt_string[len-1] == '\n'))
color_fprintf(stdout, color, " %s", pkt_string);
else
color_fprintf(stdout, color, " %s\n", pkt_string);
fflush(stdout);
}
static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
struct auxtrace_buffer *buffer)
{
int i, ret;
const char *color = PERF_COLOR_BLUE;
struct cs_etm_decoder_params d_params;
struct cs_etm_trace_params *t_params;
struct cs_etm_decoder *decoder;
size_t buffer_used = 0;
fprintf(stdout, "\n");
color_fprintf(stdout, color,
". ... CoreSight ETM Trace data: size %zu bytes\n",
buffer->size);
/* Use metadata to fill in trace parameters for trace decoder */
t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
for (i = 0; i < etm->num_cpu; i++) {
t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
t_params[i].etmv4.reg_configr =
etm->metadata[i][CS_ETMV4_TRCCONFIGR];
t_params[i].etmv4.reg_traceidr =
etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
}
/* Set decoder parameters to simply print the trace packets */
d_params.packet_printer = cs_etm__packet_dump;
d_params.operation = CS_ETM_OPERATION_PRINT;
d_params.formatted = true;
d_params.fsyncs = false;
d_params.hsyncs = false;
d_params.frame_aligned = true;
decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
zfree(&t_params);
if (!decoder)
return;
do {
size_t consumed;
ret = cs_etm_decoder__process_data_block(
decoder, buffer->offset,
&((u8 *)buffer->data)[buffer_used],
buffer->size - buffer_used, &consumed);
if (ret)
break;
buffer_used += consumed;
} while (buffer_used < buffer->size);
cs_etm_decoder__free(decoder);
}
static int cs_etm__flush_events(struct perf_session *session,
struct perf_tool *tool)
{
int ret;
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
if (dump_trace)
return 0;
if (!tool->ordered_events)
return -EINVAL;
if (!etm->timeless_decoding)
return -EINVAL;
ret = cs_etm__update_queues(etm);
if (ret < 0)
return ret;
return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1);
}
static void cs_etm__free_queue(void *priv)
{
struct cs_etm_queue *etmq = priv;
if (!etmq)
return;
thread__zput(etmq->thread);
cs_etm_decoder__free(etmq->decoder);
zfree(&etmq->event_buf);
zfree(&etmq->last_branch);
zfree(&etmq->last_branch_rb);
zfree(&etmq->prev_packet);
zfree(&etmq->packet);
free(etmq);
}
static void cs_etm__free_events(struct perf_session *session)
{
unsigned int i;
struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
struct auxtrace_queues *queues = &aux->queues;
for (i = 0; i < queues->nr_queues; i++) {
cs_etm__free_queue(queues->queue_array[i].priv);
queues->queue_array[i].priv = NULL;
}
auxtrace_queues__free(queues);
}
static void cs_etm__free(struct perf_session *session)
{
int i;
struct int_node *inode, *tmp;
struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
cs_etm__free_events(session);
session->auxtrace = NULL;
/* First remove all traceID/CPU# nodes for the RB tree */
intlist__for_each_entry_safe(inode, tmp, traceid_list)
intlist__remove(traceid_list, inode);
/* Then the RB tree itself */
intlist__delete(traceid_list);
for (i = 0; i < aux->num_cpu; i++)
zfree(&aux->metadata[i]);
thread__zput(aux->unknown_thread);
zfree(&aux->metadata);
zfree(&aux);
}
static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address,
size_t size, u8 *buffer)
{
u8 cpumode;
u64 offset;
int len;
struct thread *thread;
struct machine *machine;
struct addr_location al;
if (!etmq)
return -1;
machine = etmq->etm->machine;
if (address >= etmq->etm->kernel_start)
cpumode = PERF_RECORD_MISC_KERNEL;
else
cpumode = PERF_RECORD_MISC_USER;
thread = etmq->thread;
if (!thread) {
if (cpumode != PERF_RECORD_MISC_KERNEL)
return -EINVAL;
thread = etmq->etm->unknown_thread;
}
if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
return 0;
if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
return 0;
offset = al.map->map_ip(al.map, address);
map__load(al.map);
len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
if (len <= 0)
return 0;
return len;
}
static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
unsigned int queue_nr)
{
int i;
struct cs_etm_decoder_params d_params;
struct cs_etm_trace_params *t_params;
struct cs_etm_queue *etmq;
size_t szp = sizeof(struct cs_etm_packet);
etmq = zalloc(sizeof(*etmq));
if (!etmq)
return NULL;
etmq->packet = zalloc(szp);
if (!etmq->packet)
goto out_free;
if (etm->synth_opts.last_branch || etm->sample_branches) {
etmq->prev_packet = zalloc(szp);
if (!etmq->prev_packet)
goto out_free;
}
if (etm->synth_opts.last_branch) {
size_t sz = sizeof(struct branch_stack);
sz += etm->synth_opts.last_branch_sz *
sizeof(struct branch_entry);
etmq->last_branch = zalloc(sz);
if (!etmq->last_branch)
goto out_free;
etmq->last_branch_rb = zalloc(sz);
if (!etmq->last_branch_rb)
goto out_free;
}
etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
if (!etmq->event_buf)
goto out_free;
etmq->etm = etm;
etmq->queue_nr = queue_nr;
etmq->pid = -1;
etmq->tid = -1;
etmq->cpu = -1;
/* Use metadata to fill in trace parameters for trace decoder */
t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
if (!t_params)
goto out_free;
for (i = 0; i < etm->num_cpu; i++) {
t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
t_params[i].etmv4.reg_configr =
etm->metadata[i][CS_ETMV4_TRCCONFIGR];
t_params[i].etmv4.reg_traceidr =
etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
}
/* Set decoder parameters to simply print the trace packets */
d_params.packet_printer = cs_etm__packet_dump;
d_params.operation = CS_ETM_OPERATION_DECODE;
d_params.formatted = true;
d_params.fsyncs = false;
d_params.hsyncs = false;
d_params.frame_aligned = true;
d_params.data = etmq;
etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
zfree(&t_params);
if (!etmq->decoder)
goto out_free;
/*
* Register a function to handle all memory accesses required by
* the trace decoder library.
*/
if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
0x0L, ((u64) -1L),
cs_etm__mem_access))
goto out_free_decoder;
etmq->offset = 0;
etmq->period_instructions = 0;
return etmq;
out_free_decoder:
cs_etm_decoder__free(etmq->decoder);
out_free:
zfree(&etmq->event_buf);
zfree(&etmq->last_branch);
zfree(&etmq->last_branch_rb);
zfree(&etmq->prev_packet);
zfree(&etmq->packet);
free(etmq);
return NULL;
}
static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
struct auxtrace_queue *queue,
unsigned int queue_nr)
{
struct cs_etm_queue *etmq = queue->priv;
if (list_empty(&queue->head) || etmq)
return 0;
etmq = cs_etm__alloc_queue(etm, queue_nr);
if (!etmq)
return -ENOMEM;
queue->priv = etmq;
if (queue->cpu != -1)
etmq->cpu = queue->cpu;
etmq->tid = queue->tid;
return 0;
}
static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
{
unsigned int i;
int ret;
for (i = 0; i < etm->queues.nr_queues; i++) {
ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
if (ret)
return ret;
}
return 0;
}
static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
{
if (etm->queues.new_data) {
etm->queues.new_data = false;
return cs_etm__setup_queues(etm);
}
return 0;
}
static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq)
{
struct branch_stack *bs_src = etmq->last_branch_rb;
struct branch_stack *bs_dst = etmq->last_branch;
size_t nr = 0;
/*
* Set the number of records before early exit: ->nr is used to
* determine how many branches to copy from ->entries.
*/
bs_dst->nr = bs_src->nr;
/*
* Early exit when there is nothing to copy.
*/
if (!bs_src->nr)
return;
/*
* As bs_src->entries is a circular buffer, we need to copy from it in
* two steps. First, copy the branches from the most recently inserted
* branch ->last_branch_pos until the end of bs_src->entries buffer.
*/
nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos;
memcpy(&bs_dst->entries[0],
&bs_src->entries[etmq->last_branch_pos],
sizeof(struct branch_entry) * nr);
/*
* If we wrapped around at least once, the branches from the beginning
* of the bs_src->entries buffer and until the ->last_branch_pos element
* are older valid branches: copy them over. The total number of
* branches copied over will be equal to the number of branches asked by
* the user in last_branch_sz.
*/
if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
memcpy(&bs_dst->entries[nr],
&bs_src->entries[0],
sizeof(struct branch_entry) * etmq->last_branch_pos);
}
}
static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq)
{
etmq->last_branch_pos = 0;
etmq->last_branch_rb->nr = 0;
}
static inline u64 cs_etm__last_executed_instr(struct cs_etm_packet *packet)
{
/*
* The packet records the execution range with an exclusive end address
*
* A64 instructions are constant size, so the last executed
* instruction is A64_INSTR_SIZE before the end address
* Will need to do instruction level decode for T32 instructions as
* they can be variable size (not yet supported).
*/
return packet->end_addr - A64_INSTR_SIZE;
}
static inline u64 cs_etm__instr_count(const struct cs_etm_packet *packet)
{
/*
* Only A64 instructions are currently supported, so can get
* instruction count by dividing.
* Will need to do instruction level decode for T32 instructions as
* they can be variable size (not yet supported).
*/
return (packet->end_addr - packet->start_addr) / A64_INSTR_SIZE;
}
static inline u64 cs_etm__instr_addr(const struct cs_etm_packet *packet,
u64 offset)
{
/*
* Only A64 instructions are currently supported, so can get
* instruction address by muliplying.
* Will need to do instruction level decode for T32 instructions as
* they can be variable size (not yet supported).
*/
return packet->start_addr + offset * A64_INSTR_SIZE;
}
static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq)
{
struct branch_stack *bs = etmq->last_branch_rb;
struct branch_entry *be;
/*
* The branches are recorded in a circular buffer in reverse
* chronological order: we start recording from the last element of the
* buffer down. After writing the first element of the stack, move the
* insert position back to the end of the buffer.
*/
if (!etmq->last_branch_pos)
etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
etmq->last_branch_pos -= 1;
be = &bs->entries[etmq->last_branch_pos];
be->from = cs_etm__last_executed_instr(etmq->prev_packet);
be->to = etmq->packet->start_addr;
/* No support for mispredict */
be->flags.mispred = 0;
be->flags.predicted = 1;
/*
* Increment bs->nr until reaching the number of last branches asked by
* the user on the command line.
*/
if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
bs->nr += 1;
}
static int cs_etm__inject_event(union perf_event *event,
struct perf_sample *sample, u64 type)
{
event->header.size = perf_event__sample_event_size(sample, type, 0);
return perf_event__synthesize_sample(event, type, 0, sample);
}
static int
cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq)
{
struct auxtrace_buffer *aux_buffer = etmq->buffer;
struct auxtrace_buffer *old_buffer = aux_buffer;
struct auxtrace_queue *queue;
queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
/* If no more data, drop the previous auxtrace_buffer and return */
if (!aux_buffer) {
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
buff->len = 0;
return 0;
}
etmq->buffer = aux_buffer;
/* If the aux_buffer doesn't have data associated, try to load it */
if (!aux_buffer->data) {
/* get the file desc associated with the perf data file */
int fd = perf_data__fd(etmq->etm->session->data);
aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
if (!aux_buffer->data)
return -ENOMEM;
}
/* If valid, drop the previous buffer */
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
buff->offset = aux_buffer->offset;
buff->len = aux_buffer->size;
buff->buf = aux_buffer->data;
buff->ref_timestamp = aux_buffer->reference;
return buff->len;
}
static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
struct auxtrace_queue *queue)
{
struct cs_etm_queue *etmq = queue->priv;
/* CPU-wide tracing isn't supported yet */
if (queue->tid == -1)
return;
if ((!etmq->thread) && (etmq->tid != -1))
etmq->thread = machine__find_thread(etm->machine, -1,
etmq->tid);
if (etmq->thread) {
etmq->pid = etmq->thread->pid_;
if (queue->cpu == -1)
etmq->cpu = etmq->thread->cpu;
}
}
static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
u64 addr, u64 period)
{
int ret = 0;
struct cs_etm_auxtrace *etm = etmq->etm;
union perf_event *event = etmq->event_buf;
struct perf_sample sample = {.ip = 0,};
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.misc = PERF_RECORD_MISC_USER;
event->sample.header.size = sizeof(struct perf_event_header);
sample.ip = addr;
sample.pid = etmq->pid;
sample.tid = etmq->tid;
sample.id = etmq->etm->instructions_id;
sample.stream_id = etmq->etm->instructions_id;
sample.period = period;
sample.cpu = etmq->packet->cpu;
sample.flags = 0;
sample.insn_len = 1;
sample.cpumode = event->header.misc;
if (etm->synth_opts.last_branch) {
cs_etm__copy_last_branch_rb(etmq);
sample.branch_stack = etmq->last_branch;
}
if (etm->synth_opts.inject) {
ret = cs_etm__inject_event(event, &sample,
etm->instructions_sample_type);
if (ret)
return ret;
}
ret = perf_session__deliver_synth_event(etm->session, event, &sample);
if (ret)
pr_err(
"CS ETM Trace: failed to deliver instruction event, error %d\n",
ret);
if (etm->synth_opts.last_branch)
cs_etm__reset_last_branch_rb(etmq);
return ret;
}
/*
* The cs etm packet encodes an instruction range between a branch target
* and the next taken branch. Generate sample accordingly.
*/
static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq)
{
int ret = 0;
struct cs_etm_auxtrace *etm = etmq->etm;
struct perf_sample sample = {.ip = 0,};
union perf_event *event = etmq->event_buf;
struct dummy_branch_stack {
u64 nr;
struct branch_entry entries;
} dummy_bs;
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.misc = PERF_RECORD_MISC_USER;
event->sample.header.size = sizeof(struct perf_event_header);
sample.ip = cs_etm__last_executed_instr(etmq->prev_packet);
sample.pid = etmq->pid;
sample.tid = etmq->tid;
sample.addr = etmq->packet->start_addr;
sample.id = etmq->etm->branches_id;
sample.stream_id = etmq->etm->branches_id;
sample.period = 1;
sample.cpu = etmq->packet->cpu;
sample.flags = 0;
sample.cpumode = PERF_RECORD_MISC_USER;
/*
* perf report cannot handle events without a branch stack
*/
if (etm->synth_opts.last_branch) {
dummy_bs = (struct dummy_branch_stack){
.nr = 1,
.entries = {
.from = sample.ip,
.to = sample.addr,
},
};
sample.branch_stack = (struct branch_stack *)&dummy_bs;
}
if (etm->synth_opts.inject) {
ret = cs_etm__inject_event(event, &sample,
etm->branches_sample_type);
if (ret)
return ret;
}
ret = perf_session__deliver_synth_event(etm->session, event, &sample);
if (ret)
pr_err(
"CS ETM Trace: failed to deliver instruction event, error %d\n",
ret);
return ret;
}
struct cs_etm_synth {
struct perf_tool dummy_tool;
struct perf_session *session;
};
static int cs_etm__event_synth(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
struct cs_etm_synth *cs_etm_synth =
container_of(tool, struct cs_etm_synth, dummy_tool);
return perf_session__deliver_synth_event(cs_etm_synth->session,
event, NULL);
}
static int cs_etm__synth_event(struct perf_session *session,
struct perf_event_attr *attr, u64 id)
{
struct cs_etm_synth cs_etm_synth;
memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
cs_etm_synth.session = session;
return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
&id, cs_etm__event_synth);
}
static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
struct perf_session *session)
{
struct perf_evlist *evlist = session->evlist;
struct perf_evsel *evsel;
struct perf_event_attr attr;
bool found = false;
u64 id;
int err;
evlist__for_each_entry(evlist, evsel) {
if (evsel->attr.type == etm->pmu_type) {
found = true;
break;
}
}
if (!found) {
pr_debug("No selected events with CoreSight Trace data\n");
return 0;
}
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.size = sizeof(struct perf_event_attr);
attr.type = PERF_TYPE_HARDWARE;
attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
PERF_SAMPLE_PERIOD;
if (etm->timeless_decoding)
attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
else
attr.sample_type |= PERF_SAMPLE_TIME;
attr.exclude_user = evsel->attr.exclude_user;
attr.exclude_kernel = evsel->attr.exclude_kernel;
attr.exclude_hv = evsel->attr.exclude_hv;
attr.exclude_host = evsel->attr.exclude_host;
attr.exclude_guest = evsel->attr.exclude_guest;
attr.sample_id_all = evsel->attr.sample_id_all;
attr.read_format = evsel->attr.read_format;
/* create new id val to be a fixed offset from evsel id */
id = evsel->id[0] + 1000000000;
if (!id)
id = 1;
if (etm->synth_opts.branches) {
attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
attr.sample_period = 1;
attr.sample_type |= PERF_SAMPLE_ADDR;
err = cs_etm__synth_event(session, &attr, id);
if (err)
return err;
etm->sample_branches = true;
etm->branches_sample_type = attr.sample_type;
etm->branches_id = id;
id += 1;
attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
}
if (etm->synth_opts.last_branch)
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
if (etm->synth_opts.instructions) {
attr.config = PERF_COUNT_HW_INSTRUCTIONS;
attr.sample_period = etm->synth_opts.period;
etm->instructions_sample_period = attr.sample_period;
err = cs_etm__synth_event(session, &attr, id);
if (err)
return err;
etm->sample_instructions = true;
etm->instructions_sample_type = attr.sample_type;
etm->instructions_id = id;
id += 1;
}
return 0;
}
static int cs_etm__sample(struct cs_etm_queue *etmq)
{
struct cs_etm_auxtrace *etm = etmq->etm;
struct cs_etm_packet *tmp;
int ret;
u64 instrs_executed;
instrs_executed = cs_etm__instr_count(etmq->packet);
etmq->period_instructions += instrs_executed;
/*
* Record a branch when the last instruction in
* PREV_PACKET is a branch.
*/
if (etm->synth_opts.last_branch &&
etmq->prev_packet &&
etmq->prev_packet->sample_type == CS_ETM_RANGE &&
etmq->prev_packet->last_instr_taken_branch)
cs_etm__update_last_branch_rb(etmq);
if (etm->sample_instructions &&
etmq->period_instructions >= etm->instructions_sample_period) {
/*
* Emit instruction sample periodically
* TODO: allow period to be defined in cycles and clock time
*/
/* Get number of instructions executed after the sample point */
u64 instrs_over = etmq->period_instructions -
etm->instructions_sample_period;
/*
* Calculate the address of the sampled instruction (-1 as
* sample is reported as though instruction has just been
* executed, but PC has not advanced to next instruction)
*/
u64 offset = (instrs_executed - instrs_over - 1);
u64 addr = cs_etm__instr_addr(etmq->packet, offset);
ret = cs_etm__synth_instruction_sample(
etmq, addr, etm->instructions_sample_period);
if (ret)
return ret;
/* Carry remaining instructions into next sample period */
etmq->period_instructions = instrs_over;
}
if (etm->sample_branches &&
etmq->prev_packet &&
etmq->prev_packet->sample_type == CS_ETM_RANGE &&
etmq->prev_packet->last_instr_taken_branch) {
ret = cs_etm__synth_branch_sample(etmq);
if (ret)
return ret;
}
if (etm->sample_branches || etm->synth_opts.last_branch) {
/*
* Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
* the next incoming packet.
*/
tmp = etmq->packet;
etmq->packet = etmq->prev_packet;
etmq->prev_packet = tmp;
}
return 0;
}
static int cs_etm__flush(struct cs_etm_queue *etmq)
{
int err = 0;
struct cs_etm_packet *tmp;
if (etmq->etm->synth_opts.last_branch &&
etmq->prev_packet &&
etmq->prev_packet->sample_type == CS_ETM_RANGE) {
/*
* Generate a last branch event for the branches left in the
* circular buffer at the end of the trace.
*
* Use the address of the end of the last reported execution
* range
*/
u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);
err = cs_etm__synth_instruction_sample(
etmq, addr,
etmq->period_instructions);
etmq->period_instructions = 0;
/*
* Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
* the next incoming packet.
*/
tmp = etmq->packet;
etmq->packet = etmq->prev_packet;
etmq->prev_packet = tmp;
}
return err;
}
static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
{
struct cs_etm_auxtrace *etm = etmq->etm;
struct cs_etm_buffer buffer;
size_t buffer_used, processed;
int err = 0;
if (!etm->kernel_start)
etm->kernel_start = machine__kernel_start(etm->machine);
/* Go through each buffer in the queue and decode them one by one */
while (1) {
buffer_used = 0;
memset(&buffer, 0, sizeof(buffer));
err = cs_etm__get_trace(&buffer, etmq);
if (err <= 0)
return err;
/*
* We cannot assume consecutive blocks in the data file are
* contiguous, reset the decoder to force re-sync.
*/
err = cs_etm_decoder__reset(etmq->decoder);
if (err != 0)
return err;
/* Run trace decoder until buffer consumed or end of trace */
do {
processed = 0;
err = cs_etm_decoder__process_data_block(
etmq->decoder,
etmq->offset,
&buffer.buf[buffer_used],
buffer.len - buffer_used,
&processed);
if (err)
return err;
etmq->offset += processed;
buffer_used += processed;
/* Process each packet in this chunk */
while (1) {
err = cs_etm_decoder__get_packet(etmq->decoder,
etmq->packet);
if (err <= 0)
/*
* Stop processing this chunk on
* end of data or error
*/
break;
switch (etmq->packet->sample_type) {
case CS_ETM_RANGE:
/*
* If the packet contains an instruction
* range, generate instruction sequence
* events.
*/
cs_etm__sample(etmq);
break;
case CS_ETM_TRACE_ON:
/*
* Discontinuity in trace, flush
* previous branch stack
*/
cs_etm__flush(etmq);
break;
default:
break;
}
}
} while (buffer.len > buffer_used);
if (err == 0)
/* Flush any remaining branch stack entries */
err = cs_etm__flush(etmq);
}
return err;
}
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
pid_t tid, u64 time_)
{
unsigned int i;
struct auxtrace_queues *queues = &etm->queues;
for (i = 0; i < queues->nr_queues; i++) {
struct auxtrace_queue *queue = &etm->queues.queue_array[i];
struct cs_etm_queue *etmq = queue->priv;
if (etmq && ((tid == -1) || (etmq->tid == tid))) {
etmq->time = time_;
cs_etm__set_pid_tid_cpu(etm, queue);
cs_etm__run_decoder(etmq);
}
}
return 0;
}
static int cs_etm__process_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool)
{
int err = 0;
u64 timestamp;
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
if (dump_trace)
return 0;
if (!tool->ordered_events) {
pr_err("CoreSight ETM Trace requires ordered events\n");
return -EINVAL;
}
if (!etm->timeless_decoding)
return -EINVAL;
if (sample->time && (sample->time != (u64) -1))
timestamp = sample->time;
else
timestamp = 0;
if (timestamp || etm->timeless_decoding) {
err = cs_etm__update_queues(etm);
if (err)
return err;
}
if (event->header.type == PERF_RECORD_EXIT)
return cs_etm__process_timeless_queues(etm,
event->fork.tid,
sample->time);
return 0;
}
static int cs_etm__process_auxtrace_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool __maybe_unused)
{
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
if (!etm->data_queued) {
struct auxtrace_buffer *buffer;
off_t data_offset;
int fd = perf_data__fd(session->data);
bool is_pipe = perf_data__is_pipe(session->data);
int err;
if (is_pipe)
data_offset = 0;
else {
data_offset = lseek(fd, 0, SEEK_CUR);
if (data_offset == -1)
return -errno;
}
err = auxtrace_queues__add_event(&etm->queues, session,
event, data_offset, &buffer);
if (err)
return err;
if (dump_trace)
if (auxtrace_buffer__get_data(buffer, fd)) {
cs_etm__dump_event(etm, buffer);
auxtrace_buffer__put_data(buffer);
}
}
return 0;
}
static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
{
struct perf_evsel *evsel;
struct perf_evlist *evlist = etm->session->evlist;
bool timeless_decoding = true;
/*
* Circle through the list of event and complain if we find one
* with the time bit set.
*/
evlist__for_each_entry(evlist, evsel) {
if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
timeless_decoding = false;
}
return timeless_decoding;
}
static const char * const cs_etm_global_header_fmts[] = {
[CS_HEADER_VERSION_0] = " Header version %llx\n",
[CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n",
[CS_ETM_SNAPSHOT] = " Snapshot %llx\n",
};
static const char * const cs_etm_priv_fmts[] = {
[CS_ETM_MAGIC] = " Magic number %llx\n",
[CS_ETM_CPU] = " CPU %lld\n",
[CS_ETM_ETMCR] = " ETMCR %llx\n",
[CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n",
[CS_ETM_ETMCCER] = " ETMCCER %llx\n",
[CS_ETM_ETMIDR] = " ETMIDR %llx\n",
};
static const char * const cs_etmv4_priv_fmts[] = {
[CS_ETM_MAGIC] = " Magic number %llx\n",
[CS_ETM_CPU] = " CPU %lld\n",
[CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n",
[CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n",
[CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n",
[CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n",
[CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n",
[CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n",
[CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n",
};
static void cs_etm__print_auxtrace_info(u64 *val, int num)
{
int i, j, cpu = 0;
for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
if (val[i] == __perf_cs_etmv3_magic)
for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
else if (val[i] == __perf_cs_etmv4_magic)
for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
else
/* failure.. return */
return;
}
}
int cs_etm__process_auxtrace_info(union perf_event *event,
struct perf_session *session)
{
struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
struct cs_etm_auxtrace *etm = NULL;
struct int_node *inode;
unsigned int pmu_type;
int event_header_size = sizeof(struct perf_event_header);
int info_header_size;
int total_size = auxtrace_info->header.size;
int priv_size = 0;
int num_cpu;
int err = 0, idx = -1;
int i, j, k;
u64 *ptr, *hdr = NULL;
u64 **metadata = NULL;
/*
* sizeof(auxtrace_info_event::type) +
* sizeof(auxtrace_info_event::reserved) == 8
*/
info_header_size = 8;
if (total_size < (event_header_size + info_header_size))
return -EINVAL;
priv_size = total_size - event_header_size - info_header_size;
/* First the global part */
ptr = (u64 *) auxtrace_info->priv;
/* Look for version '0' of the header */
if (ptr[0] != 0)
return -EINVAL;
hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
if (!hdr)
return -ENOMEM;
/* Extract header information - see cs-etm.h for format */
for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
hdr[i] = ptr[i];
num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
0xffffffff);
/*
* Create an RB tree for traceID-CPU# tuple. Since the conversion has
* to be made for each packet that gets decoded, optimizing access in
* anything other than a sequential array is worth doing.
*/
traceid_list = intlist__new(NULL);
if (!traceid_list) {
err = -ENOMEM;
goto err_free_hdr;
}
metadata = zalloc(sizeof(*metadata) * num_cpu);
if (!metadata) {
err = -ENOMEM;
goto err_free_traceid_list;
}
/*
* The metadata is stored in the auxtrace_info section and encodes
* the configuration of the ARM embedded trace macrocell which is
* required by the trace decoder to properly decode the trace due
* to its highly compressed nature.
*/
for (j = 0; j < num_cpu; j++) {
if (ptr[i] == __perf_cs_etmv3_magic) {
metadata[j] = zalloc(sizeof(*metadata[j]) *
CS_ETM_PRIV_MAX);
if (!metadata[j]) {
err = -ENOMEM;
goto err_free_metadata;
}
for (k = 0; k < CS_ETM_PRIV_MAX; k++)
metadata[j][k] = ptr[i + k];
/* The traceID is our handle */
idx = metadata[j][CS_ETM_ETMTRACEIDR];
i += CS_ETM_PRIV_MAX;
} else if (ptr[i] == __perf_cs_etmv4_magic) {
metadata[j] = zalloc(sizeof(*metadata[j]) *
CS_ETMV4_PRIV_MAX);
if (!metadata[j]) {
err = -ENOMEM;
goto err_free_metadata;
}
for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
metadata[j][k] = ptr[i + k];
/* The traceID is our handle */
idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
i += CS_ETMV4_PRIV_MAX;
}
/* Get an RB node for this CPU */
inode = intlist__findnew(traceid_list, idx);
/* Something went wrong, no need to continue */
if (!inode) {
err = PTR_ERR(inode);
goto err_free_metadata;
}
/*
* The node for that CPU should not be taken.
* Back out if that's the case.
*/
if (inode->priv) {
err = -EINVAL;
goto err_free_metadata;
}
/* All good, associate the traceID with the CPU# */
inode->priv = &metadata[j][CS_ETM_CPU];
}
/*
* Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
* CS_ETMV4_PRIV_MAX mark how many double words are in the
* global metadata, and each cpu's metadata respectively.
* The following tests if the correct number of double words was
* present in the auxtrace info section.
*/
if (i * 8 != priv_size) {
err = -EINVAL;
goto err_free_metadata;
}
etm = zalloc(sizeof(*etm));
if (!etm) {
err = -ENOMEM;
goto err_free_metadata;
}
err = auxtrace_queues__init(&etm->queues);
if (err)
goto err_free_etm;
etm->session = session;
etm->machine = &session->machines.host;
etm->num_cpu = num_cpu;
etm->pmu_type = pmu_type;
etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
etm->metadata = metadata;
etm->auxtrace_type = auxtrace_info->type;
etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
etm->auxtrace.process_event = cs_etm__process_event;
etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
etm->auxtrace.flush_events = cs_etm__flush_events;
etm->auxtrace.free_events = cs_etm__free_events;
etm->auxtrace.free = cs_etm__free;
session->auxtrace = &etm->auxtrace;
etm->unknown_thread = thread__new(999999999, 999999999);
if (!etm->unknown_thread)
goto err_free_queues;
/*
* Initialize list node so that at thread__zput() we can avoid
* segmentation fault at list_del_init().
*/
INIT_LIST_HEAD(&etm->unknown_thread->node);
err = thread__set_comm(etm->unknown_thread, "unknown", 0);
if (err)
goto err_delete_thread;
if (thread__init_map_groups(etm->unknown_thread, etm->machine))
goto err_delete_thread;
if (dump_trace) {
cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
return 0;
}
if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
etm->synth_opts = *session->itrace_synth_opts;
} else {
itrace_synth_opts__set_default(&etm->synth_opts);
etm->synth_opts.callchain = false;
}
err = cs_etm__synth_events(etm, session);
if (err)
goto err_delete_thread;
err = auxtrace_queues__process_index(&etm->queues, session);
if (err)
goto err_delete_thread;
etm->data_queued = etm->queues.populated;
return 0;
err_delete_thread:
thread__zput(etm->unknown_thread);
err_free_queues:
auxtrace_queues__free(&etm->queues);
session->auxtrace = NULL;
err_free_etm:
zfree(&etm);
err_free_metadata:
/* No need to check @metadata[j], free(NULL) is supported */
for (j = 0; j < num_cpu; j++)
free(metadata[j]);
zfree(&metadata);
err_free_traceid_list:
intlist__delete(traceid_list);
err_free_hdr:
zfree(&hdr);
return -EINVAL;
}