summaryrefslogblamecommitdiff
path: root/net/openvswitch/flow.c
blob: 1252c3081ef12740a0b818fbd58ae3ab6e9b870e (plain) (tree)
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

































                                                                      






























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                     
/*
 * Copyright (c) 2007-2011 Nicira Networks.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>

static struct kmem_cache *flow_cache;

static int check_header(struct sk_buff *skb, int len)
{
	if (unlikely(skb->len < len))
		return -EINVAL;
	if (unlikely(!pskb_may_pull(skb, len)))
		return -ENOMEM;
	return 0;
}

static bool arphdr_ok(struct sk_buff *skb)
{
	return pskb_may_pull(skb, skb_network_offset(skb) +
				  sizeof(struct arp_eth_header));
}

static int check_iphdr(struct sk_buff *skb)
{
	unsigned int nh_ofs = skb_network_offset(skb);
	unsigned int ip_len;
	int err;

	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
	if (unlikely(err))
		return err;

	ip_len = ip_hdrlen(skb);
	if (unlikely(ip_len < sizeof(struct iphdr) ||
		     skb->len < nh_ofs + ip_len))
		return -EINVAL;

	skb_set_transport_header(skb, nh_ofs + ip_len);
	return 0;
}

static bool tcphdr_ok(struct sk_buff *skb)
{
	int th_ofs = skb_transport_offset(skb);
	int tcp_len;

	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
		return false;

	tcp_len = tcp_hdrlen(skb);
	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
		     skb->len < th_ofs + tcp_len))
		return false;

	return true;
}

static bool udphdr_ok(struct sk_buff *skb)
{
	return pskb_may_pull(skb, skb_transport_offset(skb) +
				  sizeof(struct udphdr));
}

static bool icmphdr_ok(struct sk_buff *skb)
{
	return pskb_may_pull(skb, skb_transport_offset(skb) +
				  sizeof(struct icmphdr));
}

u64 ovs_flow_used_time(unsigned long flow_jiffies)
{
	struct timespec cur_ts;
	u64 cur_ms, idle_ms;

	ktime_get_ts(&cur_ts);
	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
		 cur_ts.tv_nsec / NSEC_PER_MSEC;

	return cur_ms - idle_ms;
}

#define SW_FLOW_KEY_OFFSET(field)		\
	(offsetof(struct sw_flow_key, field) +	\
	 FIELD_SIZEOF(struct sw_flow_key, field))

static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
			 int *key_lenp)
{
	unsigned int nh_ofs = skb_network_offset(skb);
	unsigned int nh_len;
	int payload_ofs;
	struct ipv6hdr *nh;
	uint8_t nexthdr;
	__be16 frag_off;
	int err;

	*key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);

	err = check_header(skb, nh_ofs + sizeof(*nh));
	if (unlikely(err))
		return err;

	nh = ipv6_hdr(skb);
	nexthdr = nh->nexthdr;
	payload_ofs = (u8 *)(nh + 1) - skb->data;

	key->ip.proto = NEXTHDR_NONE;
	key->ip.tos = ipv6_get_dsfield(nh);
	key->ip.ttl = nh->hop_limit;
	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
	key->ipv6.addr.src = nh->saddr;
	key->ipv6.addr.dst = nh->daddr;

	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
	if (unlikely(payload_ofs < 0))
		return -EINVAL;

	if (frag_off) {
		if (frag_off & htons(~0x7))
			key->ip.frag = OVS_FRAG_TYPE_LATER;
		else
			key->ip.frag = OVS_FRAG_TYPE_FIRST;
	}

	nh_len = payload_ofs - nh_ofs;
	skb_set_transport_header(skb, nh_ofs + nh_len);
	key->ip.proto = nexthdr;
	return nh_len;
}

static bool icmp6hdr_ok(struct sk_buff *skb)
{
	return pskb_may_pull(skb, skb_transport_offset(skb) +
				  sizeof(struct icmp6hdr));
}

#define TCP_FLAGS_OFFSET 13
#define TCP_FLAG_MASK 0x3f

void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
{
	u8 tcp_flags = 0;

	if (flow->key.eth.type == htons(ETH_P_IP) &&
	    flow->key.ip.proto == IPPROTO_TCP) {
		u8 *tcp = (u8 *)tcp_hdr(skb);
		tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
	}

	spin_lock(&flow->lock);
	flow->used = jiffies;
	flow->packet_count++;
	flow->byte_count += skb->len;
	flow->tcp_flags |= tcp_flags;
	spin_unlock(&flow->lock);
}

struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
{
	int actions_len = nla_len(actions);
	struct sw_flow_actions *sfa;

	/* At least DP_MAX_PORTS actions are required to be able to flood a
	 * packet to every port.  Factor of 2 allows for setting VLAN tags,
	 * etc. */
	if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
		return ERR_PTR(-EINVAL);

	sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
	if (!sfa)
		return ERR_PTR(-ENOMEM);

	sfa->actions_len = actions_len;
	memcpy(sfa->actions, nla_data(actions), actions_len);
	return sfa;
}

struct sw_flow *ovs_flow_alloc(void)
{
	struct sw_flow *flow;

	flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
	if (!flow)
		return ERR_PTR(-ENOMEM);

	spin_lock_init(&flow->lock);
	flow->sf_acts = NULL;

	return flow;
}

static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
{
	hash = jhash_1word(hash, table->hash_seed);
	return flex_array_get(table->buckets,
				(hash & (table->n_buckets - 1)));
}

static struct flex_array *alloc_buckets(unsigned int n_buckets)
{
	struct flex_array *buckets;
	int i, err;

	buckets = flex_array_alloc(sizeof(struct hlist_head *),
				   n_buckets, GFP_KERNEL);
	if (!buckets)
		return NULL;

	err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
	if (err) {
		flex_array_free(buckets);
		return NULL;
	}

	for (i = 0; i < n_buckets; i++)
		INIT_HLIST_HEAD((struct hlist_head *)
					flex_array_get(buckets, i));

	return buckets;
}

static void free_buckets(struct flex_array *buckets)
{
	flex_array_free(buckets);
}

struct flow_table *ovs_flow_tbl_alloc(int new_size)
{
	struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);

	if (!table)
		return NULL;

	table->buckets = alloc_buckets(new_size);

	if (!table->buckets) {
		kfree(table);
		return NULL;
	}
	table->n_buckets = new_size;
	table->count = 0;
	table->node_ver = 0;
	table->keep_flows = false;
	get_random_bytes(&table->hash_seed, sizeof(u32));

	return table;
}

void ovs_flow_tbl_destroy(struct flow_table *table)
{
	int i;

	if (!table)
		return;

	if (table->keep_flows)
		goto skip_flows;

	for (i = 0; i < table->n_buckets; i++) {
		struct sw_flow *flow;
		struct hlist_head *head = flex_array_get(table->buckets, i);
		struct hlist_node *node, *n;
		int ver = table->node_ver;

		hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
			hlist_del_rcu(&flow->hash_node[ver]);
			ovs_flow_free(flow);
		}
	}

skip_flows:
	free_buckets(table->buckets);
	kfree(table);
}

static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
{
	struct flow_table *table = container_of(rcu, struct flow_table, rcu);

	ovs_flow_tbl_destroy(table);
}

void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
{
	if (!table)
		return;

	call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
}

struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
{
	struct sw_flow *flow;
	struct hlist_head *head;
	struct hlist_node *n;
	int ver;
	int i;

	ver = table->node_ver;
	while (*bucket < table->n_buckets) {
		i = 0;
		head = flex_array_get(table->buckets, *bucket);
		hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
			if (i < *last) {
				i++;
				continue;
			}
			*last = i + 1;
			return flow;
		}
		(*bucket)++;
		*last = 0;
	}

	return NULL;
}

static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
{
	int old_ver;
	int i;

	old_ver = old->node_ver;
	new->node_ver = !old_ver;

	/* Insert in new table. */
	for (i = 0; i < old->n_buckets; i++) {
		struct sw_flow *flow;
		struct hlist_head *head;
		struct hlist_node *n;

		head = flex_array_get(old->buckets, i);

		hlist_for_each_entry(flow, n, head, hash_node[old_ver])
			ovs_flow_tbl_insert(new, flow);
	}
	old->keep_flows = true;
}

static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
{
	struct flow_table *new_table;

	new_table = ovs_flow_tbl_alloc(n_buckets);
	if (!new_table)
		return ERR_PTR(-ENOMEM);

	flow_table_copy_flows(table, new_table);

	return new_table;
}

struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
{
	return __flow_tbl_rehash(table, table->n_buckets);
}

struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
{
	return __flow_tbl_rehash(table, table->n_buckets * 2);
}

void ovs_flow_free(struct sw_flow *flow)
{
	if (unlikely(!flow))
		return;

	kfree((struct sf_flow_acts __force *)flow->sf_acts);
	kmem_cache_free(flow_cache, flow);
}

/* RCU callback used by ovs_flow_deferred_free. */
static void rcu_free_flow_callback(struct rcu_head *rcu)
{
	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);

	ovs_flow_free(flow);
}

/* Schedules 'flow' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
void ovs_flow_deferred_free(struct sw_flow *flow)
{
	call_rcu(&flow->rcu, rcu_free_flow_callback);
}

/* RCU callback used by ovs_flow_deferred_free_acts. */
static void rcu_free_acts_callback(struct rcu_head *rcu)
{
	struct sw_flow_actions *sf_acts = container_of(rcu,
			struct sw_flow_actions, rcu);
	kfree(sf_acts);
}

/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
{
	call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
}

static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
{
	struct qtag_prefix {
		__be16 eth_type; /* ETH_P_8021Q */
		__be16 tci;
	};
	struct qtag_prefix *qp;

	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
		return 0;

	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
					 sizeof(__be16))))
		return -ENOMEM;

	qp = (struct qtag_prefix *) skb->data;
	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
	__skb_pull(skb, sizeof(struct qtag_prefix));

	return 0;
}

static __be16 parse_ethertype(struct sk_buff *skb)
{
	struct llc_snap_hdr {
		u8  dsap;  /* Always 0xAA */
		u8  ssap;  /* Always 0xAA */
		u8  ctrl;
		u8  oui[3];
		__be16 ethertype;
	};
	struct llc_snap_hdr *llc;
	__be16 proto;

	proto = *(__be16 *) skb->data;
	__skb_pull(skb, sizeof(__be16));

	if (ntohs(proto) >= 1536)
		return proto;

	if (skb->len < sizeof(struct llc_snap_hdr))
		return htons(ETH_P_802_2);

	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
		return htons(0);

	llc = (struct llc_snap_hdr *) skb->data;
	if (llc->dsap != LLC_SAP_SNAP ||
	    llc->ssap != LLC_SAP_SNAP ||
	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
		return htons(ETH_P_802_2);

	__skb_pull(skb, sizeof(struct llc_snap_hdr));
	return llc->ethertype;
}

static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
			int *key_lenp, int nh_len)
{
	struct icmp6hdr *icmp = icmp6_hdr(skb);
	int error = 0;
	int key_len;

	/* The ICMPv6 type and code fields use the 16-bit transport port
	 * fields, so we need to store them in 16-bit network byte order.
	 */
	key->ipv6.tp.src = htons(icmp->icmp6_type);
	key->ipv6.tp.dst = htons(icmp->icmp6_code);
	key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);

	if (icmp->icmp6_code == 0 &&
	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
		int icmp_len = skb->len - skb_transport_offset(skb);
		struct nd_msg *nd;
		int offset;

		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);

		/* In order to process neighbor discovery options, we need the
		 * entire packet.
		 */
		if (unlikely(icmp_len < sizeof(*nd)))
			goto out;
		if (unlikely(skb_linearize(skb))) {
			error = -ENOMEM;
			goto out;
		}

		nd = (struct nd_msg *)skb_transport_header(skb);
		key->ipv6.nd.target = nd->target;
		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);

		icmp_len -= sizeof(*nd);
		offset = 0;
		while (icmp_len >= 8) {
			struct nd_opt_hdr *nd_opt =
				 (struct nd_opt_hdr *)(nd->opt + offset);
			int opt_len = nd_opt->nd_opt_len * 8;

			if (unlikely(!opt_len || opt_len > icmp_len))
				goto invalid;

			/* Store the link layer address if the appropriate
			 * option is provided.  It is considered an error if
			 * the same link layer option is specified twice.
			 */
			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
			    && opt_len == 8) {
				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
					goto invalid;
				memcpy(key->ipv6.nd.sll,
				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
				   && opt_len == 8) {
				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
					goto invalid;
				memcpy(key->ipv6.nd.tll,
				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
			}

			icmp_len -= opt_len;
			offset += opt_len;
		}
	}

	goto out;

invalid:
	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));

out:
	*key_lenp = key_len;
	return error;
}

/**
 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 * Ethernet header
 * @in_port: port number on which @skb was received.
 * @key: output flow key
 * @key_lenp: length of output flow key
 *
 * The caller must ensure that skb->len >= ETH_HLEN.
 *
 * Returns 0 if successful, otherwise a negative errno value.
 *
 * Initializes @skb header pointers as follows:
 *
 *    - skb->mac_header: the Ethernet header.
 *
 *    - skb->network_header: just past the Ethernet header, or just past the
 *      VLAN header, to the first byte of the Ethernet payload.
 *
 *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
 *      on output, then just past the IP header, if one is present and
 *      of a correct length, otherwise the same as skb->network_header.
 *      For other key->dl_type values it is left untouched.
 */
int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
		 int *key_lenp)
{
	int error = 0;
	int key_len = SW_FLOW_KEY_OFFSET(eth);
	struct ethhdr *eth;

	memset(key, 0, sizeof(*key));

	key->phy.priority = skb->priority;
	key->phy.in_port = in_port;

	skb_reset_mac_header(skb);

	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
	 * header in the linear data area.
	 */
	eth = eth_hdr(skb);
	memcpy(key->eth.src, eth->h_source, ETH_ALEN);
	memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);

	__skb_pull(skb, 2 * ETH_ALEN);

	if (vlan_tx_tag_present(skb))
		key->eth.tci = htons(skb->vlan_tci);
	else if (eth->h_proto == htons(ETH_P_8021Q))
		if (unlikely(parse_vlan(skb, key)))
			return -ENOMEM;

	key->eth.type = parse_ethertype(skb);
	if (unlikely(key->eth.type == htons(0)))
		return -ENOMEM;

	skb_reset_network_header(skb);
	__skb_push(skb, skb->data - skb_mac_header(skb));

	/* Network layer. */
	if (key->eth.type == htons(ETH_P_IP)) {
		struct iphdr *nh;
		__be16 offset;

		key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);

		error = check_iphdr(skb);
		if (unlikely(error)) {
			if (error == -EINVAL) {
				skb->transport_header = skb->network_header;
				error = 0;
			}
			goto out;
		}

		nh = ip_hdr(skb);
		key->ipv4.addr.src = nh->saddr;
		key->ipv4.addr.dst = nh->daddr;

		key->ip.proto = nh->protocol;
		key->ip.tos = nh->tos;
		key->ip.ttl = nh->ttl;

		offset = nh->frag_off & htons(IP_OFFSET);
		if (offset) {
			key->ip.frag = OVS_FRAG_TYPE_LATER;
			goto out;
		}
		if (nh->frag_off & htons(IP_MF) ||
			 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
			key->ip.frag = OVS_FRAG_TYPE_FIRST;

		/* Transport layer. */
		if (key->ip.proto == IPPROTO_TCP) {
			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
			if (tcphdr_ok(skb)) {
				struct tcphdr *tcp = tcp_hdr(skb);
				key->ipv4.tp.src = tcp->source;
				key->ipv4.tp.dst = tcp->dest;
			}
		} else if (key->ip.proto == IPPROTO_UDP) {
			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
			if (udphdr_ok(skb)) {
				struct udphdr *udp = udp_hdr(skb);
				key->ipv4.tp.src = udp->source;
				key->ipv4.tp.dst = udp->dest;
			}
		} else if (key->ip.proto == IPPROTO_ICMP) {
			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
			if (icmphdr_ok(skb)) {
				struct icmphdr *icmp = icmp_hdr(skb);
				/* The ICMP type and code fields use the 16-bit
				 * transport port fields, so we need to store
				 * them in 16-bit network byte order. */
				key->ipv4.tp.src = htons(icmp->type);
				key->ipv4.tp.dst = htons(icmp->code);
			}
		}

	} else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
		struct arp_eth_header *arp;

		arp = (struct arp_eth_header *)skb_network_header(skb);

		if (arp->ar_hrd == htons(ARPHRD_ETHER)
				&& arp->ar_pro == htons(ETH_P_IP)
				&& arp->ar_hln == ETH_ALEN
				&& arp->ar_pln == 4) {

			/* We only match on the lower 8 bits of the opcode. */
			if (ntohs(arp->ar_op) <= 0xff)
				key->ip.proto = ntohs(arp->ar_op);

			if (key->ip.proto == ARPOP_REQUEST
					|| key->ip.proto == ARPOP_REPLY) {
				memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
				memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
				memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
				memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
				key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
			}
		}
	} else if (key->eth.type == htons(ETH_P_IPV6)) {
		int nh_len;             /* IPv6 Header + Extensions */

		nh_len = parse_ipv6hdr(skb, key, &key_len);
		if (unlikely(nh_len < 0)) {
			if (nh_len == -EINVAL)
				skb->transport_header = skb->network_header;
			else
				error = nh_len;
			goto out;
		}

		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
			goto out;
		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
			key->ip.frag = OVS_FRAG_TYPE_FIRST;

		/* Transport layer. */
		if (key->ip.proto == NEXTHDR_TCP) {
			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
			if (tcphdr_ok(skb)) {
				struct tcphdr *tcp = tcp_hdr(skb);
				key->ipv6.tp.src = tcp->source;
				key->ipv6.tp.dst = tcp->dest;
			}
		} else if (key->ip.proto == NEXTHDR_UDP) {
			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
			if (udphdr_ok(skb)) {
				struct udphdr *udp = udp_hdr(skb);
				key->ipv6.tp.src = udp->source;
				key->ipv6.tp.dst = udp->dest;
			}
		} else if (key->ip.proto == NEXTHDR_ICMP) {
			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
			if (icmp6hdr_ok(skb)) {
				error = parse_icmpv6(skb, key, &key_len, nh_len);
				if (error < 0)
					goto out;
			}
		}
	}

out:
	*key_lenp = key_len;
	return error;
}

u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
{
	return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
}

struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
				struct sw_flow_key *key, int key_len)
{
	struct sw_flow *flow;
	struct hlist_node *n;
	struct hlist_head *head;
	u32 hash;

	hash = ovs_flow_hash(key, key_len);

	head = find_bucket(table, hash);
	hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {

		if (flow->hash == hash &&
		    !memcmp(&flow->key, key, key_len)) {
			return flow;
		}
	}
	return NULL;
}

void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
{
	struct hlist_head *head;

	head = find_bucket(table, flow->hash);
	hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
	table->count++;
}

void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
{
	hlist_del_rcu(&flow->hash_node[table->node_ver]);
	table->count--;
	BUG_ON(table->count < 0);
}

/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
	[OVS_KEY_ATTR_ENCAP] = -1,
	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
};

static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
				  const struct nlattr *a[], u32 *attrs)
{
	const struct ovs_key_icmp *icmp_key;
	const struct ovs_key_tcp *tcp_key;
	const struct ovs_key_udp *udp_key;

	switch (swkey->ip.proto) {
	case IPPROTO_TCP:
		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_TCP);

		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
		swkey->ipv4.tp.src = tcp_key->tcp_src;
		swkey->ipv4.tp.dst = tcp_key->tcp_dst;
		break;

	case IPPROTO_UDP:
		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_UDP);

		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
		swkey->ipv4.tp.src = udp_key->udp_src;
		swkey->ipv4.tp.dst = udp_key->udp_dst;
		break;

	case IPPROTO_ICMP:
		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_ICMP);

		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
		swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
		swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
		break;
	}

	return 0;
}

static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
				  const struct nlattr *a[], u32 *attrs)
{
	const struct ovs_key_icmpv6 *icmpv6_key;
	const struct ovs_key_tcp *tcp_key;
	const struct ovs_key_udp *udp_key;

	switch (swkey->ip.proto) {
	case IPPROTO_TCP:
		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_TCP);

		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
		swkey->ipv6.tp.src = tcp_key->tcp_src;
		swkey->ipv6.tp.dst = tcp_key->tcp_dst;
		break;

	case IPPROTO_UDP:
		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_UDP);

		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
		swkey->ipv6.tp.src = udp_key->udp_src;
		swkey->ipv6.tp.dst = udp_key->udp_dst;
		break;

	case IPPROTO_ICMPV6:
		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);

		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
		swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
		swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);

		if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
		    swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
			const struct ovs_key_nd *nd_key;

			if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
				return -EINVAL;
			*attrs &= ~(1 << OVS_KEY_ATTR_ND);

			*key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
			nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
			memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
			       sizeof(swkey->ipv6.nd.target));
			memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
			memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
		}
		break;
	}

	return 0;
}

static int parse_flow_nlattrs(const struct nlattr *attr,
			      const struct nlattr *a[], u32 *attrsp)
{
	const struct nlattr *nla;
	u32 attrs;
	int rem;

	attrs = 0;
	nla_for_each_nested(nla, attr, rem) {
		u16 type = nla_type(nla);
		int expected_len;

		if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
			return -EINVAL;

		expected_len = ovs_key_lens[type];
		if (nla_len(nla) != expected_len && expected_len != -1)
			return -EINVAL;

		attrs |= 1 << type;
		a[type] = nla;
	}
	if (rem)
		return -EINVAL;

	*attrsp = attrs;
	return 0;
}

/**
 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
 * @swkey: receives the extracted flow key.
 * @key_lenp: number of bytes used in @swkey.
 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence.
 */
int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
		      const struct nlattr *attr)
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
	const struct ovs_key_ethernet *eth_key;
	int key_len;
	u32 attrs;
	int err;

	memset(swkey, 0, sizeof(struct sw_flow_key));
	key_len = SW_FLOW_KEY_OFFSET(eth);

	err = parse_flow_nlattrs(attr, a, &attrs);
	if (err)
		return err;

	/* Metadata attributes. */
	if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
		swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
		attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
	}
	if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
		if (in_port >= DP_MAX_PORTS)
			return -EINVAL;
		swkey->phy.in_port = in_port;
		attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
	} else {
		swkey->phy.in_port = USHRT_MAX;
	}

	/* Data attributes. */
	if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
		return -EINVAL;
	attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);

	eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
	memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
	memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);

	if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
	    nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
		const struct nlattr *encap;
		__be16 tci;

		if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
			      (1 << OVS_KEY_ATTR_ETHERTYPE) |
			      (1 << OVS_KEY_ATTR_ENCAP)))
			return -EINVAL;

		encap = a[OVS_KEY_ATTR_ENCAP];
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
		if (tci & htons(VLAN_TAG_PRESENT)) {
			swkey->eth.tci = tci;

			err = parse_flow_nlattrs(encap, a, &attrs);
			if (err)
				return err;
		} else if (!tci) {
			/* Corner case for truncated 802.1Q header. */
			if (nla_len(encap))
				return -EINVAL;

			swkey->eth.type = htons(ETH_P_8021Q);
			*key_lenp = key_len;
			return 0;
		} else {
			return -EINVAL;
		}
	}

	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
		swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
		if (ntohs(swkey->eth.type) < 1536)
			return -EINVAL;
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
	} else {
		swkey->eth.type = htons(ETH_P_802_2);
	}

	if (swkey->eth.type == htons(ETH_P_IP)) {
		const struct ovs_key_ipv4 *ipv4_key;

		if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
			return -EINVAL;
		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);

		key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
		if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
			return -EINVAL;
		swkey->ip.proto = ipv4_key->ipv4_proto;
		swkey->ip.tos = ipv4_key->ipv4_tos;
		swkey->ip.ttl = ipv4_key->ipv4_ttl;
		swkey->ip.frag = ipv4_key->ipv4_frag;
		swkey->ipv4.addr.src = ipv4_key->ipv4_src;
		swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;

		if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
			err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
			if (err)
				return err;
		}
	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
		const struct ovs_key_ipv6 *ipv6_key;

		if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
			return -EINVAL;
		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);

		key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
		if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
			return -EINVAL;
		swkey->ipv6.label = ipv6_key->ipv6_label;
		swkey->ip.proto = ipv6_key->ipv6_proto;
		swkey->ip.tos = ipv6_key->ipv6_tclass;
		swkey->ip.ttl = ipv6_key->ipv6_hlimit;
		swkey->ip.frag = ipv6_key->ipv6_frag;
		memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
		       sizeof(swkey->ipv6.addr.src));
		memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
		       sizeof(swkey->ipv6.addr.dst));

		if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
			err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
			if (err)
				return err;
		}
	} else if (swkey->eth.type == htons(ETH_P_ARP)) {
		const struct ovs_key_arp *arp_key;

		if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
			return -EINVAL;
		attrs &= ~(1 << OVS_KEY_ATTR_ARP);

		key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
		swkey->ipv4.addr.src = arp_key->arp_sip;
		swkey->ipv4.addr.dst = arp_key->arp_tip;
		if (arp_key->arp_op & htons(0xff00))
			return -EINVAL;
		swkey->ip.proto = ntohs(arp_key->arp_op);
		memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
		memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
	}

	if (attrs)
		return -EINVAL;
	*key_lenp = key_len;

	return 0;
}

/**
 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
 * @in_port: receives the extracted input port.
 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence.
 *
 * This parses a series of Netlink attributes that form a flow key, which must
 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 * get the metadata, that is, the parts of the flow key that cannot be
 * extracted from the packet itself.
 */
int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
			       const struct nlattr *attr)
{
	const struct nlattr *nla;
	int rem;

	*in_port = USHRT_MAX;
	*priority = 0;

	nla_for_each_nested(nla, attr, rem) {
		int type = nla_type(nla);

		if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
			if (nla_len(nla) != ovs_key_lens[type])
				return -EINVAL;

			switch (type) {
			case OVS_KEY_ATTR_PRIORITY:
				*priority = nla_get_u32(nla);
				break;

			case OVS_KEY_ATTR_IN_PORT:
				if (nla_get_u32(nla) >= DP_MAX_PORTS)
					return -EINVAL;
				*in_port = nla_get_u32(nla);
				break;
			}
		}
	}
	if (rem)
		return -EINVAL;
	return 0;
}

int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
{
	struct ovs_key_ethernet *eth_key;
	struct nlattr *nla, *encap;

	if (swkey->phy.priority)
		NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority);

	if (swkey->phy.in_port != USHRT_MAX)
		NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port);

	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
	if (!nla)
		goto nla_put_failure;
	eth_key = nla_data(nla);
	memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
	memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);

	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
		NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q));
		NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci);
		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
		if (!swkey->eth.tci)
			goto unencap;
	} else {
		encap = NULL;
	}

	if (swkey->eth.type == htons(ETH_P_802_2))
		goto unencap;

	NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);

	if (swkey->eth.type == htons(ETH_P_IP)) {
		struct ovs_key_ipv4 *ipv4_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
		if (!nla)
			goto nla_put_failure;
		ipv4_key = nla_data(nla);
		ipv4_key->ipv4_src = swkey->ipv4.addr.src;
		ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
		ipv4_key->ipv4_proto = swkey->ip.proto;
		ipv4_key->ipv4_tos = swkey->ip.tos;
		ipv4_key->ipv4_ttl = swkey->ip.ttl;
		ipv4_key->ipv4_frag = swkey->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
		struct ovs_key_ipv6 *ipv6_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
		if (!nla)
			goto nla_put_failure;
		ipv6_key = nla_data(nla);
		memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
				sizeof(ipv6_key->ipv6_src));
		memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
				sizeof(ipv6_key->ipv6_dst));
		ipv6_key->ipv6_label = swkey->ipv6.label;
		ipv6_key->ipv6_proto = swkey->ip.proto;
		ipv6_key->ipv6_tclass = swkey->ip.tos;
		ipv6_key->ipv6_hlimit = swkey->ip.ttl;
		ipv6_key->ipv6_frag = swkey->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_ARP)) {
		struct ovs_key_arp *arp_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
		if (!nla)
			goto nla_put_failure;
		arp_key = nla_data(nla);
		memset(arp_key, 0, sizeof(struct ovs_key_arp));
		arp_key->arp_sip = swkey->ipv4.addr.src;
		arp_key->arp_tip = swkey->ipv4.addr.dst;
		arp_key->arp_op = htons(swkey->ip.proto);
		memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
		memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
	}

	if ((swkey->eth.type == htons(ETH_P_IP) ||
	     swkey->eth.type == htons(ETH_P_IPV6)) &&
	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {

		if (swkey->ip.proto == IPPROTO_TCP) {
			struct ovs_key_tcp *tcp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
			if (!nla)
				goto nla_put_failure;
			tcp_key = nla_data(nla);
			if (swkey->eth.type == htons(ETH_P_IP)) {
				tcp_key->tcp_src = swkey->ipv4.tp.src;
				tcp_key->tcp_dst = swkey->ipv4.tp.dst;
			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
				tcp_key->tcp_src = swkey->ipv6.tp.src;
				tcp_key->tcp_dst = swkey->ipv6.tp.dst;
			}
		} else if (swkey->ip.proto == IPPROTO_UDP) {
			struct ovs_key_udp *udp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
			if (!nla)
				goto nla_put_failure;
			udp_key = nla_data(nla);
			if (swkey->eth.type == htons(ETH_P_IP)) {
				udp_key->udp_src = swkey->ipv4.tp.src;
				udp_key->udp_dst = swkey->ipv4.tp.dst;
			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
				udp_key->udp_src = swkey->ipv6.tp.src;
				udp_key->udp_dst = swkey->ipv6.tp.dst;
			}
		} else if (swkey->eth.type == htons(ETH_P_IP) &&
			   swkey->ip.proto == IPPROTO_ICMP) {
			struct ovs_key_icmp *icmp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
			if (!nla)
				goto nla_put_failure;
			icmp_key = nla_data(nla);
			icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
			icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
			   swkey->ip.proto == IPPROTO_ICMPV6) {
			struct ovs_key_icmpv6 *icmpv6_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
						sizeof(*icmpv6_key));
			if (!nla)
				goto nla_put_failure;
			icmpv6_key = nla_data(nla);
			icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
			icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);

			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
				struct ovs_key_nd *nd_key;

				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
				if (!nla)
					goto nla_put_failure;
				nd_key = nla_data(nla);
				memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
							sizeof(nd_key->nd_target));
				memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
				memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
			}
		}
	}

unencap:
	if (encap)
		nla_nest_end(skb, encap);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

/* Initializes the flow module.
 * Returns zero if successful or a negative error code. */
int ovs_flow_init(void)
{
	flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
					0, NULL);
	if (flow_cache == NULL)
		return -ENOMEM;

	return 0;
}

/* Uninitializes the flow module. */
void ovs_flow_exit(void)
{
	kmem_cache_destroy(flow_cache);
}