/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _MM_PERCPU_INTERNAL_H
#define _MM_PERCPU_INTERNAL_H
#include <linux/types.h>
#include <linux/percpu.h>
/*
* There are two chunk types: root and memcg-aware.
* Chunks of each type have separate slots list.
*
* Memcg-aware chunks have an attached vector of obj_cgroup pointers, which is
* used to store memcg membership data of a percpu object. Obj_cgroups are
* ref-counted pointers to a memory cgroup with an ability to switch dynamically
* to the parent memory cgroup. This allows to reclaim a deleted memory cgroup
* without reclaiming of all outstanding objects, which hold a reference at it.
*/
enum pcpu_chunk_type {
PCPU_CHUNK_ROOT,
#ifdef CONFIG_MEMCG_KMEM
PCPU_CHUNK_MEMCG,
#endif
PCPU_NR_CHUNK_TYPES,
PCPU_FAIL_ALLOC = PCPU_NR_CHUNK_TYPES
};
/*
* pcpu_block_md is the metadata block struct.
* Each chunk's bitmap is split into a number of full blocks.
* All units are in terms of bits.
*
* The scan hint is the largest known contiguous area before the contig hint.
* It is not necessarily the actual largest contig hint though. There is an
* invariant that the scan_hint_start > contig_hint_start iff
* scan_hint == contig_hint. This is necessary because when scanning forward,
* we don't know if a new contig hint would be better than the current one.
*/
struct pcpu_block_md {
int scan_hint; /* scan hint for block */
int scan_hint_start; /* block relative starting
position of the scan hint */
int contig_hint; /* contig hint for block */
int contig_hint_start; /* block relative starting
position of the contig hint */
int left_free; /* size of free space along
the left side of the block */
int right_free; /* size of free space along
the right side of the block */
int first_free; /* block position of first free */
int nr_bits; /* total bits responsible for */
};
struct pcpu_chunk {
#ifdef CONFIG_PERCPU_STATS
int nr_alloc; /* # of allocations */
size_t max_alloc_size; /* largest allocation size */
#endif
struct list_head list; /* linked to pcpu_slot lists */
int free_bytes; /* free bytes in the chunk */
struct pcpu_block_md chunk_md;
void *base_addr; /* base address of this chunk */
unsigned long *alloc_map; /* allocation map */
unsigned long *bound_map; /* boundary map */
struct pcpu_block_md *md_blocks; /* metadata blocks */
void *data; /* chunk data */
bool immutable; /* no [de]population allowed */
int start_offset; /* the overlap with the previous
region to have a page aligned
base_addr */
int end_offset; /* additional area required to
have the region end page
aligned */
#ifdef CONFIG_MEMCG_KMEM
struct obj_cgroup **obj_cgroups; /* vector of object cgroups */
#endif
int nr_pages; /* # of pages served by this chunk */
int nr_populated; /* # of populated pages */
int nr_empty_pop_pages; /* # of empty populated pages */
unsigned long populated[]; /* populated bitmap */
};
extern spinlock_t pcpu_lock;
extern struct list_head *pcpu_chunk_lists;
extern int pcpu_nr_slots;
extern int pcpu_nr_empty_pop_pages[];
extern struct pcpu_chunk *pcpu_first_chunk;
extern struct pcpu_chunk *pcpu_reserved_chunk;
/**
* pcpu_chunk_nr_blocks - converts nr_pages to # of md_blocks
* @chunk: chunk of interest
*
* This conversion is from the number of physical pages that the chunk
* serves to the number of bitmap blocks used.
*/
static inline int pcpu_chunk_nr_blocks(struct pcpu_chunk *chunk)
{
return chunk->nr_pages * PAGE_SIZE / PCPU_BITMAP_BLOCK_SIZE;
}
/**
* pcpu_nr_pages_to_map_bits - converts the pages to size of bitmap
* @pages: number of physical pages
*
* This conversion is from physical pages to the number of bits
* required in the bitmap.
*/
static inline int pcpu_nr_pages_to_map_bits(int pages)
{
return pages * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
}
/**
* pcpu_chunk_map_bits - helper to convert nr_pages to size of bitmap
* @chunk: chunk of interest
*
* This conversion is from the number of physical pages that the chunk
* serves to the number of bits in the bitmap.
*/
static inline int pcpu_chunk_map_bits(struct pcpu_chunk *chunk)
{
return pcpu_nr_pages_to_map_bits(chunk->nr_pages);
}
#ifdef CONFIG_MEMCG_KMEM
static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk)
{
if (chunk->obj_cgroups)
return PCPU_CHUNK_MEMCG;
return PCPU_CHUNK_ROOT;
}
static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type)
{
return chunk_type == PCPU_CHUNK_MEMCG;
}
#else
static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk)
{
return PCPU_CHUNK_ROOT;
}
static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type)
{
return false;
}
#endif
static inline struct list_head *pcpu_chunk_list(enum pcpu_chunk_type chunk_type)
{
return &pcpu_chunk_lists[pcpu_nr_slots *
pcpu_is_memcg_chunk(chunk_type)];
}
#ifdef CONFIG_PERCPU_STATS
#include <linux/spinlock.h>
struct percpu_stats {
u64 nr_alloc; /* lifetime # of allocations */
u64 nr_dealloc; /* lifetime # of deallocations */
u64 nr_cur_alloc; /* current # of allocations */
u64 nr_max_alloc; /* max # of live allocations */
u32 nr_chunks; /* current # of live chunks */
u32 nr_max_chunks; /* max # of live chunks */
size_t min_alloc_size; /* min allocation size */
size_t max_alloc_size; /* max allocation size */
};
extern struct percpu_stats pcpu_stats;
extern struct pcpu_alloc_info pcpu_stats_ai;
/*
* For debug purposes. We don't care about the flexible array.
*/
static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai)
{
memcpy(&pcpu_stats_ai, ai, sizeof(struct pcpu_alloc_info));
/* initialize min_alloc_size to unit_size */
pcpu_stats.min_alloc_size = pcpu_stats_ai.unit_size;
}
/*
* pcpu_stats_area_alloc - increment area allocation stats
* @chunk: the location of the area being allocated
* @size: size of area to allocate in bytes
*
* CONTEXT:
* pcpu_lock.
*/
static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size)
{
lockdep_assert_held(&pcpu_lock);
pcpu_stats.nr_alloc++;
pcpu_stats.nr_cur_alloc++;
pcpu_stats.nr_max_alloc =
max(pcpu_stats.nr_max_alloc, pcpu_stats.nr_cur_alloc);
pcpu_stats.min_alloc_size =
min(pcpu_stats.min_alloc_size, size);
pcpu_stats.max_alloc_size =
max(pcpu_stats.max_alloc_size, size);
chunk->nr_alloc++;
chunk->max_alloc_size = max(chunk->max_alloc_size, size);
}
/*
* pcpu_stats_area_dealloc - decrement allocation stats
* @chunk: the location of the area being deallocated
*
* CONTEXT:
* pcpu_lock.
*/
static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk)
{
lockdep_assert_held(&pcpu_lock);
pcpu_stats.nr_dealloc++;
pcpu_stats.nr_cur_alloc--;
chunk->nr_alloc--;
}
/*
* pcpu_stats_chunk_alloc - increment chunk stats
*/
static inline void pcpu_stats_chunk_alloc(void)
{
unsigned long flags;
spin_lock_irqsave(&pcpu_lock, flags);
pcpu_stats.nr_chunks++;
pcpu_stats.nr_max_chunks =
max(pcpu_stats.nr_max_chunks, pcpu_stats.nr_chunks);
spin_unlock_irqrestore(&pcpu_lock, flags);
}
/*
* pcpu_stats_chunk_dealloc - decrement chunk stats
*/
static inline void pcpu_stats_chunk_dealloc(void)
{
unsigned long flags;
spin_lock_irqsave(&pcpu_lock, flags);
pcpu_stats.nr_chunks--;
spin_unlock_irqrestore(&pcpu_lock, flags);
}
#else
static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai)
{
}
static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size)
{
}
static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk)
{
}
static inline void pcpu_stats_chunk_alloc(void)
{
}
static inline void pcpu_stats_chunk_dealloc(void)
{
}
#endif /* !CONFIG_PERCPU_STATS */
#endif