summaryrefslogblamecommitdiff
path: root/lib/mpi/ec.c
blob: c21470122dfc1e7043f33b74656b9244fe34104d (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                 
/* ec.c -  Elliptic Curve functions
 * Copyright (C) 2007 Free Software Foundation, Inc.
 * Copyright (C) 2013 g10 Code GmbH
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "mpi-internal.h"
#include "longlong.h"

#define point_init(a)  mpi_point_init((a))
#define point_free(a)  mpi_point_free_parts((a))

#define log_error(fmt, ...) pr_err(fmt, ##__VA_ARGS__)
#define log_fatal(fmt, ...) pr_err(fmt, ##__VA_ARGS__)

#define DIM(v) (sizeof(v)/sizeof((v)[0]))


/* Create a new point option.  NBITS gives the size in bits of one
 * coordinate; it is only used to pre-allocate some resources and
 * might also be passed as 0 to use a default value.
 */
MPI_POINT mpi_point_new(unsigned int nbits)
{
	MPI_POINT p;

	(void)nbits;  /* Currently not used.  */

	p = kmalloc(sizeof(*p), GFP_KERNEL);
	if (p)
		mpi_point_init(p);
	return p;
}
EXPORT_SYMBOL_GPL(mpi_point_new);

/* Release the point object P.  P may be NULL. */
void mpi_point_release(MPI_POINT p)
{
	if (p) {
		mpi_point_free_parts(p);
		kfree(p);
	}
}
EXPORT_SYMBOL_GPL(mpi_point_release);

/* Initialize the fields of a point object.  gcry_mpi_point_free_parts
 * may be used to release the fields.
 */
void mpi_point_init(MPI_POINT p)
{
	p->x = mpi_new(0);
	p->y = mpi_new(0);
	p->z = mpi_new(0);
}
EXPORT_SYMBOL_GPL(mpi_point_init);

/* Release the parts of a point object. */
void mpi_point_free_parts(MPI_POINT p)
{
	mpi_free(p->x); p->x = NULL;
	mpi_free(p->y); p->y = NULL;
	mpi_free(p->z); p->z = NULL;
}
EXPORT_SYMBOL_GPL(mpi_point_free_parts);

/* Set the value from S into D.  */
static void point_set(MPI_POINT d, MPI_POINT s)
{
	mpi_set(d->x, s->x);
	mpi_set(d->y, s->y);
	mpi_set(d->z, s->z);
}

static void point_resize(MPI_POINT p, struct mpi_ec_ctx *ctx)
{
	size_t nlimbs = ctx->p->nlimbs;

	mpi_resize(p->x, nlimbs);
	p->x->nlimbs = nlimbs;
	mpi_resize(p->z, nlimbs);
	p->z->nlimbs = nlimbs;

	if (ctx->model != MPI_EC_MONTGOMERY) {
		mpi_resize(p->y, nlimbs);
		p->y->nlimbs = nlimbs;
	}
}

static void point_swap_cond(MPI_POINT d, MPI_POINT s, unsigned long swap,
		struct mpi_ec_ctx *ctx)
{
	mpi_swap_cond(d->x, s->x, swap);
	if (ctx->model != MPI_EC_MONTGOMERY)
		mpi_swap_cond(d->y, s->y, swap);
	mpi_swap_cond(d->z, s->z, swap);
}


/* W = W mod P.  */
static void ec_mod(MPI w, struct mpi_ec_ctx *ec)
{
	if (ec->t.p_barrett)
		mpi_mod_barrett(w, w, ec->t.p_barrett);
	else
		mpi_mod(w, w, ec->p);
}

static void ec_addm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
{
	mpi_add(w, u, v);
	ec_mod(w, ctx);
}

static void ec_subm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ec)
{
	mpi_sub(w, u, v);
	while (w->sign)
		mpi_add(w, w, ec->p);
	/*ec_mod(w, ec);*/
}

static void ec_mulm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
{
	mpi_mul(w, u, v);
	ec_mod(w, ctx);
}

/* W = 2 * U mod P.  */
static void ec_mul2(MPI w, MPI u, struct mpi_ec_ctx *ctx)
{
	mpi_lshift(w, u, 1);
	ec_mod(w, ctx);
}

static void ec_powm(MPI w, const MPI b, const MPI e,
		struct mpi_ec_ctx *ctx)
{
	mpi_powm(w, b, e, ctx->p);
	/* mpi_abs(w); */
}

/* Shortcut for
 * ec_powm(B, B, mpi_const(MPI_C_TWO), ctx);
 * for easier optimization.
 */
static void ec_pow2(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
{
	/* Using mpi_mul is slightly faster (at least on amd64).  */
	/* mpi_powm(w, b, mpi_const(MPI_C_TWO), ctx->p); */
	ec_mulm(w, b, b, ctx);
}

/* Shortcut for
 * ec_powm(B, B, mpi_const(MPI_C_THREE), ctx);
 * for easier optimization.
 */
static void ec_pow3(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
{
	mpi_powm(w, b, mpi_const(MPI_C_THREE), ctx->p);
}

static void ec_invm(MPI x, MPI a, struct mpi_ec_ctx *ctx)
{
	if (!mpi_invm(x, a, ctx->p))
		log_error("ec_invm: inverse does not exist:\n");
}

static void mpih_set_cond(mpi_ptr_t wp, mpi_ptr_t up,
		mpi_size_t usize, unsigned long set)
{
	mpi_size_t i;
	mpi_limb_t mask = ((mpi_limb_t)0) - set;
	mpi_limb_t x;

	for (i = 0; i < usize; i++) {
		x = mask & (wp[i] ^ up[i]);
		wp[i] = wp[i] ^ x;
	}
}

/* Routines for 2^255 - 19.  */

#define LIMB_SIZE_25519 ((256+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)

static void ec_addm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
{
	mpi_ptr_t wp, up, vp;
	mpi_size_t wsize = LIMB_SIZE_25519;
	mpi_limb_t n[LIMB_SIZE_25519];
	mpi_limb_t borrow;

	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
		log_bug("addm_25519: different sizes\n");

	memset(n, 0, sizeof(n));
	up = u->d;
	vp = v->d;
	wp = w->d;

	mpihelp_add_n(wp, up, vp, wsize);
	borrow = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
	mpihelp_add_n(wp, wp, n, wsize);
	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
}

static void ec_subm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
{
	mpi_ptr_t wp, up, vp;
	mpi_size_t wsize = LIMB_SIZE_25519;
	mpi_limb_t n[LIMB_SIZE_25519];
	mpi_limb_t borrow;

	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
		log_bug("subm_25519: different sizes\n");

	memset(n, 0, sizeof(n));
	up = u->d;
	vp = v->d;
	wp = w->d;

	borrow = mpihelp_sub_n(wp, up, vp, wsize);
	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
	mpihelp_add_n(wp, wp, n, wsize);
	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
}

static void ec_mulm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
{
	mpi_ptr_t wp, up, vp;
	mpi_size_t wsize = LIMB_SIZE_25519;
	mpi_limb_t n[LIMB_SIZE_25519*2];
	mpi_limb_t m[LIMB_SIZE_25519+1];
	mpi_limb_t cy;
	int msb;

	(void)ctx;
	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
		log_bug("mulm_25519: different sizes\n");

	up = u->d;
	vp = v->d;
	wp = w->d;

	mpihelp_mul_n(n, up, vp, wsize);
	memcpy(wp, n, wsize * BYTES_PER_MPI_LIMB);
	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));

	memcpy(m, n+LIMB_SIZE_25519-1, (wsize+1) * BYTES_PER_MPI_LIMB);
	mpihelp_rshift(m, m, LIMB_SIZE_25519+1, (255 % BITS_PER_MPI_LIMB));

	memcpy(n, m, wsize * BYTES_PER_MPI_LIMB);
	cy = mpihelp_lshift(m, m, LIMB_SIZE_25519, 4);
	m[LIMB_SIZE_25519] = cy;
	cy = mpihelp_add_n(m, m, n, wsize);
	m[LIMB_SIZE_25519] += cy;
	cy = mpihelp_add_n(m, m, n, wsize);
	m[LIMB_SIZE_25519] += cy;
	cy = mpihelp_add_n(m, m, n, wsize);
	m[LIMB_SIZE_25519] += cy;

	cy = mpihelp_add_n(wp, wp, m, wsize);
	m[LIMB_SIZE_25519] += cy;

	memset(m, 0, wsize * BYTES_PER_MPI_LIMB);
	msb = (wp[LIMB_SIZE_25519-1] >> (255 % BITS_PER_MPI_LIMB));
	m[0] = (m[LIMB_SIZE_25519] * 2 + msb) * 19;
	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
	mpihelp_add_n(wp, wp, m, wsize);

	m[0] = 0;
	cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
	mpih_set_cond(m, ctx->p->d, wsize, (cy != 0UL));
	mpihelp_add_n(wp, wp, m, wsize);
}

static void ec_mul2_25519(MPI w, MPI u, struct mpi_ec_ctx *ctx)
{
	ec_addm_25519(w, u, u, ctx);
}

static void ec_pow2_25519(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
{
	ec_mulm_25519(w, b, b, ctx);
}

/* Routines for 2^448 - 2^224 - 1.  */

#define LIMB_SIZE_448 ((448+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)
#define LIMB_SIZE_HALF_448 ((LIMB_SIZE_448+1)/2)

static void ec_addm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
{
	mpi_ptr_t wp, up, vp;
	mpi_size_t wsize = LIMB_SIZE_448;
	mpi_limb_t n[LIMB_SIZE_448];
	mpi_limb_t cy;

	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
		log_bug("addm_448: different sizes\n");

	memset(n, 0, sizeof(n));
	up = u->d;
	vp = v->d;
	wp = w->d;

	cy = mpihelp_add_n(wp, up, vp, wsize);
	mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL));
	mpihelp_sub_n(wp, wp, n, wsize);
}

static void ec_subm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
{
	mpi_ptr_t wp, up, vp;
	mpi_size_t wsize = LIMB_SIZE_448;
	mpi_limb_t n[LIMB_SIZE_448];
	mpi_limb_t borrow;

	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
		log_bug("subm_448: different sizes\n");

	memset(n, 0, sizeof(n));
	up = u->d;
	vp = v->d;
	wp = w->d;

	borrow = mpihelp_sub_n(wp, up, vp, wsize);
	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
	mpihelp_add_n(wp, wp, n, wsize);
}

static void ec_mulm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
{
	mpi_ptr_t wp, up, vp;
	mpi_size_t wsize = LIMB_SIZE_448;
	mpi_limb_t n[LIMB_SIZE_448*2];
	mpi_limb_t a2[LIMB_SIZE_HALF_448];
	mpi_limb_t a3[LIMB_SIZE_HALF_448];
	mpi_limb_t b0[LIMB_SIZE_HALF_448];
	mpi_limb_t b1[LIMB_SIZE_HALF_448];
	mpi_limb_t cy;
	int i;
#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
	mpi_limb_t b1_rest, a3_rest;
#endif

	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
		log_bug("mulm_448: different sizes\n");

	up = u->d;
	vp = v->d;
	wp = w->d;

	mpihelp_mul_n(n, up, vp, wsize);

	for (i = 0; i < (wsize + 1) / 2; i++) {
		b0[i] = n[i];
		b1[i] = n[i+wsize/2];
		a2[i] = n[i+wsize];
		a3[i] = n[i+wsize+wsize/2];
	}

#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
	b0[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1;
	a2[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1;

	b1_rest = 0;
	a3_rest = 0;

	for (i = (wsize + 1) / 2 - 1; i >= 0; i--) {
		mpi_limb_t b1v, a3v;
		b1v = b1[i];
		a3v = a3[i];
		b1[i] = (b1_rest << 32) | (b1v >> 32);
		a3[i] = (a3_rest << 32) | (a3v >> 32);
		b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1);
		a3_rest = a3v & (((mpi_limb_t)1UL << 32)-1);
	}
#endif

	cy = mpihelp_add_n(b0, b0, a2, LIMB_SIZE_HALF_448);
	cy += mpihelp_add_n(b0, b0, a3, LIMB_SIZE_HALF_448);
	for (i = 0; i < (wsize + 1) / 2; i++)
		wp[i] = b0[i];
#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
	wp[LIMB_SIZE_HALF_448-1] &= (((mpi_limb_t)1UL << 32)-1);
#endif

#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
	cy = b0[LIMB_SIZE_HALF_448-1] >> 32;
#endif

	cy = mpihelp_add_1(b1, b1, LIMB_SIZE_HALF_448, cy);
	cy += mpihelp_add_n(b1, b1, a2, LIMB_SIZE_HALF_448);
	cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448);
	cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448);
#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
	b1_rest = 0;
	for (i = (wsize + 1) / 2 - 1; i >= 0; i--) {
		mpi_limb_t b1v = b1[i];
		b1[i] = (b1_rest << 32) | (b1v >> 32);
		b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1);
	}
	wp[LIMB_SIZE_HALF_448-1] |= (b1_rest << 32);
#endif
	for (i = 0; i < wsize / 2; i++)
		wp[i+(wsize + 1) / 2] = b1[i];

#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
	cy = b1[LIMB_SIZE_HALF_448-1];
#endif

	memset(n, 0, wsize * BYTES_PER_MPI_LIMB);

#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
	n[LIMB_SIZE_HALF_448-1] = cy << 32;
#else
	n[LIMB_SIZE_HALF_448] = cy;
#endif
	n[0] = cy;
	mpihelp_add_n(wp, wp, n, wsize);

	memset(n, 0, wsize * BYTES_PER_MPI_LIMB);
	cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
	mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL));
	mpihelp_add_n(wp, wp, n, wsize);
}

static void ec_mul2_448(MPI w, MPI u, struct mpi_ec_ctx *ctx)
{
	ec_addm_448(w, u, u, ctx);
}

static void ec_pow2_448(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
{
	ec_mulm_448(w, b, b, ctx);
}

struct field_table {
	const char *p;

	/* computation routines for the field.  */
	void (*addm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
	void (*subm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
	void (*mulm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
	void (*mul2)(MPI w, MPI u, struct mpi_ec_ctx *ctx);
	void (*pow2)(MPI w, const MPI b, struct mpi_ec_ctx *ctx);
};

static const struct field_table field_table[] = {
	{
		"0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED",
		ec_addm_25519,
		ec_subm_25519,
		ec_mulm_25519,
		ec_mul2_25519,
		ec_pow2_25519
	},
	{
		"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
		"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
		ec_addm_448,
		ec_subm_448,
		ec_mulm_448,
		ec_mul2_448,
		ec_pow2_448
	},
	{ NULL, NULL, NULL, NULL, NULL, NULL },
};

/* Force recomputation of all helper variables.  */
static void mpi_ec_get_reset(struct mpi_ec_ctx *ec)
{
	ec->t.valid.a_is_pminus3 = 0;
	ec->t.valid.two_inv_p = 0;
}

/* Accessor for helper variable.  */
static int ec_get_a_is_pminus3(struct mpi_ec_ctx *ec)
{
	MPI tmp;

	if (!ec->t.valid.a_is_pminus3) {
		ec->t.valid.a_is_pminus3 = 1;
		tmp = mpi_alloc_like(ec->p);
		mpi_sub_ui(tmp, ec->p, 3);
		ec->t.a_is_pminus3 = !mpi_cmp(ec->a, tmp);
		mpi_free(tmp);
	}

	return ec->t.a_is_pminus3;
}

/* Accessor for helper variable.  */
static MPI ec_get_two_inv_p(struct mpi_ec_ctx *ec)
{
	if (!ec->t.valid.two_inv_p) {
		ec->t.valid.two_inv_p = 1;
		if (!ec->t.two_inv_p)
			ec->t.two_inv_p = mpi_alloc(0);
		ec_invm(ec->t.two_inv_p, mpi_const(MPI_C_TWO), ec);
	}
	return ec->t.two_inv_p;
}

static const char *const curve25519_bad_points[] = {
	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed",
	"0x0000000000000000000000000000000000000000000000000000000000000000",
	"0x0000000000000000000000000000000000000000000000000000000000000001",
	"0x00b8495f16056286fdb1329ceb8d09da6ac49ff1fae35616aeb8413b7c7aebe0",
	"0x57119fd0dd4e22d8868e1c58c45c44045bef839c55b1d0b1248c50a3bc959c5f",
	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec",
	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee",
	NULL
};

static const char *const curve448_bad_points[] = {
	"0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
	"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
	"0x00000000000000000000000000000000000000000000000000000000"
	"00000000000000000000000000000000000000000000000000000000",
	"0x00000000000000000000000000000000000000000000000000000000"
	"00000000000000000000000000000000000000000000000000000001",
	"0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
	"fffffffffffffffffffffffffffffffffffffffffffffffffffffffe",
	"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
	"00000000000000000000000000000000000000000000000000000000",
	NULL
};

static const char *const *bad_points_table[] = {
	curve25519_bad_points,
	curve448_bad_points,
};

static void mpi_ec_coefficient_normalize(MPI a, MPI p)
{
	if (a->sign) {
		mpi_resize(a, p->nlimbs);
		mpihelp_sub_n(a->d, p->d, a->d, p->nlimbs);
		a->nlimbs = p->nlimbs;
		a->sign = 0;
	}
}

/* This function initialized a context for elliptic curve based on the
 * field GF(p).  P is the prime specifying this field, A is the first
 * coefficient.  CTX is expected to be zeroized.
 */
void mpi_ec_init(struct mpi_ec_ctx *ctx, enum gcry_mpi_ec_models model,
			enum ecc_dialects dialect,
			int flags, MPI p, MPI a, MPI b)
{
	int i;
	static int use_barrett = -1 /* TODO: 1 or -1 */;

	mpi_ec_coefficient_normalize(a, p);
	mpi_ec_coefficient_normalize(b, p);

	/* Fixme: Do we want to check some constraints? e.g.  a < p  */

	ctx->model = model;
	ctx->dialect = dialect;
	ctx->flags = flags;
	if (dialect == ECC_DIALECT_ED25519)
		ctx->nbits = 256;
	else
		ctx->nbits = mpi_get_nbits(p);
	ctx->p = mpi_copy(p);
	ctx->a = mpi_copy(a);
	ctx->b = mpi_copy(b);

	ctx->t.p_barrett = use_barrett > 0 ? mpi_barrett_init(ctx->p, 0) : NULL;

	mpi_ec_get_reset(ctx);

	if (model == MPI_EC_MONTGOMERY) {
		for (i = 0; i < DIM(bad_points_table); i++) {
			MPI p_candidate = mpi_scanval(bad_points_table[i][0]);
			int match_p = !mpi_cmp(ctx->p, p_candidate);
			int j;

			mpi_free(p_candidate);
			if (!match_p)
				continue;

			for (j = 0; i < DIM(ctx->t.scratch) && bad_points_table[i][j]; j++)
				ctx->t.scratch[j] = mpi_scanval(bad_points_table[i][j]);
		}
	} else {
		/* Allocate scratch variables.  */
		for (i = 0; i < DIM(ctx->t.scratch); i++)
			ctx->t.scratch[i] = mpi_alloc_like(ctx->p);
	}

	ctx->addm = ec_addm;
	ctx->subm = ec_subm;
	ctx->mulm = ec_mulm;
	ctx->mul2 = ec_mul2;
	ctx->pow2 = ec_pow2;

	for (i = 0; field_table[i].p; i++) {
		MPI f_p;

		f_p = mpi_scanval(field_table[i].p);
		if (!f_p)
			break;

		if (!mpi_cmp(p, f_p)) {
			ctx->addm = field_table[i].addm;
			ctx->subm = field_table[i].subm;
			ctx->mulm = field_table[i].mulm;
			ctx->mul2 = field_table[i].mul2;
			ctx->pow2 = field_table[i].pow2;
			mpi_free(f_p);

			mpi_resize(ctx->a, ctx->p->nlimbs);
			ctx->a->nlimbs = ctx->p->nlimbs;

			mpi_resize(ctx->b, ctx->p->nlimbs);
			ctx->b->nlimbs = ctx->p->nlimbs;

			for (i = 0; i < DIM(ctx->t.scratch) && ctx->t.scratch[i]; i++)
				ctx->t.scratch[i]->nlimbs = ctx->p->nlimbs;

			break;
		}

		mpi_free(f_p);
	}
}
EXPORT_SYMBOL_GPL(mpi_ec_init);

void mpi_ec_deinit(struct mpi_ec_ctx *ctx)
{
	int i;

	mpi_barrett_free(ctx->t.p_barrett);

	/* Domain parameter.  */
	mpi_free(ctx->p);
	mpi_free(ctx->a);
	mpi_free(ctx->b);
	mpi_point_release(ctx->G);
	mpi_free(ctx->n);

	/* The key.  */
	mpi_point_release(ctx->Q);
	mpi_free(ctx->d);

	/* Private data of ec.c.  */
	mpi_free(ctx->t.two_inv_p);

	for (i = 0; i < DIM(ctx->t.scratch); i++)
		mpi_free(ctx->t.scratch[i]);
}
EXPORT_SYMBOL_GPL(mpi_ec_deinit);

/* Compute the affine coordinates from the projective coordinates in
 * POINT.  Set them into X and Y.  If one coordinate is not required,
 * X or Y may be passed as NULL.  CTX is the usual context. Returns: 0
 * on success or !0 if POINT is at infinity.
 */
int mpi_ec_get_affine(MPI x, MPI y, MPI_POINT point, struct mpi_ec_ctx *ctx)
{
	if (!mpi_cmp_ui(point->z, 0))
		return -1;

	switch (ctx->model) {
	case MPI_EC_WEIERSTRASS: /* Using Jacobian coordinates.  */
		{
			MPI z1, z2, z3;

			z1 = mpi_new(0);
			z2 = mpi_new(0);
			ec_invm(z1, point->z, ctx);  /* z1 = z^(-1) mod p  */
			ec_mulm(z2, z1, z1, ctx);    /* z2 = z^(-2) mod p  */

			if (x)
				ec_mulm(x, point->x, z2, ctx);

			if (y) {
				z3 = mpi_new(0);
				ec_mulm(z3, z2, z1, ctx);      /* z3 = z^(-3) mod p */
				ec_mulm(y, point->y, z3, ctx);
				mpi_free(z3);
			}

			mpi_free(z2);
			mpi_free(z1);
		}
		return 0;

	case MPI_EC_MONTGOMERY:
		{
			if (x)
				mpi_set(x, point->x);

			if (y) {
				log_fatal("%s: Getting Y-coordinate on %s is not supported\n",
						"mpi_ec_get_affine", "Montgomery");
				return -1;
			}
		}
		return 0;

	case MPI_EC_EDWARDS:
		{
			MPI z;

			z = mpi_new(0);
			ec_invm(z, point->z, ctx);

			mpi_resize(z, ctx->p->nlimbs);
			z->nlimbs = ctx->p->nlimbs;

			if (x) {
				mpi_resize(x, ctx->p->nlimbs);
				x->nlimbs = ctx->p->nlimbs;
				ctx->mulm(x, point->x, z, ctx);
			}
			if (y) {
				mpi_resize(y, ctx->p->nlimbs);
				y->nlimbs = ctx->p->nlimbs;
				ctx->mulm(y, point->y, z, ctx);
			}

			mpi_free(z);
		}
		return 0;

	default:
		return -1;
	}
}
EXPORT_SYMBOL_GPL(mpi_ec_get_affine);

/*  RESULT = 2 * POINT  (Weierstrass version). */
static void dup_point_weierstrass(MPI_POINT result,
		MPI_POINT point, struct mpi_ec_ctx *ctx)
{
#define x3 (result->x)
#define y3 (result->y)
#define z3 (result->z)
#define t1 (ctx->t.scratch[0])
#define t2 (ctx->t.scratch[1])
#define t3 (ctx->t.scratch[2])
#define l1 (ctx->t.scratch[3])
#define l2 (ctx->t.scratch[4])
#define l3 (ctx->t.scratch[5])

	if (!mpi_cmp_ui(point->y, 0) || !mpi_cmp_ui(point->z, 0)) {
		/* P_y == 0 || P_z == 0 => [1:1:0] */
		mpi_set_ui(x3, 1);
		mpi_set_ui(y3, 1);
		mpi_set_ui(z3, 0);
	} else {
		if (ec_get_a_is_pminus3(ctx)) {
			/* Use the faster case.  */
			/* L1 = 3(X - Z^2)(X + Z^2) */
			/*                          T1: used for Z^2. */
			/*                          T2: used for the right term. */
			ec_pow2(t1, point->z, ctx);
			ec_subm(l1, point->x, t1, ctx);
			ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx);
			ec_addm(t2, point->x, t1, ctx);
			ec_mulm(l1, l1, t2, ctx);
		} else {
			/* Standard case. */
			/* L1 = 3X^2 + aZ^4 */
			/*                          T1: used for aZ^4. */
			ec_pow2(l1, point->x, ctx);
			ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx);
			ec_powm(t1, point->z, mpi_const(MPI_C_FOUR), ctx);
			ec_mulm(t1, t1, ctx->a, ctx);
			ec_addm(l1, l1, t1, ctx);
		}
		/* Z3 = 2YZ */
		ec_mulm(z3, point->y, point->z, ctx);
		ec_mul2(z3, z3, ctx);

		/* L2 = 4XY^2 */
		/*                              T2: used for Y2; required later. */
		ec_pow2(t2, point->y, ctx);
		ec_mulm(l2, t2, point->x, ctx);
		ec_mulm(l2, l2, mpi_const(MPI_C_FOUR), ctx);

		/* X3 = L1^2 - 2L2 */
		/*                              T1: used for L2^2. */
		ec_pow2(x3, l1, ctx);
		ec_mul2(t1, l2, ctx);
		ec_subm(x3, x3, t1, ctx);

		/* L3 = 8Y^4 */
		/*                              T2: taken from above. */
		ec_pow2(t2, t2, ctx);
		ec_mulm(l3, t2, mpi_const(MPI_C_EIGHT), ctx);

		/* Y3 = L1(L2 - X3) - L3 */
		ec_subm(y3, l2, x3, ctx);
		ec_mulm(y3, y3, l1, ctx);
		ec_subm(y3, y3, l3, ctx);
	}

#undef x3
#undef y3
#undef z3
#undef t1
#undef t2
#undef t3
#undef l1
#undef l2
#undef l3
}

/*  RESULT = 2 * POINT  (Montgomery version). */
static void dup_point_montgomery(MPI_POINT result,
				MPI_POINT point, struct mpi_ec_ctx *ctx)
{
	(void)result;
	(void)point;
	(void)ctx;
	log_fatal("%s: %s not yet supported\n",
			"mpi_ec_dup_point", "Montgomery");
}

/*  RESULT = 2 * POINT  (Twisted Edwards version). */
static void dup_point_edwards(MPI_POINT result,
		MPI_POINT point, struct mpi_ec_ctx *ctx)
{
#define X1 (point->x)
#define Y1 (point->y)
#define Z1 (point->z)
#define X3 (result->x)
#define Y3 (result->y)
#define Z3 (result->z)
#define B (ctx->t.scratch[0])
#define C (ctx->t.scratch[1])
#define D (ctx->t.scratch[2])
#define E (ctx->t.scratch[3])
#define F (ctx->t.scratch[4])
#define H (ctx->t.scratch[5])
#define J (ctx->t.scratch[6])

	/* Compute: (X_3 : Y_3 : Z_3) = 2( X_1 : Y_1 : Z_1 ) */

	/* B = (X_1 + Y_1)^2  */
	ctx->addm(B, X1, Y1, ctx);
	ctx->pow2(B, B, ctx);

	/* C = X_1^2 */
	/* D = Y_1^2 */
	ctx->pow2(C, X1, ctx);
	ctx->pow2(D, Y1, ctx);

	/* E = aC */
	if (ctx->dialect == ECC_DIALECT_ED25519)
		ctx->subm(E, ctx->p, C, ctx);
	else
		ctx->mulm(E, ctx->a, C, ctx);

	/* F = E + D */
	ctx->addm(F, E, D, ctx);

	/* H = Z_1^2 */
	ctx->pow2(H, Z1, ctx);

	/* J = F - 2H */
	ctx->mul2(J, H, ctx);
	ctx->subm(J, F, J, ctx);

	/* X_3 = (B - C - D) · J */
	ctx->subm(X3, B, C, ctx);
	ctx->subm(X3, X3, D, ctx);
	ctx->mulm(X3, X3, J, ctx);

	/* Y_3 = F · (E - D) */
	ctx->subm(Y3, E, D, ctx);
	ctx->mulm(Y3, Y3, F, ctx);

	/* Z_3 = F · J */
	ctx->mulm(Z3, F, J, ctx);

#undef X1
#undef Y1
#undef Z1
#undef X3
#undef Y3
#undef Z3
#undef B
#undef C
#undef D
#undef E
#undef F
#undef H
#undef J
}

/*  RESULT = 2 * POINT  */
static void
mpi_ec_dup_point(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx)
{
	switch (ctx->model) {
	case MPI_EC_WEIERSTRASS:
		dup_point_weierstrass(result, point, ctx);
		break;
	case MPI_EC_MONTGOMERY:
		dup_point_montgomery(result, point, ctx);
		break;
	case MPI_EC_EDWARDS:
		dup_point_edwards(result, point, ctx);
		break;
	}
}

/* RESULT = P1 + P2  (Weierstrass version).*/
static void add_points_weierstrass(MPI_POINT result,
		MPI_POINT p1, MPI_POINT p2,
		struct mpi_ec_ctx *ctx)
{
#define x1 (p1->x)
#define y1 (p1->y)
#define z1 (p1->z)
#define x2 (p2->x)
#define y2 (p2->y)
#define z2 (p2->z)
#define x3 (result->x)
#define y3 (result->y)
#define z3 (result->z)
#define l1 (ctx->t.scratch[0])
#define l2 (ctx->t.scratch[1])
#define l3 (ctx->t.scratch[2])
#define l4 (ctx->t.scratch[3])
#define l5 (ctx->t.scratch[4])
#define l6 (ctx->t.scratch[5])
#define l7 (ctx->t.scratch[6])
#define l8 (ctx->t.scratch[7])
#define l9 (ctx->t.scratch[8])
#define t1 (ctx->t.scratch[9])
#define t2 (ctx->t.scratch[10])

	if ((!mpi_cmp(x1, x2)) && (!mpi_cmp(y1, y2)) && (!mpi_cmp(z1, z2))) {
		/* Same point; need to call the duplicate function.  */
		mpi_ec_dup_point(result, p1, ctx);
	} else if (!mpi_cmp_ui(z1, 0)) {
		/* P1 is at infinity.  */
		mpi_set(x3, p2->x);
		mpi_set(y3, p2->y);
		mpi_set(z3, p2->z);
	} else if (!mpi_cmp_ui(z2, 0)) {
		/* P2 is at infinity.  */
		mpi_set(x3, p1->x);
		mpi_set(y3, p1->y);
		mpi_set(z3, p1->z);
	} else {
		int z1_is_one = !mpi_cmp_ui(z1, 1);
		int z2_is_one = !mpi_cmp_ui(z2, 1);

		/* l1 = x1 z2^2  */
		/* l2 = x2 z1^2  */
		if (z2_is_one)
			mpi_set(l1, x1);
		else {
			ec_pow2(l1, z2, ctx);
			ec_mulm(l1, l1, x1, ctx);
		}
		if (z1_is_one)
			mpi_set(l2, x2);
		else {
			ec_pow2(l2, z1, ctx);
			ec_mulm(l2, l2, x2, ctx);
		}
		/* l3 = l1 - l2 */
		ec_subm(l3, l1, l2, ctx);
		/* l4 = y1 z2^3  */
		ec_powm(l4, z2, mpi_const(MPI_C_THREE), ctx);
		ec_mulm(l4, l4, y1, ctx);
		/* l5 = y2 z1^3  */
		ec_powm(l5, z1, mpi_const(MPI_C_THREE), ctx);
		ec_mulm(l5, l5, y2, ctx);
		/* l6 = l4 - l5  */
		ec_subm(l6, l4, l5, ctx);

		if (!mpi_cmp_ui(l3, 0)) {
			if (!mpi_cmp_ui(l6, 0)) {
				/* P1 and P2 are the same - use duplicate function. */
				mpi_ec_dup_point(result, p1, ctx);
			} else {
				/* P1 is the inverse of P2.  */
				mpi_set_ui(x3, 1);
				mpi_set_ui(y3, 1);
				mpi_set_ui(z3, 0);
			}
		} else {
			/* l7 = l1 + l2  */
			ec_addm(l7, l1, l2, ctx);
			/* l8 = l4 + l5  */
			ec_addm(l8, l4, l5, ctx);
			/* z3 = z1 z2 l3  */
			ec_mulm(z3, z1, z2, ctx);
			ec_mulm(z3, z3, l3, ctx);
			/* x3 = l6^2 - l7 l3^2  */
			ec_pow2(t1, l6, ctx);
			ec_pow2(t2, l3, ctx);
			ec_mulm(t2, t2, l7, ctx);
			ec_subm(x3, t1, t2, ctx);
			/* l9 = l7 l3^2 - 2 x3  */
			ec_mul2(t1, x3, ctx);
			ec_subm(l9, t2, t1, ctx);
			/* y3 = (l9 l6 - l8 l3^3)/2  */
			ec_mulm(l9, l9, l6, ctx);
			ec_powm(t1, l3, mpi_const(MPI_C_THREE), ctx); /* fixme: Use saved value*/
			ec_mulm(t1, t1, l8, ctx);
			ec_subm(y3, l9, t1, ctx);
			ec_mulm(y3, y3, ec_get_two_inv_p(ctx), ctx);
		}
	}

#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef x3
#undef y3
#undef z3
#undef l1
#undef l2
#undef l3
#undef l4
#undef l5
#undef l6
#undef l7
#undef l8
#undef l9
#undef t1
#undef t2
}

/* RESULT = P1 + P2  (Montgomery version).*/
static void add_points_montgomery(MPI_POINT result,
		MPI_POINT p1, MPI_POINT p2,
		struct mpi_ec_ctx *ctx)
{
	(void)result;
	(void)p1;
	(void)p2;
	(void)ctx;
	log_fatal("%s: %s not yet supported\n",
			"mpi_ec_add_points", "Montgomery");
}

/* RESULT = P1 + P2  (Twisted Edwards version).*/
static void add_points_edwards(MPI_POINT result,
		MPI_POINT p1, MPI_POINT p2,
		struct mpi_ec_ctx *ctx)
{
#define X1 (p1->x)
#define Y1 (p1->y)
#define Z1 (p1->z)
#define X2 (p2->x)
#define Y2 (p2->y)
#define Z2 (p2->z)
#define X3 (result->x)
#define Y3 (result->y)
#define Z3 (result->z)
#define A (ctx->t.scratch[0])
#define B (ctx->t.scratch[1])
#define C (ctx->t.scratch[2])
#define D (ctx->t.scratch[3])
#define E (ctx->t.scratch[4])
#define F (ctx->t.scratch[5])
#define G (ctx->t.scratch[6])
#define tmp (ctx->t.scratch[7])

	point_resize(result, ctx);

	/* Compute: (X_3 : Y_3 : Z_3) = (X_1 : Y_1 : Z_1) + (X_2 : Y_2 : Z_3) */

	/* A = Z1 · Z2 */
	ctx->mulm(A, Z1, Z2, ctx);

	/* B = A^2 */
	ctx->pow2(B, A, ctx);

	/* C = X1 · X2 */
	ctx->mulm(C, X1, X2, ctx);

	/* D = Y1 · Y2 */
	ctx->mulm(D, Y1, Y2, ctx);

	/* E = d · C · D */
	ctx->mulm(E, ctx->b, C, ctx);
	ctx->mulm(E, E, D, ctx);

	/* F = B - E */
	ctx->subm(F, B, E, ctx);

	/* G = B + E */
	ctx->addm(G, B, E, ctx);

	/* X_3 = A · F · ((X_1 + Y_1) · (X_2 + Y_2) - C - D) */
	ctx->addm(tmp, X1, Y1, ctx);
	ctx->addm(X3, X2, Y2, ctx);
	ctx->mulm(X3, X3, tmp, ctx);
	ctx->subm(X3, X3, C, ctx);
	ctx->subm(X3, X3, D, ctx);
	ctx->mulm(X3, X3, F, ctx);
	ctx->mulm(X3, X3, A, ctx);

	/* Y_3 = A · G · (D - aC) */
	if (ctx->dialect == ECC_DIALECT_ED25519) {
		ctx->addm(Y3, D, C, ctx);
	} else {
		ctx->mulm(Y3, ctx->a, C, ctx);
		ctx->subm(Y3, D, Y3, ctx);
	}
	ctx->mulm(Y3, Y3, G, ctx);
	ctx->mulm(Y3, Y3, A, ctx);

	/* Z_3 = F · G */
	ctx->mulm(Z3, F, G, ctx);


#undef X1
#undef Y1
#undef Z1
#undef X2
#undef Y2
#undef Z2
#undef X3
#undef Y3
#undef Z3
#undef A
#undef B
#undef C
#undef D
#undef E
#undef F
#undef G
#undef tmp
}

/* Compute a step of Montgomery Ladder (only use X and Z in the point).
 * Inputs:  P1, P2, and x-coordinate of DIF = P1 - P1.
 * Outputs: PRD = 2 * P1 and  SUM = P1 + P2.
 */
static void montgomery_ladder(MPI_POINT prd, MPI_POINT sum,
		MPI_POINT p1, MPI_POINT p2, MPI dif_x,
		struct mpi_ec_ctx *ctx)
{
	ctx->addm(sum->x, p2->x, p2->z, ctx);
	ctx->subm(p2->z, p2->x, p2->z, ctx);
	ctx->addm(prd->x, p1->x, p1->z, ctx);
	ctx->subm(p1->z, p1->x, p1->z, ctx);
	ctx->mulm(p2->x, p1->z, sum->x, ctx);
	ctx->mulm(p2->z, prd->x, p2->z, ctx);
	ctx->pow2(p1->x, prd->x, ctx);
	ctx->pow2(p1->z, p1->z, ctx);
	ctx->addm(sum->x, p2->x, p2->z, ctx);
	ctx->subm(p2->z, p2->x, p2->z, ctx);
	ctx->mulm(prd->x, p1->x, p1->z, ctx);
	ctx->subm(p1->z, p1->x, p1->z, ctx);
	ctx->pow2(sum->x, sum->x, ctx);
	ctx->pow2(sum->z, p2->z, ctx);
	ctx->mulm(prd->z, p1->z, ctx->a, ctx); /* CTX->A: (a-2)/4 */
	ctx->mulm(sum->z, sum->z, dif_x, ctx);
	ctx->addm(prd->z, p1->x, prd->z, ctx);
	ctx->mulm(prd->z, prd->z, p1->z, ctx);
}

/* RESULT = P1 + P2 */
void mpi_ec_add_points(MPI_POINT result,
		MPI_POINT p1, MPI_POINT p2,
		struct mpi_ec_ctx *ctx)
{
	switch (ctx->model) {
	case MPI_EC_WEIERSTRASS:
		add_points_weierstrass(result, p1, p2, ctx);
		break;
	case MPI_EC_MONTGOMERY:
		add_points_montgomery(result, p1, p2, ctx);
		break;
	case MPI_EC_EDWARDS:
		add_points_edwards(result, p1, p2, ctx);
		break;
	}
}
EXPORT_SYMBOL_GPL(mpi_ec_add_points);

/* Scalar point multiplication - the main function for ECC.  If takes
 * an integer SCALAR and a POINT as well as the usual context CTX.
 * RESULT will be set to the resulting point.
 */
void mpi_ec_mul_point(MPI_POINT result,
			MPI scalar, MPI_POINT point,
			struct mpi_ec_ctx *ctx)
{
	MPI x1, y1, z1, k, h, yy;
	unsigned int i, loops;
	struct gcry_mpi_point p1, p2, p1inv;

	if (ctx->model == MPI_EC_EDWARDS) {
		/* Simple left to right binary method.  Algorithm 3.27 from
		 * {author={Hankerson, Darrel and Menezes, Alfred J. and Vanstone, Scott},
		 *  title = {Guide to Elliptic Curve Cryptography},
		 *  year = {2003}, isbn = {038795273X},
		 *  url = {http://www.cacr.math.uwaterloo.ca/ecc/},
		 *  publisher = {Springer-Verlag New York, Inc.}}
		 */
		unsigned int nbits;
		int j;

		if (mpi_cmp(scalar, ctx->p) >= 0)
			nbits = mpi_get_nbits(scalar);
		else
			nbits = mpi_get_nbits(ctx->p);

		mpi_set_ui(result->x, 0);
		mpi_set_ui(result->y, 1);
		mpi_set_ui(result->z, 1);
		point_resize(point, ctx);

		point_resize(result, ctx);
		point_resize(point, ctx);

		for (j = nbits-1; j >= 0; j--) {
			mpi_ec_dup_point(result, result, ctx);
			if (mpi_test_bit(scalar, j))
				mpi_ec_add_points(result, result, point, ctx);
		}
		return;
	} else if (ctx->model == MPI_EC_MONTGOMERY) {
		unsigned int nbits;
		int j;
		struct gcry_mpi_point p1_, p2_;
		MPI_POINT q1, q2, prd, sum;
		unsigned long sw;
		mpi_size_t rsize;
		int scalar_copied = 0;

		/* Compute scalar point multiplication with Montgomery Ladder.
		 * Note that we don't use Y-coordinate in the points at all.
		 * RESULT->Y will be filled by zero.
		 */

		nbits = mpi_get_nbits(scalar);
		point_init(&p1);
		point_init(&p2);
		point_init(&p1_);
		point_init(&p2_);
		mpi_set_ui(p1.x, 1);
		mpi_free(p2.x);
		p2.x = mpi_copy(point->x);
		mpi_set_ui(p2.z, 1);

		point_resize(&p1, ctx);
		point_resize(&p2, ctx);
		point_resize(&p1_, ctx);
		point_resize(&p2_, ctx);

		mpi_resize(point->x, ctx->p->nlimbs);
		point->x->nlimbs = ctx->p->nlimbs;

		q1 = &p1;
		q2 = &p2;
		prd = &p1_;
		sum = &p2_;

		for (j = nbits-1; j >= 0; j--) {
			MPI_POINT t;

			sw = mpi_test_bit(scalar, j);
			point_swap_cond(q1, q2, sw, ctx);
			montgomery_ladder(prd, sum, q1, q2, point->x, ctx);
			point_swap_cond(prd, sum, sw, ctx);
			t = q1;  q1 = prd;  prd = t;
			t = q2;  q2 = sum;  sum = t;
		}

		mpi_clear(result->y);
		sw = (nbits & 1);
		point_swap_cond(&p1, &p1_, sw, ctx);

		rsize = p1.z->nlimbs;
		MPN_NORMALIZE(p1.z->d, rsize);
		if (rsize == 0) {
			mpi_set_ui(result->x, 1);
			mpi_set_ui(result->z, 0);
		} else {
			z1 = mpi_new(0);
			ec_invm(z1, p1.z, ctx);
			ec_mulm(result->x, p1.x, z1, ctx);
			mpi_set_ui(result->z, 1);
			mpi_free(z1);
		}

		point_free(&p1);
		point_free(&p2);
		point_free(&p1_);
		point_free(&p2_);
		if (scalar_copied)
			mpi_free(scalar);
		return;
	}

	x1 = mpi_alloc_like(ctx->p);
	y1 = mpi_alloc_like(ctx->p);
	h  = mpi_alloc_like(ctx->p);
	k  = mpi_copy(scalar);
	yy = mpi_copy(point->y);

	if (mpi_has_sign(k)) {
		k->sign = 0;
		ec_invm(yy, yy, ctx);
	}

	if (!mpi_cmp_ui(point->z, 1)) {
		mpi_set(x1, point->x);
		mpi_set(y1, yy);
	} else {
		MPI z2, z3;

		z2 = mpi_alloc_like(ctx->p);
		z3 = mpi_alloc_like(ctx->p);
		ec_mulm(z2, point->z, point->z, ctx);
		ec_mulm(z3, point->z, z2, ctx);
		ec_invm(z2, z2, ctx);
		ec_mulm(x1, point->x, z2, ctx);
		ec_invm(z3, z3, ctx);
		ec_mulm(y1, yy, z3, ctx);
		mpi_free(z2);
		mpi_free(z3);
	}
	z1 = mpi_copy(mpi_const(MPI_C_ONE));

	mpi_mul(h, k, mpi_const(MPI_C_THREE)); /* h = 3k */
	loops = mpi_get_nbits(h);
	if (loops < 2) {
		/* If SCALAR is zero, the above mpi_mul sets H to zero and thus
		 * LOOPs will be zero.  To avoid an underflow of I in the main
		 * loop we set LOOP to 2 and the result to (0,0,0).
		 */
		loops = 2;
		mpi_clear(result->x);
		mpi_clear(result->y);
		mpi_clear(result->z);
	} else {
		mpi_set(result->x, point->x);
		mpi_set(result->y, yy);
		mpi_set(result->z, point->z);
	}
	mpi_free(yy); yy = NULL;

	p1.x = x1; x1 = NULL;
	p1.y = y1; y1 = NULL;
	p1.z = z1; z1 = NULL;
	point_init(&p2);
	point_init(&p1inv);

	/* Invert point: y = p - y mod p  */
	point_set(&p1inv, &p1);
	ec_subm(p1inv.y, ctx->p, p1inv.y, ctx);

	for (i = loops-2; i > 0; i--) {
		mpi_ec_dup_point(result, result, ctx);
		if (mpi_test_bit(h, i) == 1 && mpi_test_bit(k, i) == 0) {
			point_set(&p2, result);
			mpi_ec_add_points(result, &p2, &p1, ctx);
		}
		if (mpi_test_bit(h, i) == 0 && mpi_test_bit(k, i) == 1) {
			point_set(&p2, result);
			mpi_ec_add_points(result, &p2, &p1inv, ctx);
		}
	}

	point_free(&p1);
	point_free(&p2);
	point_free(&p1inv);
	mpi_free(h);
	mpi_free(k);
}
EXPORT_SYMBOL_GPL(mpi_ec_mul_point);

/* Return true if POINT is on the curve described by CTX.  */
int mpi_ec_curve_point(MPI_POINT point, struct mpi_ec_ctx *ctx)
{
	int res = 0;
	MPI x, y, w;

	x = mpi_new(0);
	y = mpi_new(0);
	w = mpi_new(0);

	/* Check that the point is in range.  This needs to be done here and
	 * not after conversion to affine coordinates.
	 */
	if (mpi_cmpabs(point->x, ctx->p) >= 0)
		goto leave;
	if (mpi_cmpabs(point->y, ctx->p) >= 0)
		goto leave;
	if (mpi_cmpabs(point->z, ctx->p) >= 0)
		goto leave;

	switch (ctx->model) {
	case MPI_EC_WEIERSTRASS:
		{
			MPI xxx;

			if (mpi_ec_get_affine(x, y, point, ctx))
				goto leave;

			xxx = mpi_new(0);

			/* y^2 == x^3 + a·x + b */
			ec_pow2(y, y, ctx);

			ec_pow3(xxx, x, ctx);
			ec_mulm(w, ctx->a, x, ctx);
			ec_addm(w, w, ctx->b, ctx);
			ec_addm(w, w, xxx, ctx);

			if (!mpi_cmp(y, w))
				res = 1;

			mpi_free(xxx);
		}
		break;

	case MPI_EC_MONTGOMERY:
		{
#define xx y
			/* With Montgomery curve, only X-coordinate is valid. */
			if (mpi_ec_get_affine(x, NULL, point, ctx))
				goto leave;

			/* The equation is: b * y^2 == x^3 + a · x^2 + x */
			/* We check if right hand is quadratic residue or not by
			 * Euler's criterion.
			 */
			/* CTX->A has (a-2)/4 and CTX->B has b^-1 */
			ec_mulm(w, ctx->a, mpi_const(MPI_C_FOUR), ctx);
			ec_addm(w, w, mpi_const(MPI_C_TWO), ctx);
			ec_mulm(w, w, x, ctx);
			ec_pow2(xx, x, ctx);
			ec_addm(w, w, xx, ctx);
			ec_addm(w, w, mpi_const(MPI_C_ONE), ctx);
			ec_mulm(w, w, x, ctx);
			ec_mulm(w, w, ctx->b, ctx);
#undef xx
			/* Compute Euler's criterion: w^(p-1)/2 */
#define p_minus1 y
			ec_subm(p_minus1, ctx->p, mpi_const(MPI_C_ONE), ctx);
			mpi_rshift(p_minus1, p_minus1, 1);
			ec_powm(w, w, p_minus1, ctx);

			res = !mpi_cmp_ui(w, 1);
#undef p_minus1
		}
		break;

	case MPI_EC_EDWARDS:
		{
			if (mpi_ec_get_affine(x, y, point, ctx))
				goto leave;

			mpi_resize(w, ctx->p->nlimbs);
			w->nlimbs = ctx->p->nlimbs;

			/* a · x^2 + y^2 - 1 - b · x^2 · y^2 == 0 */
			ctx->pow2(x, x, ctx);
			ctx->pow2(y, y, ctx);
			if (ctx->dialect == ECC_DIALECT_ED25519)
				ctx->subm(w, ctx->p, x, ctx);
			else
				ctx->mulm(w, ctx->a, x, ctx);
			ctx->addm(w, w, y, ctx);
			ctx->mulm(x, x, y, ctx);
			ctx->mulm(x, x, ctx->b, ctx);
			ctx->subm(w, w, x, ctx);
			if (!mpi_cmp_ui(w, 1))
				res = 1;
		}
		break;
	}

leave:
	mpi_free(w);
	mpi_free(x);
	mpi_free(y);

	return res;
}
EXPORT_SYMBOL_GPL(mpi_ec_curve_point);