/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_FS_H
#define _LINUX_FS_H
#include <linux/linkage.h>
#include <linux/wait_bit.h>
#include <linux/kdev_t.h>
#include <linux/dcache.h>
#include <linux/path.h>
#include <linux/stat.h>
#include <linux/cache.h>
#include <linux/list.h>
#include <linux/list_lru.h>
#include <linux/llist.h>
#include <linux/radix-tree.h>
#include <linux/xarray.h>
#include <linux/rbtree.h>
#include <linux/init.h>
#include <linux/pid.h>
#include <linux/bug.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/mm_types.h>
#include <linux/capability.h>
#include <linux/semaphore.h>
#include <linux/fcntl.h>
#include <linux/rculist_bl.h>
#include <linux/atomic.h>
#include <linux/shrinker.h>
#include <linux/migrate_mode.h>
#include <linux/uidgid.h>
#include <linux/lockdep.h>
#include <linux/percpu-rwsem.h>
#include <linux/workqueue.h>
#include <linux/delayed_call.h>
#include <linux/uuid.h>
#include <linux/errseq.h>
#include <linux/ioprio.h>
#include <linux/fs_types.h>
#include <linux/build_bug.h>
#include <linux/stddef.h>
#include <linux/mount.h>
#include <linux/cred.h>
#include <linux/mnt_idmapping.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <uapi/linux/fs.h>
struct backing_dev_info;
struct bdi_writeback;
struct bio;
struct io_comp_batch;
struct export_operations;
struct fiemap_extent_info;
struct hd_geometry;
struct iovec;
struct kiocb;
struct kobject;
struct pipe_inode_info;
struct poll_table_struct;
struct kstatfs;
struct vm_area_struct;
struct vfsmount;
struct cred;
struct swap_info_struct;
struct seq_file;
struct workqueue_struct;
struct iov_iter;
struct fscrypt_info;
struct fscrypt_operations;
struct fsverity_info;
struct fsverity_operations;
struct fs_context;
struct fs_parameter_spec;
struct fileattr;
struct iomap_ops;
extern void __init inode_init(void);
extern void __init inode_init_early(void);
extern void __init files_init(void);
extern void __init files_maxfiles_init(void);
extern unsigned long get_max_files(void);
extern unsigned int sysctl_nr_open;
typedef __kernel_rwf_t rwf_t;
struct buffer_head;
typedef int (get_block_t)(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create);
typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
ssize_t bytes, void *private);
#define MAY_EXEC 0x00000001
#define MAY_WRITE 0x00000002
#define MAY_READ 0x00000004
#define MAY_APPEND 0x00000008
#define MAY_ACCESS 0x00000010
#define MAY_OPEN 0x00000020
#define MAY_CHDIR 0x00000040
/* called from RCU mode, don't block */
#define MAY_NOT_BLOCK 0x00000080
/*
* flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond
* to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
*/
/* file is open for reading */
#define FMODE_READ ((__force fmode_t)0x1)
/* file is open for writing */
#define FMODE_WRITE ((__force fmode_t)0x2)
/* file is seekable */
#define FMODE_LSEEK ((__force fmode_t)0x4)
/* file can be accessed using pread */
#define FMODE_PREAD ((__force fmode_t)0x8)
/* file can be accessed using pwrite */
#define FMODE_PWRITE ((__force fmode_t)0x10)
/* File is opened for execution with sys_execve / sys_uselib */
#define FMODE_EXEC ((__force fmode_t)0x20)
/* 32bit hashes as llseek() offset (for directories) */
#define FMODE_32BITHASH ((__force fmode_t)0x200)
/* 64bit hashes as llseek() offset (for directories) */
#define FMODE_64BITHASH ((__force fmode_t)0x400)
/*
* Don't update ctime and mtime.
*
* Currently a special hack for the XFS open_by_handle ioctl, but we'll
* hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
*/
#define FMODE_NOCMTIME ((__force fmode_t)0x800)
/* Expect random access pattern */
#define FMODE_RANDOM ((__force fmode_t)0x1000)
/* File is huge (eg. /dev/mem): treat loff_t as unsigned */
#define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000)
/* File is opened with O_PATH; almost nothing can be done with it */
#define FMODE_PATH ((__force fmode_t)0x4000)
/* File needs atomic accesses to f_pos */
#define FMODE_ATOMIC_POS ((__force fmode_t)0x8000)
/* Write access to underlying fs */
#define FMODE_WRITER ((__force fmode_t)0x10000)
/* Has read method(s) */
#define FMODE_CAN_READ ((__force fmode_t)0x20000)
/* Has write method(s) */
#define FMODE_CAN_WRITE ((__force fmode_t)0x40000)
#define FMODE_OPENED ((__force fmode_t)0x80000)
#define FMODE_CREATED ((__force fmode_t)0x100000)
/* File is stream-like */
#define FMODE_STREAM ((__force fmode_t)0x200000)
/* File supports DIRECT IO */
#define FMODE_CAN_ODIRECT ((__force fmode_t)0x400000)
#define FMODE_NOREUSE ((__force fmode_t)0x800000)
/* File supports non-exclusive O_DIRECT writes from multiple threads */
#define FMODE_DIO_PARALLEL_WRITE ((__force fmode_t)0x1000000)
/* File is embedded in backing_file object */
#define FMODE_BACKING ((__force fmode_t)0x2000000)
/* File was opened by fanotify and shouldn't generate fanotify events */
#define FMODE_NONOTIFY ((__force fmode_t)0x4000000)
/* File is capable of returning -EAGAIN if I/O will block */
#define FMODE_NOWAIT ((__force fmode_t)0x8000000)
/* File represents mount that needs unmounting */
#define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000)
/* File does not contribute to nr_files count */
#define FMODE_NOACCOUNT ((__force fmode_t)0x20000000)
/* File supports async buffered reads */
#define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000)
/* File supports async nowait buffered writes */
#define FMODE_BUF_WASYNC ((__force fmode_t)0x80000000)
/*
* Attribute flags. These should be or-ed together to figure out what
* has been changed!
*/
#define ATTR_MODE (1 << 0)
#define ATTR_UID (1 << 1)
#define ATTR_GID (1 << 2)
#define ATTR_SIZE (1 << 3)
#define ATTR_ATIME (1 << 4)
#define ATTR_MTIME (1 << 5)
#define ATTR_CTIME (1 << 6)
#define ATTR_ATIME_SET (1 << 7)
#define ATTR_MTIME_SET (1 << 8)
#define ATTR_FORCE (1 << 9) /* Not a change, but a change it */
#define ATTR_KILL_SUID (1 << 11)
#define ATTR_KILL_SGID (1 << 12)
#define ATTR_FILE (1 << 13)
#define ATTR_KILL_PRIV (1 << 14)
#define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */
#define ATTR_TIMES_SET (1 << 16)
#define ATTR_TOUCH (1 << 17)
/*
* Whiteout is represented by a char device. The following constants define the
* mode and device number to use.
*/
#define WHITEOUT_MODE 0
#define WHITEOUT_DEV 0
/*
* This is the Inode Attributes structure, used for notify_change(). It
* uses the above definitions as flags, to know which values have changed.
* Also, in this manner, a Filesystem can look at only the values it cares
* about. Basically, these are the attributes that the VFS layer can
* request to change from the FS layer.
*
* Derek Atkins <warlord@MIT.EDU> 94-10-20
*/
struct iattr {
unsigned int ia_valid;
umode_t ia_mode;
/*
* The two anonymous unions wrap structures with the same member.
*
* Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
* are a dedicated type requiring the filesystem to use the dedicated
* helpers. Other filesystem can continue to use ia_{g,u}id until they
* have been ported.
*
* They always contain the same value. In other words FS_ALLOW_IDMAP
* pass down the same value on idmapped mounts as they would on regular
* mounts.
*/
union {
kuid_t ia_uid;
vfsuid_t ia_vfsuid;
};
union {
kgid_t ia_gid;
vfsgid_t ia_vfsgid;
};
loff_t ia_size;
struct timespec64 ia_atime;
struct timespec64 ia_mtime;
struct timespec64 ia_ctime;
/*
* Not an attribute, but an auxiliary info for filesystems wanting to
* implement an ftruncate() like method. NOTE: filesystem should
* check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
*/
struct file *ia_file;
};
/*
* Includes for diskquotas.
*/
#include <linux/quota.h>
/*
* Maximum number of layers of fs stack. Needs to be limited to
* prevent kernel stack overflow
*/
#define FILESYSTEM_MAX_STACK_DEPTH 2
/**
* enum positive_aop_returns - aop return codes with specific semantics
*
* @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
* completed, that the page is still locked, and
* should be considered active. The VM uses this hint
* to return the page to the active list -- it won't
* be a candidate for writeback again in the near
* future. Other callers must be careful to unlock
* the page if they get this return. Returned by
* writepage();
*
* @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
* unlocked it and the page might have been truncated.
* The caller should back up to acquiring a new page and
* trying again. The aop will be taking reasonable
* precautions not to livelock. If the caller held a page
* reference, it should drop it before retrying. Returned
* by read_folio().
*
* address_space_operation functions return these large constants to indicate
* special semantics to the caller. These are much larger than the bytes in a
* page to allow for functions that return the number of bytes operated on in a
* given page.
*/
enum positive_aop_returns {
AOP_WRITEPAGE_ACTIVATE = 0x80000,
AOP_TRUNCATED_PAGE = 0x80001,
};
/*
* oh the beauties of C type declarations.
*/
struct page;
struct address_space;
struct writeback_control;
struct readahead_control;
/*
* Write life time hint values.
* Stored in struct inode as u8.
*/
enum rw_hint {
WRITE_LIFE_NOT_SET = 0,
WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE,
WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT,
WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM,
WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG,
WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME,
};
/* Match RWF_* bits to IOCB bits */
#define IOCB_HIPRI (__force int) RWF_HIPRI
#define IOCB_DSYNC (__force int) RWF_DSYNC
#define IOCB_SYNC (__force int) RWF_SYNC
#define IOCB_NOWAIT (__force int) RWF_NOWAIT
#define IOCB_APPEND (__force int) RWF_APPEND
/* non-RWF related bits - start at 16 */
#define IOCB_EVENTFD (1 << 16)
#define IOCB_DIRECT (1 << 17)
#define IOCB_WRITE (1 << 18)
/* iocb->ki_waitq is valid */
#define IOCB_WAITQ (1 << 19)
#define IOCB_NOIO (1 << 20)
/* can use bio alloc cache */
#define IOCB_ALLOC_CACHE (1 << 21)
/* for use in trace events */
#define TRACE_IOCB_STRINGS \
{ IOCB_HIPRI, "HIPRI" }, \
{ IOCB_DSYNC, "DSYNC" }, \
{ IOCB_SYNC, "SYNC" }, \
{ IOCB_NOWAIT, "NOWAIT" }, \
{ IOCB_APPEND, "APPEND" }, \
{ IOCB_EVENTFD, "EVENTFD"}, \
{ IOCB_DIRECT, "DIRECT" }, \
{ IOCB_WRITE, "WRITE" }, \
{ IOCB_WAITQ, "WAITQ" }, \
{ IOCB_NOIO, "NOIO" }, \
{ IOCB_ALLOC_CACHE, "ALLOC_CACHE" }
struct kiocb {
struct file *ki_filp;
loff_t ki_pos;
void (*ki_complete)(struct kiocb *iocb, long ret);
void *private;
int ki_flags;
u16 ki_ioprio; /* See linux/ioprio.h */
struct wait_page_queue *ki_waitq; /* for async buffered IO */
};
static inline bool is_sync_kiocb(struct kiocb *kiocb)
{
return kiocb->ki_complete == NULL;
}
struct address_space_operations {
int (*writepage)(struct page *page, struct writeback_control *wbc);
int (*read_folio)(struct file *, struct folio *);
/* Write back some dirty pages from this mapping. */
int (*writepages)(struct address_space *, struct writeback_control *);
/* Mark a folio dirty. Return true if this dirtied it */
bool (*dirty_folio)(struct address_space *, struct folio *);
void (*readahead)(struct readahead_control *);
int (*write_begin)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len,
struct page **pagep, void **fsdata);
int (*write_end)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata);
/* Unfortunately this kludge is needed for FIBMAP. Don't use it */
sector_t (*bmap)(struct address_space *, sector_t);
void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
bool (*release_folio)(struct folio *, gfp_t);
void (*free_folio)(struct folio *folio);
ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
/*
* migrate the contents of a folio to the specified target. If
* migrate_mode is MIGRATE_ASYNC, it must not block.
*/
int (*migrate_folio)(struct address_space *, struct folio *dst,
struct folio *src, enum migrate_mode);
int (*launder_folio)(struct folio *);
bool (*is_partially_uptodate) (struct folio *, size_t from,
size_t count);
void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
int (*error_remove_page)(struct address_space *, struct page *);
/* swapfile support */
int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
sector_t *span);
void (*swap_deactivate)(struct file *file);
int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
};
extern const struct address_space_operations empty_aops;
/**
* struct address_space - Contents of a cacheable, mappable object.
* @host: Owner, either the inode or the block_device.
* @i_pages: Cached pages.
* @invalidate_lock: Guards coherency between page cache contents and
* file offset->disk block mappings in the filesystem during invalidates.
* It is also used to block modification of page cache contents through
* memory mappings.
* @gfp_mask: Memory allocation flags to use for allocating pages.
* @i_mmap_writable: Number of VM_SHARED mappings.
* @nr_thps: Number of THPs in the pagecache (non-shmem only).
* @i_mmap: Tree of private and shared mappings.
* @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
* @nrpages: Number of page entries, protected by the i_pages lock.
* @writeback_index: Writeback starts here.
* @a_ops: Methods.
* @flags: Error bits and flags (AS_*).
* @wb_err: The most recent error which has occurred.
* @private_lock: For use by the owner of the address_space.
* @private_list: For use by the owner of the address_space.
* @private_data: For use by the owner of the address_space.
*/
struct address_space {
struct inode *host;
struct xarray i_pages;
struct rw_semaphore invalidate_lock;
gfp_t gfp_mask;
atomic_t i_mmap_writable;
#ifdef CONFIG_READ_ONLY_THP_FOR_FS
/* number of thp, only for non-shmem files */
atomic_t nr_thps;
#endif
struct rb_root_cached i_mmap;
struct rw_semaphore i_mmap_rwsem;
unsigned long nrpages;
pgoff_t writeback_index;
const struct address_space_operations *a_ops;
unsigned long flags;
errseq_t wb_err;
spinlock_t private_lock;
struct list_head private_list;
void *private_data;
} __attribute__((aligned(sizeof(long)))) __randomize_layout;
/*
* On most architectures that alignment is already the case; but
* must be enforced here for CRIS, to let the least significant bit
* of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
*/
/* XArray tags, for tagging dirty and writeback pages in the pagecache. */
#define PAGECACHE_TAG_DIRTY XA_MARK_0
#define PAGECACHE_TAG_WRITEBACK XA_MARK_1
#define PAGECACHE_TAG_TOWRITE XA_MARK_2
/*
* Returns true if any of the pages in the mapping are marked with the tag.
*/
static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
{
return xa_marked(&mapping->i_pages, tag);
}
static inline void i_mmap_lock_write(struct address_space *mapping)
{
down_write(&mapping->i_mmap_rwsem);
}
static inline int i_mmap_trylock_write(struct address_space *mapping)
{
return down_write_trylock(&mapping->i_mmap_rwsem);
}
static inline void i_mmap_unlock_write(struct address_space *mapping)
{
up_write(&mapping->i_mmap_rwsem);
}
static inline int i_mmap_trylock_read(struct address_space *mapping)
{
return down_read_trylock(&mapping->i_mmap_rwsem);
}
static inline void i_mmap_lock_read(struct address_space *mapping)
{
down_read(&mapping->i_mmap_rwsem);
}
static inline void i_mmap_unlock_read(struct address_space *mapping)
{
up_read(&mapping->i_mmap_rwsem);
}
static inline void i_mmap_assert_locked(struct address_space *mapping)
{
lockdep_assert_held(&mapping->i_mmap_rwsem);
}
static inline void i_mmap_assert_write_locked(struct address_space *mapping)
{
lockdep_assert_held_write(&mapping->i_mmap_rwsem);
}
/*
* Might pages of this file be mapped into userspace?
*/
static inline int mapping_mapped(struct address_space *mapping)
{
return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
}
/*
* Might pages of this file have been modified in userspace?
* Note that i_mmap_writable counts all VM_SHARED vmas: do_mmap
* marks vma as VM_SHARED if it is shared, and the file was opened for
* writing i.e. vma may be mprotected writable even if now readonly.
*
* If i_mmap_writable is negative, no new writable mappings are allowed. You
* can only deny writable mappings, if none exists right now.
*/
static inline int mapping_writably_mapped(struct address_space *mapping)
{
return atomic_read(&mapping->i_mmap_writable) > 0;
}
static inline int mapping_map_writable(struct address_space *mapping)
{
return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
0 : -EPERM;
}
static inline void mapping_unmap_writable(struct address_space *mapping)
{
atomic_dec(&mapping->i_mmap_writable);
}
static inline int mapping_deny_writable(struct address_space *mapping)
{
return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
0 : -EBUSY;
}
static inline void mapping_allow_writable(struct address_space *mapping)
{
atomic_inc(&mapping->i_mmap_writable);
}
/*
* Use sequence counter to get consistent i_size on 32-bit processors.
*/
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
#include <linux/seqlock.h>
#define __NEED_I_SIZE_ORDERED
#define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
#else
#define i_size_ordered_init(inode) do { } while (0)
#endif
struct posix_acl;
#define ACL_NOT_CACHED ((void *)(-1))
/*
* ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
* cache the ACL. This also means that ->get_inode_acl() can be called in RCU
* mode with the LOOKUP_RCU flag.
*/
#define ACL_DONT_CACHE ((void *)(-3))
static inline struct posix_acl *
uncached_acl_sentinel(struct task_struct *task)
{
return (void *)task + 1;
}
static inline bool
is_uncached_acl(struct posix_acl *acl)
{
return (long)acl & 1;
}
#define IOP_FASTPERM 0x0001
#define IOP_LOOKUP 0x0002
#define IOP_NOFOLLOW 0x0004
#define IOP_XATTR 0x0008
#define IOP_DEFAULT_READLINK 0x0010
struct fsnotify_mark_connector;
/*
* Keep mostly read-only and often accessed (especially for
* the RCU path lookup and 'stat' data) fields at the beginning
* of the 'struct inode'
*/
struct inode {
umode_t i_mode;
unsigned short i_opflags;
kuid_t i_uid;
kgid_t i_gid;
unsigned int i_flags;
#ifdef CONFIG_FS_POSIX_ACL
struct posix_acl *i_acl;
struct posix_acl *i_default_acl;
#endif
const struct inode_operations *i_op;
struct super_block *i_sb;
struct address_space *i_mapping;
#ifdef CONFIG_SECURITY
void *i_security;
#endif
/* Stat data, not accessed from path walking */
unsigned long i_ino;
/*
* Filesystems may only read i_nlink directly. They shall use the
* following functions for modification:
*
* (set|clear|inc|drop)_nlink
* inode_(inc|dec)_link_count
*/
union {
const unsigned int i_nlink;
unsigned int __i_nlink;
};
dev_t i_rdev;
loff_t i_size;
struct timespec64 i_atime;
struct timespec64 i_mtime;
struct timespec64 i_ctime;
spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
unsigned short i_bytes;
u8 i_blkbits;
u8 i_write_hint;
blkcnt_t i_blocks;
#ifdef __NEED_I_SIZE_ORDERED
seqcount_t i_size_seqcount;
#endif
/* Misc */
unsigned long i_state;
struct rw_semaphore i_rwsem;
unsigned long dirtied_when; /* jiffies of first dirtying */
unsigned long dirtied_time_when;
struct hlist_node i_hash;
struct list_head i_io_list; /* backing dev IO list */
#ifdef CONFIG_CGROUP_WRITEBACK
struct bdi_writeback *i_wb; /* the associated cgroup wb */
/* foreign inode detection, see wbc_detach_inode() */
int i_wb_frn_winner;
u16 i_wb_frn_avg_time;
u16 i_wb_frn_history;
#endif
struct list_head i_lru; /* inode LRU list */
struct list_head i_sb_list;
struct list_head i_wb_list; /* backing dev writeback list */
union {
struct hlist_head i_dentry;
struct rcu_head i_rcu;
};
atomic64_t i_version;
atomic64_t i_sequence; /* see futex */
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
atomic_t i_readcount; /* struct files open RO */
#endif
union {
const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
void (*free_inode)(struct inode *);
};
struct file_lock_context *i_flctx;
struct address_space i_data;
struct list_head i_devices;
union {
struct pipe_inode_info *i_pipe;
struct cdev *i_cdev;
char *i_link;
unsigned i_dir_seq;
};
__u32 i_generation;
#ifdef CONFIG_FSNOTIFY
__u32 i_fsnotify_mask; /* all events this inode cares about */
struct fsnotify_mark_connector __rcu *i_fsnotify_marks;
#endif
#ifdef CONFIG_FS_ENCRYPTION
struct fscrypt_info *i_crypt_info;
#endif
#ifdef CONFIG_FS_VERITY
struct fsverity_info *i_verity_info;
#endif
void *i_private; /* fs or device private pointer */
} __randomize_layout;
struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
static inline unsigned int i_blocksize(const struct inode *node)
{
return (1 << node->i_blkbits);
}
static inline int inode_unhashed(struct inode *inode)
{
return hlist_unhashed(&inode->i_hash);
}
/*
* __mark_inode_dirty expects inodes to be hashed. Since we don't
* want special inodes in the fileset inode space, we make them
* appear hashed, but do not put on any lists. hlist_del()
* will work fine and require no locking.
*/
static inline void inode_fake_hash(struct inode *inode)
{
hlist_add_fake(&inode->i_hash);
}
/*
* inode->i_mutex nesting subclasses for the lock validator:
*
* 0: the object of the current VFS operation
* 1: parent
* 2: child/target
* 3: xattr
* 4: second non-directory
* 5: second parent (when locking independent directories in rename)
*
* I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
* non-directories at once.
*
* The locking order between these classes is
* parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
*/
enum inode_i_mutex_lock_class
{
I_MUTEX_NORMAL,
I_MUTEX_PARENT,
I_MUTEX_CHILD,
I_MUTEX_XATTR,
I_MUTEX_NONDIR2,
I_MUTEX_PARENT2,
};
static inline void inode_lock(struct inode *inode)
{
down_write(&inode->i_rwsem);
}
static inline void inode_unlock(struct inode *inode)
{
up_write(&inode->i_rwsem);
}
static inline void inode_lock_shared(struct inode *inode)
{
down_read(&inode->i_rwsem);
}
static inline void inode_unlock_shared(struct inode *inode)
{
up_read(&inode->i_rwsem);
}
static inline int inode_trylock(struct inode *inode)
{
return down_write_trylock(&inode->i_rwsem);
}
static inline int inode_trylock_shared(struct inode *inode)
{
return down_read_trylock(&inode->i_rwsem);
}
static inline int inode_is_locked(struct inode *inode)
{
return rwsem_is_locked(&inode->i_rwsem);
}
static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
{
down_write_nested(&inode->i_rwsem, subclass);
}
static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
{
down_read_nested(&inode->i_rwsem, subclass);
}
static inline void filemap_invalidate_lock(struct address_space *mapping)
{
down_write(&mapping->invalidate_lock);
}
static inline void filemap_invalidate_unlock(struct address_space *mapping)
{
up_write(&mapping->invalidate_lock);
}
static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
{
down_read(&mapping->invalidate_lock);
}
static inline int filemap_invalidate_trylock_shared(
struct address_space *mapping)
{
return down_read_trylock(&mapping->invalidate_lock);
}
static inline void filemap_invalidate_unlock_shared(
struct address_space *mapping)
{
up_read(&mapping->invalidate_lock);
}
void lock_two_nondirectories(struct inode *, struct inode*);
void unlock_two_nondirectories(struct inode *, struct inode*);
void filemap_invalidate_lock_two(struct address_space *mapping1,
struct address_space *mapping2);
void filemap_invalidate_unlock_two(struct address_space *mapping1,
struct address_space *mapping2);
/*
* NOTE: in a 32bit arch with a preemptable kernel and
* an UP compile the i_size_read/write must be atomic
* with respect to the local cpu (unlike with preempt disabled),
* but they don't need to be atomic with respect to other cpus like in
* true SMP (so they need either to either locally disable irq around
* the read or for example on x86 they can be still implemented as a
* cmpxchg8b without the need of the lock prefix). For SMP compiles
* and 64bit archs it makes no difference if preempt is enabled or not.
*/
static inline loff_t i_size_read(const struct inode *inode)
{
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
loff_t i_size;
unsigned int seq;
do {
seq = read_seqcount_begin(&inode->i_size_seqcount);
i_size = inode->i_size;
} while (read_seqcount_retry(&inode->i_size_seqcount, seq));
return i_size;
#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
loff_t i_size;
preempt_disable();
i_size = inode->i_size;
preempt_enable();
return i_size;
#else
return inode->i_size;
#endif
}
/*
* NOTE: unlike i_size_read(), i_size_write() does need locking around it
* (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
* can be lost, resulting in subsequent i_size_read() calls spinning forever.
*/
static inline void i_size_write(struct inode *inode, loff_t i_size)
{
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
preempt_disable();
write_seqcount_begin(&inode->i_size_seqcount);
inode->i_size = i_size;
write_seqcount_end(&inode->i_size_seqcount);
preempt_enable();
#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
preempt_disable();
inode->i_size = i_size;
preempt_enable();
#else
inode->i_size = i_size;
#endif
}
static inline unsigned iminor(const struct inode *inode)
{
return MINOR(inode->i_rdev);
}
static inline unsigned imajor(const struct inode *inode)
{
return MAJOR(inode->i_rdev);
}
struct fown_struct {
rwlock_t lock; /* protects pid, uid, euid fields */
struct pid *pid; /* pid or -pgrp where SIGIO should be sent */
enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */
kuid_t uid, euid; /* uid/euid of process setting the owner */
int signum; /* posix.1b rt signal to be delivered on IO */
};
/**
* struct file_ra_state - Track a file's readahead state.
* @start: Where the most recent readahead started.
* @size: Number of pages read in the most recent readahead.
* @async_size: Numer of pages that were/are not needed immediately
* and so were/are genuinely "ahead". Start next readahead when
* the first of these pages is accessed.
* @ra_pages: Maximum size of a readahead request, copied from the bdi.
* @mmap_miss: How many mmap accesses missed in the page cache.
* @prev_pos: The last byte in the most recent read request.
*
* When this structure is passed to ->readahead(), the "most recent"
* readahead means the current readahead.
*/
struct file_ra_state {
pgoff_t start;
unsigned int size;
unsigned int async_size;
unsigned int ra_pages;
unsigned int mmap_miss;
loff_t prev_pos;
};
/*
* Check if @index falls in the readahead windows.
*/
static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
{
return (index >= ra->start &&
index < ra->start + ra->size);
}
/*
* f_{lock,count,pos_lock} members can be highly contended and share
* the same cacheline. f_{lock,mode} are very frequently used together
* and so share the same cacheline as well. The read-mostly
* f_{path,inode,op} are kept on a separate cacheline.
*/
struct file {
union {
struct llist_node f_llist;
struct rcu_head f_rcuhead;
unsigned int f_iocb_flags;
};
/*
* Protects f_ep, f_flags.
* Must not be taken from IRQ context.
*/
spinlock_t f_lock;
fmode_t f_mode;
atomic_long_t f_count;
struct mutex f_pos_lock;
loff_t f_pos;
unsigned int f_flags;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;
struct path f_path;
struct inode *f_inode; /* cached value */
const struct file_operations *f_op;
u64 f_version;
#ifdef CONFIG_SECURITY
void *f_security;
#endif
/* needed for tty driver, and maybe others */
void *private_data;
#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c to link all the hooks to this file */
struct hlist_head *f_ep;
#endif /* #ifdef CONFIG_EPOLL */
struct address_space *f_mapping;
errseq_t f_wb_err;
errseq_t f_sb_err; /* for syncfs */
} __randomize_layout
__attribute__((aligned(4))); /* lest something weird decides that 2 is OK */
struct file_handle {
__u32 handle_bytes;
int handle_type;
/* file identifier */
unsigned char f_handle[];
};
static inline struct file *get_file(struct file *f)
{
atomic_long_inc(&f->f_count);
return f;
}
#define get_file_rcu(x) atomic_long_inc_not_zero(&(x)->f_count)
#define file_count(x) atomic_long_read(&(x)->f_count)
#define MAX_NON_LFS ((1UL<<31) - 1)
/* Page cache limit. The filesystems should put that into their s_maxbytes
limits, otherwise bad things can happen in VM. */
#if BITS_PER_LONG==32
#define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT)
#elif BITS_PER_LONG==64
#define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX)
#endif
/* legacy typedef, should eventually be removed */
typedef void *fl_owner_t;
struct file_lock;
/* The following constant reflects the upper bound of the file/locking space */
#ifndef OFFSET_MAX
#define OFFSET_MAX type_max(loff_t)
#define OFFT_OFFSET_MAX type_max(off_t)
#endif
extern void send_sigio(struct fown_struct *fown, int fd, int band);
static inline struct inode *file_inode(const struct file *f)
{
return f->f_inode;
}
static inline struct dentry *file_dentry(const struct file *file)
{
return d_real(file->f_path.dentry, file_inode(file));
}
struct fasync_struct {
rwlock_t fa_lock;
int magic;
int fa_fd;
struct fasync_struct *fa_next; /* singly linked list */
struct file *fa_file;
struct rcu_head fa_rcu;
};
#define FASYNC_MAGIC 0x4601
/* SMP safe fasync helpers: */
extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
extern int fasync_remove_entry(struct file *, struct fasync_struct **);
extern struct fasync_struct *fasync_alloc(void);
extern void fasync_free(struct fasync_struct *);
/* can be called from interrupts */
extern void kill_fasync(struct fasync_struct **, int, int);
extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
extern int f_setown(struct file *filp, unsigned long arg, int force);
extern void f_delown(struct file *filp);
extern pid_t f_getown(struct file *filp);
extern int send_sigurg(struct fown_struct *fown);
/*
* sb->s_flags. Note that these mirror the equivalent MS_* flags where
* represented in both.
*/
#define SB_RDONLY BIT(0) /* Mount read-only */
#define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */
#define SB_NODEV BIT(2) /* Disallow access to device special files */
#define SB_NOEXEC BIT(3) /* Disallow program execution */
#define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */
#define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */
#define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */
#define SB_NOATIME BIT(10) /* Do not update access times. */
#define SB_NODIRATIME BIT(11) /* Do not update directory access times */
#define SB_SILENT BIT(15)
#define SB_POSIXACL BIT(16) /* VFS does not apply the umask */
#define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */
#define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */
#define SB_I_VERSION BIT(23) /* Update inode I_version field */
#define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */
/* These sb flags are internal to the kernel */
#define SB_SUBMOUNT BIT(26)
#define SB_FORCE BIT(27)
#define SB_NOSEC BIT(28)
#define SB_BORN BIT(29)
#define SB_ACTIVE BIT(30)
#define SB_NOUSER BIT(31)
/* These flags relate to encoding and casefolding */
#define SB_ENC_STRICT_MODE_FL (1 << 0)
#define sb_has_strict_encoding(sb) \
(sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
/*
* Umount options
*/
#define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */
#define MNT_DETACH 0x00000002 /* Just detach from the tree */
#define MNT_EXPIRE 0x00000004 /* Mark for expiry */
#define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */
#define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */
/* sb->s_iflags */
#define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */
#define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */
#define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */
#define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */
/* sb->s_iflags to limit user namespace mounts */
#define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */
#define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020
#define SB_I_UNTRUSTED_MOUNTER 0x00000040
#define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */
#define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */
#define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
#define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */
/* Possible states of 'frozen' field */
enum {
SB_UNFROZEN = 0, /* FS is unfrozen */
SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */
SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */
SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop
* internal threads if needed) */
SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */
};
#define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
struct sb_writers {
int frozen; /* Is sb frozen? */
struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS];
};
struct super_block {
struct list_head s_list; /* Keep this first */
dev_t s_dev; /* search index; _not_ kdev_t */
unsigned char s_blocksize_bits;
unsigned long s_blocksize;
loff_t s_maxbytes; /* Max file size */
struct file_system_type *s_type;
const struct super_operations *s_op;
const struct dquot_operations *dq_op;
const struct quotactl_ops *s_qcop;
const struct export_operations *s_export_op;
unsigned long s_flags;
unsigned long s_iflags; /* internal SB_I_* flags */
unsigned long s_magic;
struct dentry *s_root;
struct rw_semaphore s_umount;
int s_count;
atomic_t s_active;
#ifdef CONFIG_SECURITY
void *s_security;
#endif
const struct xattr_handler **s_xattr;
#ifdef CONFIG_FS_ENCRYPTION
const struct fscrypt_operations *s_cop;
struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */
#endif
#ifdef CONFIG_FS_VERITY
const struct fsverity_operations *s_vop;
#endif
#if IS_ENABLED(CONFIG_UNICODE)
struct unicode_map *s_encoding;
__u16 s_encoding_flags;
#endif
struct hlist_bl_head s_roots; /* alternate root dentries for NFS */
struct list_head s_mounts; /* list of mounts; _not_ for fs use */
struct block_device *s_bdev;
struct backing_dev_info *s_bdi;
struct mtd_info *s_mtd;
struct hlist_node s_instances;
unsigned int s_quota_types; /* Bitmask of supported quota types */
struct quota_info s_dquot; /* Diskquota specific options */
struct sb_writers s_writers;
/*
* Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
* s_fsnotify_marks together for cache efficiency. They are frequently
* accessed and rarely modified.
*/
void *s_fs_info; /* Filesystem private info */
/* Granularity of c/m/atime in ns (cannot be worse than a second) */
u32 s_time_gran;
/* Time limits for c/m/atime in seconds */
time64_t s_time_min;
time64_t s_time_max;
#ifdef CONFIG_FSNOTIFY
__u32 s_fsnotify_mask;
struct fsnotify_mark_connector __rcu *s_fsnotify_marks;
#endif
char s_id[32]; /* Informational name */
uuid_t s_uuid; /* UUID */
unsigned int s_max_links;
/*
* The next field is for VFS *only*. No filesystems have any business
* even looking at it. You had been warned.
*/
struct mutex s_vfs_rename_mutex; /* Kludge */
/*
* Filesystem subtype. If non-empty the filesystem type field
* in /proc/mounts will be "type.subtype"
*/
const char *s_subtype;
const struct dentry_operations *s_d_op; /* default d_op for dentries */
struct shrinker s_shrink; /* per-sb shrinker handle */
/* Number of inodes with nlink == 0 but still referenced */
atomic_long_t s_remove_count;
/*
* Number of inode/mount/sb objects that are being watched, note that
* inodes objects are currently double-accounted.
*/
atomic_long_t s_fsnotify_connectors;
/* Read-only state of the superblock is being changed */
int s_readonly_remount;
/* per-sb errseq_t for reporting writeback errors via syncfs */
errseq_t s_wb_err;
/* AIO completions deferred from interrupt context */
struct workqueue_struct *s_dio_done_wq;
struct hlist_head s_pins;
/*
* Owning user namespace and default context in which to
* interpret filesystem uids, gids, quotas, device nodes,
* xattrs and security labels.
*/
struct user_namespace *s_user_ns;
/*
* The list_lru structure is essentially just a pointer to a table
* of per-node lru lists, each of which has its own spinlock.
* There is no need to put them into separate cachelines.
*/
struct list_lru s_dentry_lru;
struct list_lru s_inode_lru;
struct rcu_head rcu;
struct work_struct destroy_work;
struct mutex s_sync_lock; /* sync serialisation lock */
/*
* Indicates how deep in a filesystem stack this SB is
*/
int s_stack_depth;
/* s_inode_list_lock protects s_inodes */
spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp;
struct list_head s_inodes; /* all inodes */
spinlock_t s_inode_wblist_lock;
struct list_head s_inodes_wb; /* writeback inodes */
} __randomize_layout;
static inline struct user_namespace *i_user_ns(const struct inode *inode)
{
return inode->i_sb->s_user_ns;
}
/* Helper functions so that in most cases filesystems will
* not need to deal directly with kuid_t and kgid_t and can
* instead deal with the raw numeric values that are stored
* in the filesystem.
*/
static inline uid_t i_uid_read(const struct inode *inode)
{
return from_kuid(i_user_ns(inode), inode->i_uid);
}
static inline gid_t i_gid_read(const struct inode *inode)
{
return from_kgid(i_user_ns(inode), inode->i_gid);
}
static inline void i_uid_write(struct inode *inode, uid_t uid)
{
inode->i_uid = make_kuid(i_user_ns(inode), uid);
}
static inline void i_gid_write(struct inode *inode, gid_t gid)
{
inode->i_gid = make_kgid(i_user_ns(inode), gid);
}
/**
* i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
* @idmap: idmap of the mount the inode was found from
* @inode: inode to map
*
* Return: whe inode's i_uid mapped down according to @idmap.
* If the inode's i_uid has no mapping INVALID_VFSUID is returned.
*/
static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
const struct inode *inode)
{
return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
}
/**
* i_uid_needs_update - check whether inode's i_uid needs to be updated
* @idmap: idmap of the mount the inode was found from
* @attr: the new attributes of @inode
* @inode: the inode to update
*
* Check whether the $inode's i_uid field needs to be updated taking idmapped
* mounts into account if the filesystem supports it.
*
* Return: true if @inode's i_uid field needs to be updated, false if not.
*/
static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
const struct iattr *attr,
const struct inode *inode)
{
return ((attr->ia_valid & ATTR_UID) &&
!vfsuid_eq(attr->ia_vfsuid,
i_uid_into_vfsuid(idmap, inode)));
}
/**
* i_uid_update - update @inode's i_uid field
* @idmap: idmap of the mount the inode was found from
* @attr: the new attributes of @inode
* @inode: the inode to update
*
* Safely update @inode's i_uid field translating the vfsuid of any idmapped
* mount into the filesystem kuid.
*/
static inline void i_uid_update(struct mnt_idmap *idmap,
const struct iattr *attr,
struct inode *inode)
{
if (attr->ia_valid & ATTR_UID)
inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
attr->ia_vfsuid);
}
/**
* i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
* @idmap: idmap of the mount the inode was found from
* @inode: inode to map
*
* Return: the inode's i_gid mapped down according to @idmap.
* If the inode's i_gid has no mapping INVALID_VFSGID is returned.
*/
static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
const struct inode *inode)
{
return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
}
/**
* i_gid_needs_update - check whether inode's i_gid needs to be updated
* @idmap: idmap of the mount the inode was found from
* @attr: the new attributes of @inode
* @inode: the inode to update
*
* Check whether the $inode's i_gid field needs to be updated taking idmapped
* mounts into account if the filesystem supports it.
*
* Return: true if @inode's i_gid field needs to be updated, false if not.
*/
static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
const struct iattr *attr,
const struct inode *inode)
{
return ((attr->ia_valid & ATTR_GID) &&
!vfsgid_eq(attr->ia_vfsgid,
i_gid_into_vfsgid(idmap, inode)));
}
/**
* i_gid_update - update @inode's i_gid field
* @idmap: idmap of the mount the inode was found from
* @attr: the new attributes of @inode
* @inode: the inode to update
*
* Safely update @inode's i_gid field translating the vfsgid of any idmapped
* mount into the filesystem kgid.
*/
static inline void i_gid_update(struct mnt_idmap *idmap,
const struct iattr *attr,
struct inode *inode)
{
if (attr->ia_valid & ATTR_GID)
inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
attr->ia_vfsgid);
}
/**
* inode_fsuid_set - initialize inode's i_uid field with callers fsuid
* @inode: inode to initialize
* @idmap: idmap of the mount the inode was found from
*
* Initialize the i_uid field of @inode. If the inode was found/created via
* an idmapped mount map the caller's fsuid according to @idmap.
*/
static inline void inode_fsuid_set(struct inode *inode,
struct mnt_idmap *idmap)
{
inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
}
/**
* inode_fsgid_set - initialize inode's i_gid field with callers fsgid
* @inode: inode to initialize
* @idmap: idmap of the mount the inode was found from
*
* Initialize the i_gid field of @inode. If the inode was found/created via
* an idmapped mount map the caller's fsgid according to @idmap.
*/
static inline void inode_fsgid_set(struct inode *inode,
struct mnt_idmap *idmap)
{
inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
}
/**
* fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
* @sb: the superblock we want a mapping in
* @idmap: idmap of the relevant mount
*
* Check whether the caller's fsuid and fsgid have a valid mapping in the
* s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
* the caller's fsuid and fsgid according to the @idmap first.
*
* Return: true if fsuid and fsgid is mapped, false if not.
*/
static inline bool fsuidgid_has_mapping(struct super_block *sb,
struct mnt_idmap *idmap)
{
struct user_namespace *fs_userns = sb->s_user_ns;
kuid_t kuid;
kgid_t kgid;
kuid = mapped_fsuid(idmap, fs_userns);
if (!uid_valid(kuid))
return false;
kgid = mapped_fsgid(idmap, fs_userns);
if (!gid_valid(kgid))
return false;
return kuid_has_mapping(fs_userns, kuid) &&
kgid_has_mapping(fs_userns, kgid);
}
extern struct timespec64 current_time(struct inode *inode);
/*
* Snapshotting support.
*/
/*
* These are internal functions, please use sb_start_{write,pagefault,intwrite}
* instead.
*/
static inline void __sb_end_write(struct super_block *sb, int level)
{
percpu_up_read(sb->s_writers.rw_sem + level-1);
}
static inline void __sb_start_write(struct super_block *sb, int level)
{
percpu_down_read(sb->s_writers.rw_sem + level - 1);
}
static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
{
return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
}
#define __sb_writers_acquired(sb, lev) \
percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
#define __sb_writers_release(sb, lev) \
percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
static inline bool sb_write_started(const struct super_block *sb)
{
return lockdep_is_held_type(sb->s_writers.rw_sem + SB_FREEZE_WRITE - 1, 1);
}
/**
* sb_end_write - drop write access to a superblock
* @sb: the super we wrote to
*
* Decrement number of writers to the filesystem. Wake up possible waiters
* wanting to freeze the filesystem.
*/
static inline void sb_end_write(struct super_block *sb)
{
__sb_end_write(sb, SB_FREEZE_WRITE);
}
/**
* sb_end_pagefault - drop write access to a superblock from a page fault
* @sb: the super we wrote to
*
* Decrement number of processes handling write page fault to the filesystem.
* Wake up possible waiters wanting to freeze the filesystem.
*/
static inline void sb_end_pagefault(struct super_block *sb)
{
__sb_end_write(sb, SB_FREEZE_PAGEFAULT);
}
/**
* sb_end_intwrite - drop write access to a superblock for internal fs purposes
* @sb: the super we wrote to
*
* Decrement fs-internal number of writers to the filesystem. Wake up possible
* waiters wanting to freeze the filesystem.
*/
static inline void sb_end_intwrite(struct super_block *sb)
{
__sb_end_write(sb, SB_FREEZE_FS);
}
/**
* sb_start_write - get write access to a superblock
* @sb: the super we write to
*
* When a process wants to write data or metadata to a file system (i.e. dirty
* a page or an inode), it should embed the operation in a sb_start_write() -
* sb_end_write() pair to get exclusion against file system freezing. This
* function increments number of writers preventing freezing. If the file
* system is already frozen, the function waits until the file system is
* thawed.
*
* Since freeze protection behaves as a lock, users have to preserve
* ordering of freeze protection and other filesystem locks. Generally,
* freeze protection should be the outermost lock. In particular, we have:
*
* sb_start_write
* -> i_mutex (write path, truncate, directory ops, ...)
* -> s_umount (freeze_super, thaw_super)
*/
static inline void sb_start_write(struct super_block *sb)
{
__sb_start_write(sb, SB_FREEZE_WRITE);
}
static inline bool sb_start_write_trylock(struct super_block *sb)
{
return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
}
/**
* sb_start_pagefault - get write access to a superblock from a page fault
* @sb: the super we write to
*
* When a process starts handling write page fault, it should embed the
* operation into sb_start_pagefault() - sb_end_pagefault() pair to get
* exclusion against file system freezing. This is needed since the page fault
* is going to dirty a page. This function increments number of running page
* faults preventing freezing. If the file system is already frozen, the
* function waits until the file system is thawed.
*
* Since page fault freeze protection behaves as a lock, users have to preserve
* ordering of freeze protection and other filesystem locks. It is advised to
* put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
* handling code implies lock dependency:
*
* mmap_lock
* -> sb_start_pagefault
*/
static inline void sb_start_pagefault(struct super_block *sb)
{
__sb_start_write(sb, SB_FREEZE_PAGEFAULT);
}
/**
* sb_start_intwrite - get write access to a superblock for internal fs purposes
* @sb: the super we write to
*
* This is the third level of protection against filesystem freezing. It is
* free for use by a filesystem. The only requirement is that it must rank
* below sb_start_pagefault.
*
* For example filesystem can call sb_start_intwrite() when starting a
* transaction which somewhat eases handling of freezing for internal sources
* of filesystem changes (internal fs threads, discarding preallocation on file
* close, etc.).
*/
static inline void sb_start_intwrite(struct super_block *sb)
{
__sb_start_write(sb, SB_FREEZE_FS);
}
static inline bool sb_start_intwrite_trylock(struct super_block *sb)
{
return __sb_start_write_trylock(sb, SB_FREEZE_FS);
}
bool inode_owner_or_capable(struct mnt_idmap *idmap,
const struct inode *inode);
/*
* VFS helper functions..
*/
int vfs_create(struct mnt_idmap *, struct inode *,
struct dentry *, umode_t, bool);
int vfs_mkdir(struct mnt_idmap *, struct inode *,
struct dentry *, umode_t);
int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
umode_t, dev_t);
int vfs_symlink(struct mnt_idmap *, struct inode *,
struct dentry *, const char *);
int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
struct dentry *, struct inode **);
int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
struct inode **);
/**
* struct renamedata - contains all information required for renaming
* @old_mnt_idmap: idmap of the old mount the inode was found from
* @old_dir: parent of source
* @old_dentry: source
* @new_mnt_idmap: idmap of the new mount the inode was found from
* @new_dir: parent of destination
* @new_dentry: destination
* @delegated_inode: returns an inode needing a delegation break
* @flags: rename flags
*/
struct renamedata {
struct mnt_idmap *old_mnt_idmap;
struct inode *old_dir;
struct dentry *old_dentry;
struct mnt_idmap *new_mnt_idmap;
struct inode *new_dir;
struct dentry *new_dentry;
struct inode **delegated_inode;
unsigned int flags;
} __randomize_layout;
int vfs_rename(struct renamedata *);
static inline int vfs_whiteout(struct mnt_idmap *idmap,
struct inode *dir, struct dentry *dentry)
{
return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
WHITEOUT_DEV);
}
struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
const struct path *parentpath,
umode_t mode, int open_flag,
const struct cred *cred);
struct file *kernel_file_open(const struct path *path, int flags,
struct inode *inode, const struct cred *cred);
int vfs_mkobj(struct dentry *, umode_t,
int (*f)(struct dentry *, umode_t, void *),
void *);
int vfs_fchown(struct file *file, uid_t user, gid_t group);
int vfs_fchmod(struct file *file, umode_t mode);
int vfs_utimes(const struct path *path, struct timespec64 *times);
extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
#ifdef CONFIG_COMPAT
extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
unsigned long arg);
#else
#define compat_ptr_ioctl NULL
#endif
/*
* VFS file helper functions.
*/
void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
const struct inode *dir, umode_t mode);
extern bool may_open_dev(const struct path *path);
umode_t mode_strip_sgid(struct mnt_idmap *idmap,
const struct inode *dir, umode_t mode);
/*
* This is the "filldir" function type, used by readdir() to let
* the kernel specify what kind of dirent layout it wants to have.
* This allows the kernel to read directories into kernel space or
* to have different dirent layouts depending on the binary type.
* Return 'true' to keep going and 'false' if there are no more entries.
*/
struct dir_context;
typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
unsigned);
struct dir_context {
filldir_t actor;
loff_t pos;
};
/*
* These flags let !MMU mmap() govern direct device mapping vs immediate
* copying more easily for MAP_PRIVATE, especially for ROM filesystems.
*
* NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE)
* NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED)
* NOMMU_MAP_READ: Can be mapped for reading
* NOMMU_MAP_WRITE: Can be mapped for writing
* NOMMU_MAP_EXEC: Can be mapped for execution
*/
#define NOMMU_MAP_COPY 0x00000001
#define NOMMU_MAP_DIRECT 0x00000008
#define NOMMU_MAP_READ VM_MAYREAD
#define NOMMU_MAP_WRITE VM_MAYWRITE
#define NOMMU_MAP_EXEC VM_MAYEXEC
#define NOMMU_VMFLAGS \
(NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
/*
* These flags control the behavior of the remap_file_range function pointer.
* If it is called with len == 0 that means "remap to end of source file".
* See Documentation/filesystems/vfs.rst for more details about this call.
*
* REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
* REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
*/
#define REMAP_FILE_DEDUP (1 << 0)
#define REMAP_FILE_CAN_SHORTEN (1 << 1)
/*
* These flags signal that the caller is ok with altering various aspects of
* the behavior of the remap operation. The changes must be made by the
* implementation; the vfs remap helper functions can take advantage of them.
* Flags in this category exist to preserve the quirky behavior of the hoisted
* btrfs clone/dedupe ioctls.
*/
#define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN)
/*
* These flags control the behavior of vfs_copy_file_range().
* They are not available to the user via syscall.
*
* COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
*/
#define COPY_FILE_SPLICE (1 << 0)
struct iov_iter;
struct io_uring_cmd;
struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
unsigned int flags);
int (*iterate) (struct file *, struct dir_context *);
int (*iterate_shared) (struct file *, struct dir_context *);
__poll_t (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
unsigned long mmap_supported_flags;
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
void (*splice_eof)(struct file *file);
int (*setlease)(struct file *, long, struct file_lock **, void **);
long (*fallocate)(struct file *file, int mode, loff_t offset,
loff_t len);
void (*show_fdinfo)(struct seq_file *m, struct file *f);
#ifndef CONFIG_MMU
unsigned (*mmap_capabilities)(struct file *);
#endif
ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
loff_t, size_t, unsigned int);
loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out,
loff_t len, unsigned int remap_flags);
int (*fadvise)(struct file *, loff_t, loff_t, int);
int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
unsigned int poll_flags);
} __randomize_layout;
struct inode_operations {
struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
int (*permission) (struct mnt_idmap *, struct inode *, int);
struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
int (*readlink) (struct dentry *, char __user *,int);
int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
umode_t, bool);
int (*link) (struct dentry *,struct inode *,struct dentry *);
int (*unlink) (struct inode *,struct dentry *);
int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
const char *);
int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *,
umode_t);
int (*rmdir) (struct inode *,struct dentry *);
int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
umode_t,dev_t);
int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
struct inode *, struct dentry *, unsigned int);
int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
int (*getattr) (struct mnt_idmap *, const struct path *,
struct kstat *, u32, unsigned int);
ssize_t (*listxattr) (struct dentry *, char *, size_t);
int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
u64 len);
int (*update_time)(struct inode *, struct timespec64 *, int);
int (*atomic_open)(struct inode *, struct dentry *,
struct file *, unsigned open_flag,
umode_t create_mode);
int (*tmpfile) (struct mnt_idmap *, struct inode *,
struct file *, umode_t);
struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
int);
int (*set_acl)(struct mnt_idmap *, struct dentry *,
struct posix_acl *, int);
int (*fileattr_set)(struct mnt_idmap *idmap,
struct dentry *dentry, struct fileattr *fa);
int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
} ____cacheline_aligned;
static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio,
struct iov_iter *iter)
{
return file->f_op->read_iter(kio, iter);
}
static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio,
struct iov_iter *iter)
{
return file->f_op->write_iter(kio, iter);
}
static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
{
return file->f_op->mmap(file, vma);
}
extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
loff_t, size_t, unsigned int);
extern ssize_t generic_copy_file_range(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out,
size_t len, unsigned int flags);
int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out,
loff_t *len, unsigned int remap_flags,
const struct iomap_ops *dax_read_ops);
int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out,
loff_t *count, unsigned int remap_flags);
extern loff_t do_clone_file_range(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out,
loff_t len, unsigned int remap_flags);
extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out,
loff_t len, unsigned int remap_flags);
extern int vfs_dedupe_file_range(struct file *file,
struct file_dedupe_range *same);
extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
struct file *dst_file, loff_t dst_pos,
loff_t len, unsigned int remap_flags);
struct super_operations {
struct inode *(*alloc_inode)(struct super_block *sb);
void (*destroy_inode)(struct inode *);
void (*free_inode)(struct inode *);
void (*dirty_inode) (struct inode *, int flags);
int (*write_inode) (struct inode *, struct writeback_control *wbc);
int (*drop_inode) (struct inode *);
void (*evict_inode) (struct inode *);
void (*put_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
int (*freeze_super) (struct super_block *);
int (*freeze_fs) (struct super_block *);
int (*thaw_super) (struct super_block *);
int (*unfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*umount_begin) (struct super_block *);
int (*show_options)(struct seq_file *, struct dentry *);
int (*show_devname)(struct seq_file *, struct dentry *);
int (*show_path)(struct seq_file *, struct dentry *);
int (*show_stats)(struct seq_file *, struct dentry *);
#ifdef CONFIG_QUOTA
ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
struct dquot **(*get_dquots)(struct inode *);
#endif
long (*nr_cached_objects)(struct super_block *,
struct shrink_control *);
long (*free_cached_objects)(struct super_block *,
struct shrink_control *);
void (*shutdown)(struct super_block *sb);
};
/*
* Inode flags - they have no relation to superblock flags now
*/
#define S_SYNC (1 << 0) /* Writes are synced at once */
#define S_NOATIME (1 << 1) /* Do not update access times */
#define S_APPEND (1 << 2) /* Append-only file */
#define S_IMMUTABLE (1 << 3) /* Immutable file */
#define S_DEAD (1 << 4) /* removed, but still open directory */
#define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */
#define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */
#define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */
#define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */
#define S_PRIVATE (1 << 9) /* Inode is fs-internal */
#define S_IMA (1 << 10) /* Inode has an associated IMA struct */
#define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */
#define S_NOSEC (1 << 12) /* no suid or xattr security attributes */
#ifdef CONFIG_FS_DAX
#define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */
#else
#define S_DAX 0 /* Make all the DAX code disappear */
#endif
#define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */
#define S_CASEFOLD (1 << 15) /* Casefolded file */
#define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */
#define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
/*
* Note that nosuid etc flags are inode-specific: setting some file-system
* flags just means all the inodes inherit those flags by default. It might be
* possible to override it selectively if you really wanted to with some
* ioctl() that is not currently implemented.
*
* Exception: SB_RDONLY is always applied to the entire file system.
*
* Unfortunately, it is possible to change a filesystems flags with it mounted
* with files in use. This means that all of the inodes will not have their
* i_flags updated. Hence, i_flags no longer inherit the superblock mount
* flags, so these have to be checked separately. -- rmk@arm.uk.linux.org
*/
#define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg))
static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
#define IS_RDONLY(inode) sb_rdonly((inode)->i_sb)
#define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \
((inode)->i_flags & S_SYNC))
#define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
#define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK)
#define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME)
#define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION)
#define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA)
#define IS_APPEND(inode) ((inode)->i_flags & S_APPEND)
#define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE)
#define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL)
#define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD)
#define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME)
#define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE)
#define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE)
#define IS_IMA(inode) ((inode)->i_flags & S_IMA)
#define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT)
#define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC)
#define IS_DAX(inode) ((inode)->i_flags & S_DAX)
#define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED)
#define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD)
#define IS_VERITY(inode) ((inode)->i_flags & S_VERITY)
#define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \
(inode)->i_rdev == WHITEOUT_DEV)
static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
struct inode *inode)
{
return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
!vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
}
static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
{
*kiocb = (struct kiocb) {
.ki_filp = filp,
.ki_flags = filp->f_iocb_flags,
.ki_ioprio = get_current_ioprio(),
};
}
static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
struct file *filp)
{
*kiocb = (struct kiocb) {
.ki_filp = filp,
.ki_flags = kiocb_src->ki_flags,
.ki_ioprio = kiocb_src->ki_ioprio,
.ki_pos = kiocb_src->ki_pos,
};
}
/*
* Inode state bits. Protected by inode->i_lock
*
* Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
* I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
*
* Four bits define the lifetime of an inode. Initially, inodes are I_NEW,
* until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at
* various stages of removing an inode.
*
* Two bits are used for locking and completion notification, I_NEW and I_SYNC.
*
* I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on
* fdatasync() (unless I_DIRTY_DATASYNC is also set).
* Timestamp updates are the usual cause.
* I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of
* these changes separately from I_DIRTY_SYNC so that we
* don't have to write inode on fdatasync() when only
* e.g. the timestamps have changed.
* I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean.
* I_DIRTY_TIME The inode itself has dirty timestamps, and the
* lazytime mount option is enabled. We keep track of this
* separately from I_DIRTY_SYNC in order to implement
* lazytime. This gets cleared if I_DIRTY_INODE
* (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
* I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
* in place because writeback might already be in progress
* and we don't want to lose the time update
* I_NEW Serves as both a mutex and completion notification.
* New inodes set I_NEW. If two processes both create
* the same inode, one of them will release its inode and
* wait for I_NEW to be released before returning.
* Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
* also cause waiting on I_NEW, without I_NEW actually
* being set. find_inode() uses this to prevent returning
* nearly-dead inodes.
* I_WILL_FREE Must be set when calling write_inode_now() if i_count
* is zero. I_FREEING must be set when I_WILL_FREE is
* cleared.
* I_FREEING Set when inode is about to be freed but still has dirty
* pages or buffers attached or the inode itself is still
* dirty.
* I_CLEAR Added by clear_inode(). In this state the inode is
* clean and can be destroyed. Inode keeps I_FREEING.
*
* Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
* prohibited for many purposes. iget() must wait for
* the inode to be completely released, then create it
* anew. Other functions will just ignore such inodes,
* if appropriate. I_NEW is used for waiting.
*
* I_SYNC Writeback of inode is running. The bit is set during
* data writeback, and cleared with a wakeup on the bit
* address once it is done. The bit is also used to pin
* the inode in memory for flusher thread.
*
* I_REFERENCED Marks the inode as recently references on the LRU list.
*
* I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit().
*
* I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to
* synchronize competing switching instances and to tell
* wb stat updates to grab the i_pages lock. See
* inode_switch_wbs_work_fn() for details.
*
* I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper
* and work dirs among overlayfs mounts.
*
* I_CREATING New object's inode in the middle of setting up.
*
* I_DONTCACHE Evict inode as soon as it is not used anymore.
*
* I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists.
* Used to detect that mark_inode_dirty() should not move
* inode between dirty lists.
*
* I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback.
*
* Q: What is the difference between I_WILL_FREE and I_FREEING?
*/
#define I_DIRTY_SYNC (1 << 0)
#define I_DIRTY_DATASYNC (1 << 1)
#define I_DIRTY_PAGES (1 << 2)
#define __I_NEW 3
#define I_NEW (1 << __I_NEW)
#define I_WILL_FREE (1 << 4)
#define I_FREEING (1 << 5)
#define I_CLEAR (1 << 6)
#define __I_SYNC 7
#define I_SYNC (1 << __I_SYNC)
#define I_REFERENCED (1 << 8)
#define __I_DIO_WAKEUP 9
#define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP)
#define I_LINKABLE (1 << 10)
#define I_DIRTY_TIME (1 << 11)
#define I_WB_SWITCH (1 << 13)
#define I_OVL_INUSE (1 << 14)
#define I_CREATING (1 << 15)
#define I_DONTCACHE (1 << 16)
#define I_SYNC_QUEUED (1 << 17)
#define I_PINNING_FSCACHE_WB (1 << 18)
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
#define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
#define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
extern void __mark_inode_dirty(struct inode *, int);
static inline void mark_inode_dirty(struct inode *inode)
{
__mark_inode_dirty(inode, I_DIRTY);
}
static inline void mark_inode_dirty_sync(struct inode *inode)
{
__mark_inode_dirty(inode, I_DIRTY_SYNC);
}
/*
* Returns true if the given inode itself only has dirty timestamps (its pages
* may still be dirty) and isn't currently being allocated or freed.
* Filesystems should call this if when writing an inode when lazytime is
* enabled, they want to opportunistically write the timestamps of other inodes
* located very nearby on-disk, e.g. in the same inode block. This returns true
* if the given inode is in need of such an opportunistic update. Requires
* i_lock, or at least later re-checking under i_lock.
*/
static inline bool inode_is_dirtytime_only(struct inode *inode)
{
return (inode->i_state & (I_DIRTY_TIME | I_NEW |
I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
}
extern void inc_nlink(struct inode *inode);
extern void drop_nlink(struct inode *inode);
extern void clear_nlink(struct inode *inode);
extern void set_nlink(struct inode *inode, unsigned int nlink);
static inline void inode_inc_link_count(struct inode *inode)
{
inc_nlink(inode);
mark_inode_dirty(inode);
}
static inline void inode_dec_link_count(struct inode *inode)
{
drop_nlink(inode);
mark_inode_dirty(inode);
}
enum file_time_flags {
S_ATIME = 1,
S_MTIME = 2,
S_CTIME = 4,
S_VERSION = 8,
};
extern bool atime_needs_update(const struct path *, struct inode *);
extern void touch_atime(const struct path *);
int inode_update_time(struct inode *inode, struct timespec64 *time, int flags);
static inline void file_accessed(struct file *file)
{
if (!(file->f_flags & O_NOATIME))
touch_atime(&file->f_path);
}
extern int file_modified(struct file *file);
int kiocb_modified(struct kiocb *iocb);
int sync_inode_metadata(struct inode *inode, int wait);
struct file_system_type {
const char *name;
int fs_flags;
#define FS_REQUIRES_DEV 1
#define FS_BINARY_MOUNTDATA 2
#define FS_HAS_SUBTYPE 4
#define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */
#define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */
#define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */
#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */
int (*init_fs_context)(struct fs_context *);
const struct fs_parameter_spec *parameters;
struct dentry *(*mount) (struct file_system_type *, int,
const char *, void *);
void (*kill_sb) (struct super_block *);
struct module *owner;
struct file_system_type * next;
struct hlist_head fs_supers;
struct lock_class_key s_lock_key;
struct lock_class_key s_umount_key;
struct lock_class_key s_vfs_rename_key;
struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
struct lock_class_key i_lock_key;
struct lock_class_key i_mutex_key;
struct lock_class_key invalidate_lock_key;
struct lock_class_key i_mutex_dir_key;
};
#define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
extern struct dentry *mount_bdev(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data,
int (*fill_super)(struct super_block *, void *, int));
extern struct dentry *mount_single(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int));
extern struct dentry *mount_nodev(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int));
extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
void retire_super(struct super_block *sb);
void generic_shutdown_super(struct super_block *sb);
void kill_block_super(struct super_block *sb);
void kill_anon_super(struct super_block *sb);
void kill_litter_super(struct super_block *sb);
void deactivate_super(struct super_block *sb);
void deactivate_locked_super(struct super_block *sb);
int set_anon_super(struct super_block *s, void *data);
int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
int get_anon_bdev(dev_t *);
void free_anon_bdev(dev_t);
struct super_block *sget_fc(struct fs_context *fc,
int (*test)(struct super_block *, struct fs_context *),
int (*set)(struct super_block *, struct fs_context *));
struct super_block *sget(struct file_system_type *type,
int (*test)(struct super_block *,void *),
int (*set)(struct super_block *,void *),
int flags, void *data);
/* Alas, no aliases. Too much hassle with bringing module.h everywhere */
#define fops_get(fops) \
(((fops) && try_module_get((fops)->owner) ? (fops) : NULL))
#define fops_put(fops) \
do { if (fops) module_put((fops)->owner); } while(0)
/*
* This one is to be used *ONLY* from ->open() instances.
* fops must be non-NULL, pinned down *and* module dependencies
* should be sufficient to pin the caller down as well.
*/
#define replace_fops(f, fops) \
do { \
struct file *__file = (f); \
fops_put(__file->f_op); \
BUG_ON(!(__file->f_op = (fops))); \
} while(0)
extern int register_filesystem(struct file_system_type *);
extern int unregister_filesystem(struct file_system_type *);
extern int vfs_statfs(const struct path *, struct kstatfs *);
extern int user_statfs(const char __user *, struct kstatfs *);
extern int fd_statfs(int, struct kstatfs *);
extern int freeze_super(struct super_block *super);
extern int thaw_super(struct super_block *super);
extern __printf(2, 3)
int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
extern int super_setup_bdi(struct super_block *sb);
extern int current_umask(void);
extern void ihold(struct inode * inode);
extern void iput(struct inode *);
extern int generic_update_time(struct inode *, struct timespec64 *, int);
/* /sys/fs */
extern struct kobject *fs_kobj;
#define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
/* fs/open.c */
struct audit_names;
struct filename {
const char *name; /* pointer to actual string */
const __user char *uptr; /* original userland pointer */
int refcnt;
struct audit_names *aname;
const char iname[];
};
static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
static inline struct mnt_idmap *file_mnt_idmap(struct file *file)
{
return mnt_idmap(file->f_path.mnt);
}
/**
* is_idmapped_mnt - check whether a mount is mapped
* @mnt: the mount to check
*
* If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
*
* Return: true if mount is mapped, false if not.
*/
static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
{
return mnt_idmap(mnt) != &nop_mnt_idmap;
}
extern long vfs_truncate(const struct path *, loff_t);
int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
unsigned int time_attrs, struct file *filp);
extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
loff_t len);
extern long do_sys_open(int dfd, const char __user *filename, int flags,
umode_t mode);
extern struct file *file_open_name(struct filename *, int, umode_t);
extern struct file *filp_open(const char *, int, umode_t);
extern struct file *file_open_root(const struct path *,
const char *, int, umode_t);
static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
const char *name, int flags, umode_t mode)
{
return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
name, flags, mode);
}
struct file *dentry_open(const struct path *path, int flags,
const struct cred *creds);
struct file *dentry_create(const struct path *path, int flags, umode_t mode,
const struct cred *cred);
struct file *backing_file_open(const struct path *path, int flags,
const struct path *real_path,
const struct cred *cred);
struct path *backing_file_real_path(struct file *f);
/*
* file_real_path - get the path corresponding to f_inode
*
* When opening a backing file for a stackable filesystem (e.g.,
* overlayfs) f_path may be on the stackable filesystem and f_inode on
* the underlying filesystem. When the path associated with f_inode is
* needed, this helper should be used instead of accessing f_path
* directly.
*/
static inline const struct path *file_real_path(struct file *f)
{
if (unlikely(f->f_mode & FMODE_BACKING))
return backing_file_real_path(f);
return &f->f_path;
}
static inline struct file *file_clone_open(struct file *file)
{
return dentry_open(&file->f_path, file->f_flags, file->f_cred);
}
extern int filp_close(struct file *, fl_owner_t id);
extern struct filename *getname_flags(const char __user *, int, int *);
extern struct filename *getname_uflags(const char __user *, int);
extern struct filename *getname(const char __user *);
extern struct filename *getname_kernel(const char *);
extern void putname(struct filename *name);
extern int finish_open(struct file *file, struct dentry *dentry,
int (*open)(struct inode *, struct file *));
extern int finish_no_open(struct file *file, struct dentry *dentry);
/* Helper for the simple case when original dentry is used */
static inline int finish_open_simple(struct file *file, int error)
{
if (error)
return error;
return finish_open(file, file->f_path.dentry, NULL);
}
/* fs/dcache.c */
extern void __init vfs_caches_init_early(void);
extern void __init vfs_caches_init(void);
extern struct kmem_cache *names_cachep;
#define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL)
#define __putname(name) kmem_cache_free(names_cachep, (void *)(name))
extern struct super_block *blockdev_superblock;
static inline bool sb_is_blkdev_sb(struct super_block *sb)
{
return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
}
void emergency_thaw_all(void);
extern int sync_filesystem(struct super_block *);
extern const struct file_operations def_blk_fops;
extern const struct file_operations def_chr_fops;
/* fs/char_dev.c */
#define CHRDEV_MAJOR_MAX 512
/* Marks the bottom of the first segment of free char majors */
#define CHRDEV_MAJOR_DYN_END 234
/* Marks the top and bottom of the second segment of free char majors */
#define CHRDEV_MAJOR_DYN_EXT_START 511
#define CHRDEV_MAJOR_DYN_EXT_END 384
extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
extern int register_chrdev_region(dev_t, unsigned, const char *);
extern int __register_chrdev(unsigned int major, unsigned int baseminor,
unsigned int count, const char *name,
const struct file_operations *fops);
extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
unsigned int count, const char *name);
extern void unregister_chrdev_region(dev_t, unsigned);
extern void chrdev_show(struct seq_file *,off_t);
static inline int register_chrdev(unsigned int major, const char *name,
const struct file_operations *fops)
{
return __register_chrdev(major, 0, 256, name, fops);
}
static inline void unregister_chrdev(unsigned int major, const char *name)
{
__unregister_chrdev(major, 0, 256, name);
}
extern void init_special_inode(struct inode *, umode_t, dev_t);
/* Invalid inode operations -- fs/bad_inode.c */
extern void make_bad_inode(struct inode *);
extern bool is_bad_inode(struct inode *);
extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
loff_t lend);
extern int __must_check file_check_and_advance_wb_err(struct file *file);
extern int __must_check file_write_and_wait_range(struct file *file,
loff_t start, loff_t end);
static inline int file_write_and_wait(struct file *file)
{
return file_write_and_wait_range(file, 0, LLONG_MAX);
}
extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
int datasync);
extern int vfs_fsync(struct file *file, int datasync);
extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
unsigned int flags);
static inline bool iocb_is_dsync(const struct kiocb *iocb)
{
return (iocb->ki_flags & IOCB_DSYNC) ||
IS_SYNC(iocb->ki_filp->f_mapping->host);
}
/*
* Sync the bytes written if this was a synchronous write. Expect ki_pos
* to already be updated for the write, and will return either the amount
* of bytes passed in, or an error if syncing the file failed.
*/
static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
{
if (iocb_is_dsync(iocb)) {
int ret = vfs_fsync_range(iocb->ki_filp,
iocb->ki_pos - count, iocb->ki_pos - 1,
(iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
if (ret)
return ret;
}
return count;
}
extern void emergency_sync(void);
extern void emergency_remount(void);
#ifdef CONFIG_BLOCK
extern int bmap(struct inode *inode, sector_t *block);
#else
static inline int bmap(struct inode *inode, sector_t *block)
{
return -EINVAL;
}
#endif
int notify_change(struct mnt_idmap *, struct dentry *,
struct iattr *, struct inode **);
int inode_permission(struct mnt_idmap *, struct inode *, int);
int generic_permission(struct mnt_idmap *, struct inode *, int);
static inline int file_permission(struct file *file, int mask)
{
return inode_permission(file_mnt_idmap(file),
file_inode(file), mask);
}
static inline int path_permission(const struct path *path, int mask)
{
return inode_permission(mnt_idmap(path->mnt),
d_inode(path->dentry), mask);
}
int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
struct inode *inode);
static inline bool execute_ok(struct inode *inode)
{
return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
}
static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
{
return (inode->i_mode ^ mode) & S_IFMT;
}
static inline void file_start_write(struct file *file)
{
if (!S_ISREG(file_inode(file)->i_mode))
return;
sb_start_write(file_inode(file)->i_sb);
}
static inline bool file_start_write_trylock(struct file *file)
{
if (!S_ISREG(file_inode(file)->i_mode))
return true;
return sb_start_write_trylock(file_inode(file)->i_sb);
}
static inline void file_end_write(struct file *file)
{
if (!S_ISREG(file_inode(file)->i_mode))
return;
__sb_end_write(file_inode(file)->i_sb, SB_FREEZE_WRITE);
}
/*
* This is used for regular files where some users -- especially the
* currently executed binary in a process, previously handled via
* VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
* read-write shared) accesses.
*
* get_write_access() gets write permission for a file.
* put_write_access() releases this write permission.
* deny_write_access() denies write access to a file.
* allow_write_access() re-enables write access to a file.
*
* The i_writecount field of an inode can have the following values:
* 0: no write access, no denied write access
* < 0: (-i_writecount) users that denied write access to the file.
* > 0: (i_writecount) users that have write access to the file.
*
* Normally we operate on that counter with atomic_{inc,dec} and it's safe
* except for the cases where we don't hold i_writecount yet. Then we need to
* use {get,deny}_write_access() - these functions check the sign and refuse
* to do the change if sign is wrong.
*/
static inline int get_write_access(struct inode *inode)
{
return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
}
static inline int deny_write_access(struct file *file)
{
struct inode *inode = file_inode(file);
return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
}
static inline void put_write_access(struct inode * inode)
{
atomic_dec(&inode->i_writecount);
}
static inline void allow_write_access(struct file *file)
{
if (file)
atomic_inc(&file_inode(file)->i_writecount);
}
static inline bool inode_is_open_for_write(const struct inode *inode)
{
return atomic_read(&inode->i_writecount) > 0;
}
#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
static inline void i_readcount_dec(struct inode *inode)
{
BUG_ON(!atomic_read(&inode->i_readcount));
atomic_dec(&inode->i_readcount);
}
static inline void i_readcount_inc(struct inode *inode)
{
atomic_inc(&inode->i_readcount);
}
#else
static inline void i_readcount_dec(struct inode *inode)
{
return;
}
static inline void i_readcount_inc(struct inode *inode)
{
return;
}
#endif
extern int do_pipe_flags(int *, int);
extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
extern struct file * open_exec(const char *);
/* fs/dcache.c -- generic fs support functions */
extern bool is_subdir(struct dentry *, struct dentry *);
extern bool path_is_under(const struct path *, const struct path *);
extern char *file_path(struct file *, char *, int);
#include <linux/err.h>
/* needed for stackable file system support */
extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
extern int inode_init_always(struct super_block *, struct inode *);
extern void inode_init_once(struct inode *);
extern void address_space_init_once(struct address_space *mapping);
extern struct inode * igrab(struct inode *);
extern ino_t iunique(struct super_block *, ino_t);
extern int inode_needs_sync(struct inode *inode);
extern int generic_delete_inode(struct inode *inode);
static inline int generic_drop_inode(struct inode *inode)
{
return !inode->i_nlink || inode_unhashed(inode);
}
extern void d_mark_dontcache(struct inode *inode);
extern struct inode *ilookup5_nowait(struct super_block *sb,
unsigned long hashval, int (*test)(struct inode *, void *),
void *data);
extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *), void *data);
extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
int (*test)(struct inode *, void *),
int (*set)(struct inode *, void *),
void *data);
extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *);
extern struct inode * iget_locked(struct super_block *, unsigned long);
extern struct inode *find_inode_nowait(struct super_block *,
unsigned long,
int (*match)(struct inode *,
unsigned long, void *),
void *data);
extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
int (*)(struct inode *, void *), void *);
extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
extern int insert_inode_locked(struct inode *);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
#else
static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
#endif
extern void unlock_new_inode(struct inode *);
extern void discard_new_inode(struct inode *);
extern unsigned int get_next_ino(void);
extern void evict_inodes(struct super_block *sb);
void dump_mapping(const struct address_space *);
/*
* Userspace may rely on the inode number being non-zero. For example, glibc
* simply ignores files with zero i_ino in unlink() and other places.
*
* As an additional complication, if userspace was compiled with
* _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
* lower 32 bits, so we need to check that those aren't zero explicitly. With
* _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
* better safe than sorry.
*/
static inline bool is_zero_ino(ino_t ino)
{
return (u32)ino == 0;
}
extern void __iget(struct inode * inode);
extern void iget_failed(struct inode *);
extern void clear_inode(struct inode *);
extern void __destroy_inode(struct inode *);
extern struct inode *new_inode_pseudo(struct super_block *sb);
extern struct inode *new_inode(struct super_block *sb);
extern void free_inode_nonrcu(struct inode *inode);
extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
extern int file_remove_privs(struct file *);
int setattr_should_drop_sgid(struct mnt_idmap *idmap,
const struct inode *inode);
/*
* This must be used for allocating filesystems specific inodes to set
* up the inode reclaim context correctly.
*/
static inline void *
alloc_inode_sb(struct super_block *sb, struct kmem_cache *cache, gfp_t gfp)
{
return kmem_cache_alloc_lru(cache, &sb->s_inode_lru, gfp);
}
extern void __insert_inode_hash(struct inode *, unsigned long hashval);
static inline void insert_inode_hash(struct inode *inode)
{
__insert_inode_hash(inode, inode->i_ino);
}
extern void __remove_inode_hash(struct inode *);
static inline void remove_inode_hash(struct inode *inode)
{
if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
__remove_inode_hash(inode);
}
extern void inode_sb_list_add(struct inode *inode);
extern void inode_add_lru(struct inode *inode);
extern int sb_set_blocksize(struct super_block *, int);
extern int sb_min_blocksize(struct super_block *, int);
extern int generic_file_mmap(struct file *, struct vm_area_struct *);
extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
extern int generic_write_check_limits(struct file *file, loff_t pos,
loff_t *count);
extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
ssize_t already_read);
extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
ssize_t direct_written, ssize_t buffered_written);
ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
rwf_t flags);
ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
rwf_t flags);
ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
struct iov_iter *iter);
ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
struct iov_iter *iter);
/* fs/splice.c */
ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
struct pipe_inode_info *pipe,
size_t len, unsigned int flags);
ssize_t copy_splice_read(struct file *in, loff_t *ppos,
struct pipe_inode_info *pipe,
size_t len, unsigned int flags);
extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
struct file *, loff_t *, size_t, unsigned int);
extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
loff_t *opos, size_t len, unsigned int flags);
extern void
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
#define no_llseek NULL
extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
int whence, loff_t maxsize, loff_t eof);
extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
int whence, loff_t size);
extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
int rw_verify_area(int, struct file *, const loff_t *, size_t);
extern int generic_file_open(struct inode * inode, struct file * filp);
extern int nonseekable_open(struct inode * inode, struct file * filp);
extern int stream_open(struct inode * inode, struct file * filp);
#ifdef CONFIG_BLOCK
typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
loff_t file_offset);
enum {
/* need locking between buffered and direct access */
DIO_LOCKING = 0x01,
/* filesystem does not support filling holes */
DIO_SKIP_HOLES = 0x02,
};
ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
struct block_device *bdev, struct iov_iter *iter,
get_block_t get_block,
dio_iodone_t end_io,
int flags);
static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
struct inode *inode,
struct iov_iter *iter,
get_block_t get_block)
{
return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
}
#endif
void inode_dio_wait(struct inode *inode);
/**
* inode_dio_begin - signal start of a direct I/O requests
* @inode: inode the direct I/O happens on
*
* This is called once we've finished processing a direct I/O request,
* and is used to wake up callers waiting for direct I/O to be quiesced.
*/
static inline void inode_dio_begin(struct inode *inode)
{
atomic_inc(&inode->i_dio_count);
}
/**
* inode_dio_end - signal finish of a direct I/O requests
* @inode: inode the direct I/O happens on
*
* This is called once we've finished processing a direct I/O request,
* and is used to wake up callers waiting for direct I/O to be quiesced.
*/
static inline void inode_dio_end(struct inode *inode)
{
if (atomic_dec_and_test(&inode->i_dio_count))
wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
}
extern void inode_set_flags(struct inode *inode, unsigned int flags,
unsigned int mask);
extern const struct file_operations generic_ro_fops;
#define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
extern int readlink_copy(char __user *, int, const char *);
extern int page_readlink(struct dentry *, char __user *, int);
extern const char *page_get_link(struct dentry *, struct inode *,
struct delayed_call *);
extern void page_put_link(void *);
extern int page_symlink(struct inode *inode, const char *symname, int len);
extern const struct inode_operations page_symlink_inode_operations;
extern void kfree_link(void *);
void generic_fillattr(struct mnt_idmap *, struct inode *, struct kstat *);
void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
void __inode_add_bytes(struct inode *inode, loff_t bytes);
void inode_add_bytes(struct inode *inode, loff_t bytes);
void __inode_sub_bytes(struct inode *inode, loff_t bytes);
void inode_sub_bytes(struct inode *inode, loff_t bytes);
static inline loff_t __inode_get_bytes(struct inode *inode)
{
return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
}
loff_t inode_get_bytes(struct inode *inode);
void inode_set_bytes(struct inode *inode, loff_t bytes);
const char *simple_get_link(struct dentry *, struct inode *,
struct delayed_call *);
extern const struct inode_operations simple_symlink_inode_operations;
extern int iterate_dir(struct file *, struct dir_context *);
int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
int flags);
int vfs_fstat(int fd, struct kstat *stat);
static inline int vfs_stat(const char __user *filename, struct kstat *stat)
{
return vfs_fstatat(AT_FDCWD, filename, stat, 0);
}
static inline int vfs_lstat(const char __user *name, struct kstat *stat)
{
return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
}
extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
extern int vfs_readlink(struct dentry *, char __user *, int);
extern struct file_system_type *get_filesystem(struct file_system_type *fs);
extern void put_filesystem(struct file_system_type *fs);
extern struct file_system_type *get_fs_type(const char *name);
extern struct super_block *get_super(struct block_device *);
extern struct super_block *get_active_super(struct block_device *bdev);
extern void drop_super(struct super_block *sb);
extern void drop_super_exclusive(struct super_block *sb);
extern void iterate_supers(void (*)(struct super_block *, void *), void *);
extern void iterate_supers_type(struct file_system_type *,
void (*)(struct super_block *, void *), void *);
extern int dcache_dir_open(struct inode *, struct file *);
extern int dcache_dir_close(struct inode *, struct file *);
extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
extern int dcache_readdir(struct file *, struct dir_context *);
extern int simple_setattr(struct mnt_idmap *, struct dentry *,
struct iattr *);
extern int simple_getattr(struct mnt_idmap *, const struct path *,
struct kstat *, u32, unsigned int);
extern int simple_statfs(struct dentry *, struct kstatfs *);
extern int simple_open(struct inode *inode, struct file *file);
extern int simple_link(struct dentry *, struct inode *, struct dentry *);
extern int simple_unlink(struct inode *, struct dentry *);
extern int simple_rmdir(struct inode *, struct dentry *);
extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry);
extern int simple_rename(struct mnt_idmap *, struct inode *,
struct dentry *, struct inode *, struct dentry *,
unsigned int);
extern void simple_recursive_removal(struct dentry *,
void (*callback)(struct dentry *));
extern int noop_fsync(struct file *, loff_t, loff_t, int);
extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
extern int simple_empty(struct dentry *);
extern int simple_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len,
struct page **pagep, void **fsdata);
extern const struct address_space_operations ram_aops;
extern int always_delete_dentry(const struct dentry *);
extern struct inode *alloc_anon_inode(struct super_block *);
extern int simple_nosetlease(struct file *, long, struct file_lock **, void **);
extern const struct dentry_operations simple_dentry_operations;
extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
extern const struct file_operations simple_dir_operations;
extern const struct inode_operations simple_dir_inode_operations;
extern void make_empty_dir_inode(struct inode *inode);
extern bool is_empty_dir_inode(struct inode *inode);
struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
struct dentry *d_alloc_name(struct dentry *, const char *);
extern int simple_fill_super(struct super_block *, unsigned long,
const struct tree_descr *);
extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
extern void simple_release_fs(struct vfsmount **mount, int *count);
extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
loff_t *ppos, const void *from, size_t available);
extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
const void __user *from, size_t count);
extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
extern int generic_check_addressable(unsigned, u64);
extern void generic_set_encrypted_ci_d_ops(struct dentry *dentry);
int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
unsigned int ia_valid);
int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
extern int inode_newsize_ok(const struct inode *, loff_t offset);
void setattr_copy(struct mnt_idmap *, struct inode *inode,
const struct iattr *attr);
extern int file_update_time(struct file *file);
static inline bool vma_is_dax(const struct vm_area_struct *vma)
{
return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
}
static inline bool vma_is_fsdax(struct vm_area_struct *vma)
{
struct inode *inode;
if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
return false;
if (!vma_is_dax(vma))
return false;
inode = file_inode(vma->vm_file);
if (S_ISCHR(inode->i_mode))
return false; /* device-dax */
return true;
}
static inline int iocb_flags(struct file *file)
{
int res = 0;
if (file->f_flags & O_APPEND)
res |= IOCB_APPEND;
if (file->f_flags & O_DIRECT)
res |= IOCB_DIRECT;
if (file->f_flags & O_DSYNC)
res |= IOCB_DSYNC;
if (file->f_flags & __O_SYNC)
res |= IOCB_SYNC;
return res;
}
static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags)
{
int kiocb_flags = 0;
/* make sure there's no overlap between RWF and private IOCB flags */
BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
if (!flags)
return 0;
if (unlikely(flags & ~RWF_SUPPORTED))
return -EOPNOTSUPP;
if (flags & RWF_NOWAIT) {
if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
return -EOPNOTSUPP;
kiocb_flags |= IOCB_NOIO;
}
kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
if (flags & RWF_SYNC)
kiocb_flags |= IOCB_DSYNC;
ki->ki_flags |= kiocb_flags;
return 0;
}
static inline ino_t parent_ino(struct dentry *dentry)
{
ino_t res;
/*
* Don't strictly need d_lock here? If the parent ino could change
* then surely we'd have a deeper race in the caller?
*/
spin_lock(&dentry->d_lock);
res = dentry->d_parent->d_inode->i_ino;
spin_unlock(&dentry->d_lock);
return res;
}
/* Transaction based IO helpers */
/*
* An argresp is stored in an allocated page and holds the
* size of the argument or response, along with its content
*/
struct simple_transaction_argresp {
ssize_t size;
char data[];
};
#define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
char *simple_transaction_get(struct file *file, const char __user *buf,
size_t size);
ssize_t simple_transaction_read(struct file *file, char __user *buf,
size_t size, loff_t *pos);
int simple_transaction_release(struct inode *inode, struct file *file);
void simple_transaction_set(struct file *file, size_t n);
/*
* simple attribute files
*
* These attributes behave similar to those in sysfs:
*
* Writing to an attribute immediately sets a value, an open file can be
* written to multiple times.
*
* Reading from an attribute creates a buffer from the value that might get
* read with multiple read calls. When the attribute has been read
* completely, no further read calls are possible until the file is opened
* again.
*
* All attributes contain a text representation of a numeric value
* that are accessed with the get() and set() functions.
*/
#define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \
static int __fops ## _open(struct inode *inode, struct file *file) \
{ \
__simple_attr_check_format(__fmt, 0ull); \
return simple_attr_open(inode, file, __get, __set, __fmt); \
} \
static const struct file_operations __fops = { \
.owner = THIS_MODULE, \
.open = __fops ## _open, \
.release = simple_attr_release, \
.read = simple_attr_read, \
.write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \
.llseek = generic_file_llseek, \
}
#define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
#define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \
DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
static inline __printf(1, 2)
void __simple_attr_check_format(const char *fmt, ...)
{
/* don't do anything, just let the compiler check the arguments; */
}
int simple_attr_open(struct inode *inode, struct file *file,
int (*get)(void *, u64 *), int (*set)(void *, u64),
const char *fmt);
int simple_attr_release(struct inode *inode, struct file *file);
ssize_t simple_attr_read(struct file *file, char __user *buf,
size_t len, loff_t *ppos);
ssize_t simple_attr_write(struct file *file, const char __user *buf,
size_t len, loff_t *ppos);
ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
size_t len, loff_t *ppos);
struct ctl_table;
int __init list_bdev_fs_names(char *buf, size_t size);
#define __FMODE_EXEC ((__force int) FMODE_EXEC)
#define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY)
#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
#define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \
(flag & __FMODE_NONOTIFY)))
static inline bool is_sxid(umode_t mode)
{
return mode & (S_ISUID | S_ISGID);
}
static inline int check_sticky(struct mnt_idmap *idmap,
struct inode *dir, struct inode *inode)
{
if (!(dir->i_mode & S_ISVTX))
return 0;
return __check_sticky(idmap, dir, inode);
}
static inline void inode_has_no_xattr(struct inode *inode)
{
if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
inode->i_flags |= S_NOSEC;
}
static inline bool is_root_inode(struct inode *inode)
{
return inode == inode->i_sb->s_root->d_inode;
}
static inline bool dir_emit(struct dir_context *ctx,
const char *name, int namelen,
u64 ino, unsigned type)
{
return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
}
static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
{
return ctx->actor(ctx, ".", 1, ctx->pos,
file->f_path.dentry->d_inode->i_ino, DT_DIR);
}
static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
{
return ctx->actor(ctx, "..", 2, ctx->pos,
parent_ino(file->f_path.dentry), DT_DIR);
}
static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
{
if (ctx->pos == 0) {
if (!dir_emit_dot(file, ctx))
return false;
ctx->pos = 1;
}
if (ctx->pos == 1) {
if (!dir_emit_dotdot(file, ctx))
return false;
ctx->pos = 2;
}
return true;
}
static inline bool dir_relax(struct inode *inode)
{
inode_unlock(inode);
inode_lock(inode);
return !IS_DEADDIR(inode);
}
static inline bool dir_relax_shared(struct inode *inode)
{
inode_unlock_shared(inode);
inode_lock_shared(inode);
return !IS_DEADDIR(inode);
}
extern bool path_noexec(const struct path *path);
extern void inode_nohighmem(struct inode *inode);
/* mm/fadvise.c */
extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
int advice);
extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
int advice);
#endif /* _LINUX_FS_H */