#include <linux/mm.h>
#include <linux/vmacache.h>
#include <linux/hugetlb.h>
#include <linux/huge_mm.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/highmem.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/sched/mm.h>
#include <linux/swapops.h>
#include <linux/mmu_notifier.h>
#include <linux/page_idle.h>
#include <linux/shmem_fs.h>
#include <linux/uaccess.h>
#include <asm/elf.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include "internal.h"
void task_mem(struct seq_file *m, struct mm_struct *mm)
{
unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
anon = get_mm_counter(mm, MM_ANONPAGES);
file = get_mm_counter(mm, MM_FILEPAGES);
shmem = get_mm_counter(mm, MM_SHMEMPAGES);
/*
* Note: to minimize their overhead, mm maintains hiwater_vm and
* hiwater_rss only when about to *lower* total_vm or rss. Any
* collector of these hiwater stats must therefore get total_vm
* and rss too, which will usually be the higher. Barriers? not
* worth the effort, such snapshots can always be inconsistent.
*/
hiwater_vm = total_vm = mm->total_vm;
if (hiwater_vm < mm->hiwater_vm)
hiwater_vm = mm->hiwater_vm;
hiwater_rss = total_rss = anon + file + shmem;
if (hiwater_rss < mm->hiwater_rss)
hiwater_rss = mm->hiwater_rss;
text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
swap = get_mm_counter(mm, MM_SWAPENTS);
ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
seq_printf(m,
"VmPeak:\t%8lu kB\n"
"VmSize:\t%8lu kB\n"
"VmLck:\t%8lu kB\n"
"VmPin:\t%8lu kB\n"
"VmHWM:\t%8lu kB\n"
"VmRSS:\t%8lu kB\n"
"RssAnon:\t%8lu kB\n"
"RssFile:\t%8lu kB\n"
"RssShmem:\t%8lu kB\n"
"VmData:\t%8lu kB\n"
"VmStk:\t%8lu kB\n"
"VmExe:\t%8lu kB\n"
"VmLib:\t%8lu kB\n"
"VmPTE:\t%8lu kB\n"
"VmPMD:\t%8lu kB\n"
"VmSwap:\t%8lu kB\n",
hiwater_vm << (PAGE_SHIFT-10),
total_vm << (PAGE_SHIFT-10),
mm->locked_vm << (PAGE_SHIFT-10),
mm->pinned_vm << (PAGE_SHIFT-10),
hiwater_rss << (PAGE_SHIFT-10),
total_rss << (PAGE_SHIFT-10),
anon << (PAGE_SHIFT-10),
file << (PAGE_SHIFT-10),
shmem << (PAGE_SHIFT-10),
mm->data_vm << (PAGE_SHIFT-10),
mm->stack_vm << (PAGE_SHIFT-10), text, lib,
ptes >> 10,
pmds >> 10,
swap << (PAGE_SHIFT-10));
hugetlb_report_usage(m, mm);
}
unsigned long task_vsize(struct mm_struct *mm)
{
return PAGE_SIZE * mm->total_vm;
}
unsigned long task_statm(struct mm_struct *mm,
unsigned long *shared, unsigned long *text,
unsigned long *data, unsigned long *resident)
{
*shared = get_mm_counter(mm, MM_FILEPAGES) +
get_mm_counter(mm, MM_SHMEMPAGES);
*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
>> PAGE_SHIFT;
*data = mm->data_vm + mm->stack_vm;
*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
return mm->total_vm;
}
#ifdef CONFIG_NUMA
/*
* Save get_task_policy() for show_numa_map().
*/
static void hold_task_mempolicy(struct proc_maps_private *priv)
{
struct task_struct *task = priv->task;
task_lock(task);
priv->task_mempolicy = get_task_policy(task);
mpol_get(priv->task_mempolicy);
task_unlock(task);
}
static void release_task_mempolicy(struct proc_maps_private *priv)
{
mpol_put(priv->task_mempolicy);
}
#else
static void hold_task_mempolicy(struct proc_maps_private *priv)
{
}
static void release_task_mempolicy(struct proc_maps_private *priv)
{
}
#endif
static void vma_stop(struct proc_maps_private *priv)
{
struct mm_struct *mm = priv->mm;
release_task_mempolicy(priv);
up_read(&mm->mmap_sem);
mmput(mm);
}
static struct vm_area_struct *
m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
{
if (vma == priv->tail_vma)
return NULL;
return vma->vm_next ?: priv->tail_vma;
}
static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
{
if (m->count < m->size) /* vma is copied successfully */
m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
}
static void *m_start(struct seq_file *m, loff_t *ppos)
{
struct proc_maps_private *priv = m->private;
unsigned long last_addr = m->version;
struct mm_struct *mm;
struct vm_area_struct *vma;
unsigned int pos = *ppos;
/* See m_cache_vma(). Zero at the start or after lseek. */
if (last_addr == -1UL)
return NULL;
priv->task = get_proc_task(priv->inode);
if (!priv->task)
return ERR_PTR(-ESRCH);
mm = priv->mm;
if (!mm || !mmget_not_zero(mm))
return NULL;
down_read(&mm->mmap_sem);
hold_task_mempolicy(priv);
priv->tail_vma = get_gate_vma(mm);
if (last_addr) {
vma = find_vma(mm, last_addr - 1);
if (vma && vma->vm_start <= last_addr)
vma = m_next_vma(priv, vma);
if (vma)
return vma;
}
m->version = 0;
if (pos < mm->map_count) {
for (vma = mm->mmap; pos; pos--) {
m->version = vma->vm_start;
vma = vma->vm_next;
}
return vma;
}
/* we do not bother to update m->version in this case */
if (pos == mm->map_count && priv->tail_vma)
return priv->tail_vma;
vma_stop(priv);
return NULL;
}
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
{
struct proc_maps_private *priv = m->private;
struct vm_area_struct *next;
(*pos)++;
next = m_next_vma(priv, v);
if (!next)
vma_stop(priv);
return next;
}
static void m_stop(struct seq_file *m, void *v)
{
struct proc_maps_private *priv = m->private;
if (!IS_ERR_OR_NULL(v))
vma_stop(priv);
if (priv->task) {
put_task_struct(priv->task);
priv->task = NULL;
}
}
static int proc_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops, int psize)
{
struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
if (!priv)
return -ENOMEM;
priv->inode = inode;
priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
if (IS_ERR(priv->mm)) {
int err = PTR_ERR(priv->mm);
seq_release_private(inode, file);
return err;
}
return 0;
}
static int proc_map_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
struct proc_maps_private *priv = seq->private;
if (priv->mm)
mmdrop(priv->mm);
kfree(priv->rollup);
return seq_release_private(inode, file);
}
static int do_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops)
{
return proc_maps_open(inode, file, ops,
sizeof(struct proc_maps_private));
}
/*
* Indicate if the VMA is a stack for the given task; for
* /proc/PID/maps that is the stack of the main task.
*/
static int is_stack(struct proc_maps_private *priv,
struct vm_area_struct *vma)
{
/*
* We make no effort to guess what a given thread considers to be
* its "stack". It's not even well-defined for programs written
* languages like Go.
*/
return vma->vm_start <= vma->vm_mm->start_stack &&
vma->vm_end >= vma->vm_mm->start_stack;
}
static void show_vma_header_prefix(struct seq_file *m,
unsigned long start, unsigned long end,
vm_flags_t flags, unsigned long long pgoff,
dev_t dev, unsigned long ino)
{
seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
start,
end,
flags & VM_READ ? 'r' : '-',
flags & VM_WRITE ? 'w' : '-',
flags & VM_EXEC ? 'x' : '-',
flags & VM_MAYSHARE ? 's' : 'p',
pgoff,
MAJOR(dev), MINOR(dev), ino);
}
static void
show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
{
struct mm_struct *mm = vma->vm_mm;
struct file *file = vma->vm_file;
struct proc_maps_private *priv = m->private;
vm_flags_t flags = vma->vm_flags;
unsigned long ino = 0;
unsigned long long pgoff = 0;
unsigned long start, end;
dev_t dev = 0;
const char *name = NULL;
if (file) {
struct inode *inode = file_inode(vma->vm_file);
dev = inode->i_sb->s_dev;
ino = inode->i_ino;
pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
}
start = vma->vm_start;
end = vma->vm_end;
show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
/*
* Print the dentry name for named mappings, and a
* special [heap] marker for the heap:
*/
if (file) {
seq_pad(m, ' ');
seq_file_path(m, file, "\n");
goto done;
}
if (vma->vm_ops && vma->vm_ops->name) {
name = vma->vm_ops->name(vma);
if (name)
goto done;
}
name = arch_vma_name(vma);
if (!name) {
if (!mm) {
name = "[vdso]";
goto done;
}
if (vma->vm_start <= mm->brk &&
vma->vm_end >= mm->start_brk) {
name = "[heap]";
goto done;
}
if (is_stack(priv, vma))
name = "[stack]";
}
done:
if (name) {
seq_pad(m, ' ');
seq_puts(m, name);
}
seq_putc(m, '\n');
}
static int show_map(struct seq_file *m, void *v, int is_pid)
{
show_map_vma(m, v, is_pid);
m_cache_vma(m, v);
return 0;
}
static int show_pid_map(struct seq_file *m, void *v)
{
return show_map(m, v, 1);
}
static int show_tid_map(struct seq_file *m, void *v)
{
return show_map(m, v, 0);
}
static const struct seq_operations proc_pid_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_map
};
static const struct seq_operations proc_tid_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_tid_map
};
static int pid_maps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_pid_maps_op);
}
static int tid_maps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_tid_maps_op);
}
const struct file_operations proc_pid_maps_operations = {
.open = pid_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_tid_maps_operations = {
.open = tid_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
/*
* Proportional Set Size(PSS): my share of RSS.
*
* PSS of a process is the count of pages it has in memory, where each
* page is divided by the number of processes sharing it. So if a
* process has 1000 pages all to itself, and 1000 shared with one other
* process, its PSS will be 1500.
*
* To keep (accumulated) division errors low, we adopt a 64bit
* fixed-point pss counter to minimize division errors. So (pss >>
* PSS_SHIFT) would be the real byte count.
*
* A shift of 12 before division means (assuming 4K page size):
* - 1M 3-user-pages add up to 8KB errors;
* - supports mapcount up to 2^24, or 16M;
* - supports PSS up to 2^52 bytes, or 4PB.
*/
#define PSS_SHIFT 12
#ifdef CONFIG_PROC_PAGE_MONITOR
struct mem_size_stats {
bool first;
unsigned long resident;
unsigned long shared_clean;
unsigned long shared_dirty;
unsigned long private_clean;
unsigned long private_dirty;
unsigned long referenced;
unsigned long anonymous;
unsigned long lazyfree;
unsigned long anonymous_thp;
unsigned long shmem_thp;
unsigned long swap;
unsigned long shared_hugetlb;
unsigned long private_hugetlb;
unsigned long first_vma_start;
u64 pss;
u64 pss_locked;
u64 swap_pss;
bool check_shmem_swap;
};
static void smaps_account(struct mem_size_stats *mss, struct page *page,
bool compound, bool young, bool dirty)
{
int i, nr = compound ? 1 << compound_order(page) : 1;
unsigned long size = nr * PAGE_SIZE;
if (PageAnon(page)) {
mss->anonymous += size;
if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
mss->lazyfree += size;
}
mss->resident += size;
/* Accumulate the size in pages that have been accessed. */
if (young || page_is_young(page) || PageReferenced(page))
mss->referenced += size;
/*
* page_count(page) == 1 guarantees the page is mapped exactly once.
* If any subpage of the compound page mapped with PTE it would elevate
* page_count().
*/
if (page_count(page) == 1) {
if (dirty || PageDirty(page))
mss->private_dirty += size;
else
mss->private_clean += size;
mss->pss += (u64)size << PSS_SHIFT;
return;
}
for (i = 0; i < nr; i++, page++) {
int mapcount = page_mapcount(page);
if (mapcount >= 2) {
if (dirty || PageDirty(page))
mss->shared_dirty += PAGE_SIZE;
else
mss->shared_clean += PAGE_SIZE;
mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
} else {
if (dirty || PageDirty(page))
mss->private_dirty += PAGE_SIZE;
else
mss->private_clean += PAGE_SIZE;
mss->pss += PAGE_SIZE << PSS_SHIFT;
}
}
}
#ifdef CONFIG_SHMEM
static int smaps_pte_hole(unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
mss->swap += shmem_partial_swap_usage(
walk->vma->vm_file->f_mapping, addr, end);
return 0;
}
#endif
static void smaps_pte_entry(pte_t *pte, unsigned long addr,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = walk->vma;
struct page *page = NULL;
if (pte_present(*pte)) {
page = vm_normal_page(vma, addr, *pte);
} else if (is_swap_pte(*pte)) {
swp_entry_t swpent = pte_to_swp_entry(*pte);
if (!non_swap_entry(swpent)) {
int mapcount;
mss->swap += PAGE_SIZE;
mapcount = swp_swapcount(swpent);
if (mapcount >= 2) {
u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
do_div(pss_delta, mapcount);
mss->swap_pss += pss_delta;
} else {
mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
}
} else if (is_migration_entry(swpent))
page = migration_entry_to_page(swpent);
else if (is_device_private_entry(swpent))
page = device_private_entry_to_page(swpent);
} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
&& pte_none(*pte))) {
page = find_get_entry(vma->vm_file->f_mapping,
linear_page_index(vma, addr));
if (!page)
return;
if (radix_tree_exceptional_entry(page))
mss->swap += PAGE_SIZE;
else
put_page(page);
return;
}
if (!page)
return;
smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = walk->vma;
struct page *page;
/* FOLL_DUMP will return -EFAULT on huge zero page */
page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
if (IS_ERR_OR_NULL(page))
return;
if (PageAnon(page))
mss->anonymous_thp += HPAGE_PMD_SIZE;
else if (PageSwapBacked(page))
mss->shmem_thp += HPAGE_PMD_SIZE;
else if (is_zone_device_page(page))
/* pass */;
else
VM_BUG_ON_PAGE(1, page);
smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
}
#else
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
struct mm_walk *walk)
{
}
#endif
static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
pte_t *pte;
spinlock_t *ptl;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
if (pmd_present(*pmd))
smaps_pmd_entry(pmd, addr, walk);
spin_unlock(ptl);
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
/*
* The mmap_sem held all the way back in m_start() is what
* keeps khugepaged out of here and from collapsing things
* in here.
*/
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE)
smaps_pte_entry(pte, addr, walk);
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
{
/*
* Don't forget to update Documentation/ on changes.
*/
static const char mnemonics[BITS_PER_LONG][2] = {
/*
* In case if we meet a flag we don't know about.
*/
[0 ... (BITS_PER_LONG-1)] = "??",
[ilog2(VM_READ)] = "rd",
[ilog2(VM_WRITE)] = "wr",
[ilog2(VM_EXEC)] = "ex",
[ilog2(VM_SHARED)] = "sh",
[ilog2(VM_MAYREAD)] = "mr",
[ilog2(VM_MAYWRITE)] = "mw",
[ilog2(VM_MAYEXEC)] = "me",
[ilog2(VM_MAYSHARE)] = "ms",
[ilog2(VM_GROWSDOWN)] = "gd",
[ilog2(VM_PFNMAP)] = "pf",
[ilog2(VM_DENYWRITE)] = "dw",
#ifdef CONFIG_X86_INTEL_MPX
[ilog2(VM_MPX)] = "mp",
#endif
[ilog2(VM_LOCKED)] = "lo",
[ilog2(VM_IO)] = "io",
[ilog2(VM_SEQ_READ)] = "sr",
[ilog2(VM_RAND_READ)] = "rr",
[ilog2(VM_DONTCOPY)] = "dc",
[ilog2(VM_DONTEXPAND)] = "de",
[ilog2(VM_ACCOUNT)] = "ac",
[ilog2(VM_NORESERVE)] = "nr",
[ilog2(VM_HUGETLB)] = "ht",
[ilog2(VM_ARCH_1)] = "ar",
[ilog2(VM_WIPEONFORK)] = "wf",
[ilog2(VM_DONTDUMP)] = "dd",
#ifdef CONFIG_MEM_SOFT_DIRTY
[ilog2(VM_SOFTDIRTY)] = "sd",
#endif
[ilog2(VM_MIXEDMAP)] = "mm",
[ilog2(VM_HUGEPAGE)] = "hg",
[ilog2(VM_NOHUGEPAGE)] = "nh",
[ilog2(VM_MERGEABLE)] = "mg",
[ilog2(VM_UFFD_MISSING)]= "um",
[ilog2(VM_UFFD_WP)] = "uw",
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
/* These come out via ProtectionKey: */
[ilog2(VM_PKEY_BIT0)] = "",
[ilog2(VM_PKEY_BIT1)] = "",
[ilog2(VM_PKEY_BIT2)] = "",
[ilog2(VM_PKEY_BIT3)] = "",
#endif
};
size_t i;
seq_puts(m, "VmFlags: ");
for (i = 0; i < BITS_PER_LONG; i++) {
if (!mnemonics[i][0])
continue;
if (vma->vm_flags & (1UL << i)) {
seq_printf(m, "%c%c ",
mnemonics[i][0], mnemonics[i][1]);
}
}
seq_putc(m, '\n');
}
#ifdef CONFIG_HUGETLB_PAGE
static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = walk->vma;
struct page *page = NULL;
if (pte_present(*pte)) {
page = vm_normal_page(vma, addr, *pte);
} else if (is_swap_pte(*pte)) {
swp_entry_t swpent = pte_to_swp_entry(*pte);
if (is_migration_entry(swpent))
page = migration_entry_to_page(swpent);
else if (is_device_private_entry(swpent))
page = device_private_entry_to_page(swpent);
}
if (page) {
int mapcount = page_mapcount(page);
if (mapcount >= 2)
mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
else
mss->private_hugetlb += huge_page_size(hstate_vma(vma));
}
return 0;
}
#endif /* HUGETLB_PAGE */
void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
{
}
static int show_smap(struct seq_file *m, void *v, int is_pid)
{
struct proc_maps_private *priv = m->private;
struct vm_area_struct *vma = v;
struct mem_size_stats mss_stack;
struct mem_size_stats *mss;
struct mm_walk smaps_walk = {
.pmd_entry = smaps_pte_range,
#ifdef CONFIG_HUGETLB_PAGE
.hugetlb_entry = smaps_hugetlb_range,
#endif
.mm = vma->vm_mm,
};
int ret = 0;
bool rollup_mode;
bool last_vma;
if (priv->rollup) {
rollup_mode = true;
mss = priv->rollup;
if (mss->first) {
mss->first_vma_start = vma->vm_start;
mss->first = false;
}
last_vma = !m_next_vma(priv, vma);
} else {
rollup_mode = false;
memset(&mss_stack, 0, sizeof(mss_stack));
mss = &mss_stack;
}
smaps_walk.private = mss;
#ifdef CONFIG_SHMEM
if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
/*
* For shared or readonly shmem mappings we know that all
* swapped out pages belong to the shmem object, and we can
* obtain the swap value much more efficiently. For private
* writable mappings, we might have COW pages that are
* not affected by the parent swapped out pages of the shmem
* object, so we have to distinguish them during the page walk.
* Unless we know that the shmem object (or the part mapped by
* our VMA) has no swapped out pages at all.
*/
unsigned long shmem_swapped = shmem_swap_usage(vma);
if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
!(vma->vm_flags & VM_WRITE)) {
mss->swap = shmem_swapped;
} else {
mss->check_shmem_swap = true;
smaps_walk.pte_hole = smaps_pte_hole;
}
}
#endif
/* mmap_sem is held in m_start */
walk_page_vma(vma, &smaps_walk);
if (vma->vm_flags & VM_LOCKED)
mss->pss_locked += mss->pss;
if (!rollup_mode) {
show_map_vma(m, vma, is_pid);
} else if (last_vma) {
show_vma_header_prefix(
m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
seq_pad(m, ' ');
seq_puts(m, "[rollup]\n");
} else {
ret = SEQ_SKIP;
}
if (!rollup_mode)
seq_printf(m,
"Size: %8lu kB\n"
"KernelPageSize: %8lu kB\n"
"MMUPageSize: %8lu kB\n",
(vma->vm_end - vma->vm_start) >> 10,
vma_kernel_pagesize(vma) >> 10,
vma_mmu_pagesize(vma) >> 10);
if (!rollup_mode || last_vma)
seq_printf(m,
"Rss: %8lu kB\n"
"Pss: %8lu kB\n"
"Shared_Clean: %8lu kB\n"
"Shared_Dirty: %8lu kB\n"
"Private_Clean: %8lu kB\n"
"Private_Dirty: %8lu kB\n"
"Referenced: %8lu kB\n"
"Anonymous: %8lu kB\n"
"LazyFree: %8lu kB\n"
"AnonHugePages: %8lu kB\n"
"ShmemPmdMapped: %8lu kB\n"
"Shared_Hugetlb: %8lu kB\n"
"Private_Hugetlb: %7lu kB\n"
"Swap: %8lu kB\n"
"SwapPss: %8lu kB\n"
"Locked: %8lu kB\n",
mss->resident >> 10,
(unsigned long)(mss->pss >> (10 + PSS_SHIFT)),
mss->shared_clean >> 10,
mss->shared_dirty >> 10,
mss->private_clean >> 10,
mss->private_dirty >> 10,
mss->referenced >> 10,
mss->anonymous >> 10,
mss->lazyfree >> 10,
mss->anonymous_thp >> 10,
mss->shmem_thp >> 10,
mss->shared_hugetlb >> 10,
mss->private_hugetlb >> 10,
mss->swap >> 10,
(unsigned long)(mss->swap_pss >> (10 + PSS_SHIFT)),
(unsigned long)(mss->pss >> (10 + PSS_SHIFT)));
if (!rollup_mode) {
arch_show_smap(m, vma);
show_smap_vma_flags(m, vma);
}
m_cache_vma(m, vma);
return ret;
}
static int show_pid_smap(struct seq_file *m, void *v)
{
return show_smap(m, v, 1);
}
static int show_tid_smap(struct seq_file *m, void *v)
{
return show_smap(m, v, 0);
}
static const struct seq_operations proc_pid_smaps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_smap
};
static const struct seq_operations proc_tid_smaps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_tid_smap
};
static int pid_smaps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_pid_smaps_op);
}
static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
{
struct seq_file *seq;
struct proc_maps_private *priv;
int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
if (ret < 0)
return ret;
seq = file->private_data;
priv = seq->private;
priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
if (!priv->rollup) {
proc_map_release(inode, file);
return -ENOMEM;
}
priv->rollup->first = true;
return 0;
}
static int tid_smaps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_tid_smaps_op);
}
const struct file_operations proc_pid_smaps_operations = {
.open = pid_smaps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_pid_smaps_rollup_operations = {
.open = pid_smaps_rollup_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_tid_smaps_operations = {
.open = tid_smaps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
enum clear_refs_types {
CLEAR_REFS_ALL = 1,
CLEAR_REFS_ANON,
CLEAR_REFS_MAPPED,
CLEAR_REFS_SOFT_DIRTY,
CLEAR_REFS_MM_HIWATER_RSS,
CLEAR_REFS_LAST,
};
struct clear_refs_private {
enum clear_refs_types type;
};
#ifdef CONFIG_MEM_SOFT_DIRTY
static inline void clear_soft_dirty(struct vm_area_struct *vma,
unsigned long addr, pte_t *pte)
{
/*
* The soft-dirty tracker uses #PF-s to catch writes
* to pages, so write-protect the pte as well. See the
* Documentation/vm/soft-dirty.txt for full description
* of how soft-dirty works.
*/
pte_t ptent = *pte;
if (pte_present(ptent)) {
ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
ptent = pte_wrprotect(ptent);
ptent = pte_clear_soft_dirty(ptent);
ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
} else if (is_swap_pte(ptent)) {
ptent = pte_swp_clear_soft_dirty(ptent);
set_pte_at(vma->vm_mm, addr, pte, ptent);
}
}
#else
static inline void clear_soft_dirty(struct vm_area_struct *vma,
unsigned long addr, pte_t *pte)
{
}
#endif
#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
if (pmd_present(pmd)) {
/* See comment in change_huge_pmd() */
pmdp_invalidate(vma, addr, pmdp);
if (pmd_dirty(*pmdp))
pmd = pmd_mkdirty(pmd);
if (pmd_young(*pmdp))
pmd = pmd_mkyoung(pmd);
pmd = pmd_wrprotect(pmd);
pmd = pmd_clear_soft_dirty(pmd);
set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
pmd = pmd_swp_clear_soft_dirty(pmd);
set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
}
}
#else
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp)
{
}
#endif
static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct clear_refs_private *cp = walk->private;
struct vm_area_struct *vma = walk->vma;
pte_t *pte, ptent;
spinlock_t *ptl;
struct page *page;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
clear_soft_dirty_pmd(vma, addr, pmd);
goto out;
}
if (!pmd_present(*pmd))
goto out;
page = pmd_page(*pmd);
/* Clear accessed and referenced bits. */
pmdp_test_and_clear_young(vma, addr, pmd);
test_and_clear_page_young(page);
ClearPageReferenced(page);
out:
spin_unlock(ptl);
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE) {
ptent = *pte;
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
clear_soft_dirty(vma, addr, pte);
continue;
}
if (!pte_present(ptent))
continue;
page = vm_normal_page(vma, addr, ptent);
if (!page)
continue;
/* Clear accessed and referenced bits. */
ptep_test_and_clear_young(vma, addr, pte);
test_and_clear_page_young(page);
ClearPageReferenced(page);
}
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static int clear_refs_test_walk(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct clear_refs_private *cp = walk->private;
struct vm_area_struct *vma = walk->vma;
if (vma->vm_flags & VM_PFNMAP)
return 1;
/*
* Writing 1 to /proc/pid/clear_refs affects all pages.
* Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
* Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
* Writing 4 to /proc/pid/clear_refs affects all pages.
*/
if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
return 1;
if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
return 1;
return 0;
}
static ssize_t clear_refs_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task;
char buffer[PROC_NUMBUF];
struct mm_struct *mm;
struct vm_area_struct *vma;
enum clear_refs_types type;
struct mmu_gather tlb;
int itype;
int rv;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
rv = kstrtoint(strstrip(buffer), 10, &itype);
if (rv < 0)
return rv;
type = (enum clear_refs_types)itype;
if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
return -EINVAL;
task = get_proc_task(file_inode(file));
if (!task)
return -ESRCH;
mm = get_task_mm(task);
if (mm) {
struct clear_refs_private cp = {
.type = type,
};
struct mm_walk clear_refs_walk = {
.pmd_entry = clear_refs_pte_range,
.test_walk = clear_refs_test_walk,
.mm = mm,
.private = &cp,
};
if (type == CLEAR_REFS_MM_HIWATER_RSS) {
if (down_write_killable(&mm->mmap_sem)) {
count = -EINTR;
goto out_mm;
}
/*
* Writing 5 to /proc/pid/clear_refs resets the peak
* resident set size to this mm's current rss value.
*/
reset_mm_hiwater_rss(mm);
up_write(&mm->mmap_sem);
goto out_mm;
}
down_read(&mm->mmap_sem);
tlb_gather_mmu(&tlb, mm, 0, -1);
if (type == CLEAR_REFS_SOFT_DIRTY) {
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (!(vma->vm_flags & VM_SOFTDIRTY))
continue;
up_read(&mm->mmap_sem);
if (down_write_killable(&mm->mmap_sem)) {
count = -EINTR;
goto out_mm;
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
vma->vm_flags &= ~VM_SOFTDIRTY;
vma_set_page_prot(vma);
}
downgrade_write(&mm->mmap_sem);
break;
}
mmu_notifier_invalidate_range_start(mm, 0, -1);
}
walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
if (type == CLEAR_REFS_SOFT_DIRTY)
mmu_notifier_invalidate_range_end(mm, 0, -1);
tlb_finish_mmu(&tlb, 0, -1);
up_read(&mm->mmap_sem);
out_mm:
mmput(mm);
}
put_task_struct(task);
return count;
}
const struct file_operations proc_clear_refs_operations = {
.write = clear_refs_write,
.llseek = noop_llseek,
};
typedef struct {
u64 pme;
} pagemap_entry_t;
struct pagemapread {
int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
pagemap_entry_t *buffer;
bool show_pfn;
};
#define PAGEMAP_WALK_SIZE (PMD_SIZE)
#define PAGEMAP_WALK_MASK (PMD_MASK)
#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
#define PM_PFRAME_BITS 55
#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
#define PM_SOFT_DIRTY BIT_ULL(55)
#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
#define PM_FILE BIT_ULL(61)
#define PM_SWAP BIT_ULL(62)
#define PM_PRESENT BIT_ULL(63)
#define PM_END_OF_BUFFER 1
static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
{
return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
}
static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
struct pagemapread *pm)
{
pm->buffer[pm->pos++] = *pme;
if (pm->pos >= pm->len)
return PM_END_OF_BUFFER;
return 0;
}
static int pagemap_pte_hole(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct pagemapread *pm = walk->private;
unsigned long addr = start;
int err = 0;
while (addr < end) {
struct vm_area_struct *vma = find_vma(walk->mm, addr);
pagemap_entry_t pme = make_pme(0, 0);
/* End of address space hole, which we mark as non-present. */
unsigned long hole_end;
if (vma)
hole_end = min(end, vma->vm_start);
else
hole_end = end;
for (; addr < hole_end; addr += PAGE_SIZE) {
err = add_to_pagemap(addr, &pme, pm);
if (err)
goto out;
}
if (!vma)
break;
/* Addresses in the VMA. */
if (vma->vm_flags & VM_SOFTDIRTY)
pme = make_pme(0, PM_SOFT_DIRTY);
for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
err = add_to_pagemap(addr, &pme, pm);
if (err)
goto out;
}
}
out:
return err;
}
static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
struct vm_area_struct *vma, unsigned long addr, pte_t pte)
{
u64 frame = 0, flags = 0;
struct page *page = NULL;
if (pte_present(pte)) {
if (pm->show_pfn)
frame = pte_pfn(pte);
flags |= PM_PRESENT;
page = vm_normal_page(vma, addr, pte);
if (pte_soft_dirty(pte))
flags |= PM_SOFT_DIRTY;
} else if (is_swap_pte(pte)) {
swp_entry_t entry;
if (pte_swp_soft_dirty(pte))
flags |= PM_SOFT_DIRTY;
entry = pte_to_swp_entry(pte);
frame = swp_type(entry) |
(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
flags |= PM_SWAP;
if (is_migration_entry(entry))
page = migration_entry_to_page(entry);
if (is_device_private_entry(entry))
page = device_private_entry_to_page(entry);
}
if (page && !PageAnon(page))
flags |= PM_FILE;
if (page && page_mapcount(page) == 1)
flags |= PM_MMAP_EXCLUSIVE;
if (vma->vm_flags & VM_SOFTDIRTY)
flags |= PM_SOFT_DIRTY;
return make_pme(frame, flags);
}
static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
struct pagemapread *pm = walk->private;
spinlock_t *ptl;
pte_t *pte, *orig_pte;
int err = 0;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ptl = pmd_trans_huge_lock(pmdp, vma);
if (ptl) {
u64 flags = 0, frame = 0;
pmd_t pmd = *pmdp;
struct page *page = NULL;
if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
flags |= PM_SOFT_DIRTY;
if (pmd_present(pmd)) {
page = pmd_page(pmd);
flags |= PM_PRESENT;
if (pm->show_pfn)
frame = pmd_pfn(pmd) +
((addr & ~PMD_MASK) >> PAGE_SHIFT);
}
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
else if (is_swap_pmd(pmd)) {
swp_entry_t entry = pmd_to_swp_entry(pmd);
frame = swp_type(entry) |
(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
flags |= PM_SWAP;
VM_BUG_ON(!is_pmd_migration_entry(pmd));
page = migration_entry_to_page(entry);
}
#endif
if (page && page_mapcount(page) == 1)
flags |= PM_MMAP_EXCLUSIVE;
for (; addr != end; addr += PAGE_SIZE) {
pagemap_entry_t pme = make_pme(frame, flags);
err = add_to_pagemap(addr, &pme, pm);
if (err)
break;
if (pm->show_pfn && (flags & PM_PRESENT))
frame++;
}
spin_unlock(ptl);
return err;
}
if (pmd_trans_unstable(pmdp))
return 0;
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* We can assume that @vma always points to a valid one and @end never
* goes beyond vma->vm_end.
*/
orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
for (; addr < end; pte++, addr += PAGE_SIZE) {
pagemap_entry_t pme;
pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
err = add_to_pagemap(addr, &pme, pm);
if (err)
break;
}
pte_unmap_unlock(orig_pte, ptl);
cond_resched();
return err;
}
#ifdef CONFIG_HUGETLB_PAGE
/* This function walks within one hugetlb entry in the single call */
static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct pagemapread *pm = walk->private;
struct vm_area_struct *vma = walk->vma;
u64 flags = 0, frame = 0;
int err = 0;
pte_t pte;
if (vma->vm_flags & VM_SOFTDIRTY)
flags |= PM_SOFT_DIRTY;
pte = huge_ptep_get(ptep);
if (pte_present(pte)) {
struct page *page = pte_page(pte);
if (!PageAnon(page))
flags |= PM_FILE;
if (page_mapcount(page) == 1)
flags |= PM_MMAP_EXCLUSIVE;
flags |= PM_PRESENT;
if (pm->show_pfn)
frame = pte_pfn(pte) +
((addr & ~hmask) >> PAGE_SHIFT);
}
for (; addr != end; addr += PAGE_SIZE) {
pagemap_entry_t pme = make_pme(frame, flags);
err = add_to_pagemap(addr, &pme, pm);
if (err)
return err;
if (pm->show_pfn && (flags & PM_PRESENT))
frame++;
}
cond_resched();
return err;
}
#endif /* HUGETLB_PAGE */
/*
* /proc/pid/pagemap - an array mapping virtual pages to pfns
*
* For each page in the address space, this file contains one 64-bit entry
* consisting of the following:
*
* Bits 0-54 page frame number (PFN) if present
* Bits 0-4 swap type if swapped
* Bits 5-54 swap offset if swapped
* Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
* Bit 56 page exclusively mapped
* Bits 57-60 zero
* Bit 61 page is file-page or shared-anon
* Bit 62 page swapped
* Bit 63 page present
*
* If the page is not present but in swap, then the PFN contains an
* encoding of the swap file number and the page's offset into the
* swap. Unmapped pages return a null PFN. This allows determining
* precisely which pages are mapped (or in swap) and comparing mapped
* pages between processes.
*
* Efficient users of this interface will use /proc/pid/maps to
* determine which areas of memory are actually mapped and llseek to
* skip over unmapped regions.
*/
static ssize_t pagemap_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct mm_struct *mm = file->private_data;
struct pagemapread pm;
struct mm_walk pagemap_walk = {};
unsigned long src;
unsigned long svpfn;
unsigned long start_vaddr;
unsigned long end_vaddr;
int ret = 0, copied = 0;
if (!mm || !mmget_not_zero(mm))
goto out;
ret = -EINVAL;
/* file position must be aligned */
if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
goto out_mm;
ret = 0;
if (!count)
goto out_mm;
/* do not disclose physical addresses: attack vector */
pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
ret = -ENOMEM;
if (!pm.buffer)
goto out_mm;
pagemap_walk.pmd_entry = pagemap_pmd_range;
pagemap_walk.pte_hole = pagemap_pte_hole;
#ifdef CONFIG_HUGETLB_PAGE
pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
#endif
pagemap_walk.mm = mm;
pagemap_walk.private = ±
src = *ppos;
svpfn = src / PM_ENTRY_BYTES;
start_vaddr = svpfn << PAGE_SHIFT;
end_vaddr = mm->task_size;
/* watch out for wraparound */
if (svpfn > mm->task_size >> PAGE_SHIFT)
start_vaddr = end_vaddr;
/*
* The odds are that this will stop walking way
* before end_vaddr, because the length of the
* user buffer is tracked in "pm", and the walk
* will stop when we hit the end of the buffer.
*/
ret = 0;
while (count && (start_vaddr < end_vaddr)) {
int len;
unsigned long end;
pm.pos = 0;
end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
/* overflow ? */
if (end < start_vaddr || end > end_vaddr)
end = end_vaddr;
down_read(&mm->mmap_sem);
ret = walk_page_range(start_vaddr, end, &pagemap_walk);
up_read(&mm->mmap_sem);
start_vaddr = end;
len = min(count, PM_ENTRY_BYTES * pm.pos);
if (copy_to_user(buf, pm.buffer, len)) {
ret = -EFAULT;
goto out_free;
}
copied += len;
buf += len;
count -= len;
}
*ppos += copied;
if (!ret || ret == PM_END_OF_BUFFER)
ret = copied;
out_free:
kfree(pm.buffer);
out_mm:
mmput(mm);
out:
return ret;
}
static int pagemap_open(struct inode *inode, struct file *file)
{
struct mm_struct *mm;
mm = proc_mem_open(inode, PTRACE_MODE_READ);
if (IS_ERR(mm))
return PTR_ERR(mm);
file->private_data = mm;
return 0;
}
static int pagemap_release(struct inode *inode, struct file *file)
{
struct mm_struct *mm = file->private_data;
if (mm)
mmdrop(mm);
return 0;
}
const struct file_operations proc_pagemap_operations = {
.llseek = mem_lseek, /* borrow this */
.read = pagemap_read,
.open = pagemap_open,
.release = pagemap_release,
};
#endif /* CONFIG_PROC_PAGE_MONITOR */
#ifdef CONFIG_NUMA
struct numa_maps {
unsigned long pages;
unsigned long anon;
unsigned long active;
unsigned long writeback;
unsigned long mapcount_max;
unsigned long dirty;
unsigned long swapcache;
unsigned long node[MAX_NUMNODES];
};
struct numa_maps_private {
struct proc_maps_private proc_maps;
struct numa_maps md;
};
static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
unsigned long nr_pages)
{
int count = page_mapcount(page);
md->pages += nr_pages;
if (pte_dirty || PageDirty(page))
md->dirty += nr_pages;
if (PageSwapCache(page))
md->swapcache += nr_pages;
if (PageActive(page) || PageUnevictable(page))
md->active += nr_pages;
if (PageWriteback(page))
md->writeback += nr_pages;
if (PageAnon(page))
md->anon += nr_pages;
if (count > md->mapcount_max)
md->mapcount_max = count;
md->node[page_to_nid(page)] += nr_pages;
}
static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
int nid;
if (!pte_present(pte))
return NULL;
page = vm_normal_page(vma, addr, pte);
if (!page)
return NULL;
if (PageReserved(page))
return NULL;
nid = page_to_nid(page);
if (!node_isset(nid, node_states[N_MEMORY]))
return NULL;
return page;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
int nid;
if (!pmd_present(pmd))
return NULL;
page = vm_normal_page_pmd(vma, addr, pmd);
if (!page)
return NULL;
if (PageReserved(page))
return NULL;
nid = page_to_nid(page);
if (!node_isset(nid, node_states[N_MEMORY]))
return NULL;
return page;
}
#endif
static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct numa_maps *md = walk->private;
struct vm_area_struct *vma = walk->vma;
spinlock_t *ptl;
pte_t *orig_pte;
pte_t *pte;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
struct page *page;
page = can_gather_numa_stats_pmd(*pmd, vma, addr);
if (page)
gather_stats(page, md, pmd_dirty(*pmd),
HPAGE_PMD_SIZE/PAGE_SIZE);
spin_unlock(ptl);
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
#endif
orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
do {
struct page *page = can_gather_numa_stats(*pte, vma, addr);
if (!page)
continue;
gather_stats(page, md, pte_dirty(*pte), 1);
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_unmap_unlock(orig_pte, ptl);
cond_resched();
return 0;
}
#ifdef CONFIG_HUGETLB_PAGE
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end, struct mm_walk *walk)
{
pte_t huge_pte = huge_ptep_get(pte);
struct numa_maps *md;
struct page *page;
if (!pte_present(huge_pte))
return 0;
page = pte_page(huge_pte);
if (!page)
return 0;
md = walk->private;
gather_stats(page, md, pte_dirty(huge_pte), 1);
return 0;
}
#else
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end, struct mm_walk *walk)
{
return 0;
}
#endif
/*
* Display pages allocated per node and memory policy via /proc.
*/
static int show_numa_map(struct seq_file *m, void *v, int is_pid)
{
struct numa_maps_private *numa_priv = m->private;
struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
struct vm_area_struct *vma = v;
struct numa_maps *md = &numa_priv->md;
struct file *file = vma->vm_file;
struct mm_struct *mm = vma->vm_mm;
struct mm_walk walk = {
.hugetlb_entry = gather_hugetlb_stats,
.pmd_entry = gather_pte_stats,
.private = md,
.mm = mm,
};
struct mempolicy *pol;
char buffer[64];
int nid;
if (!mm)
return 0;
/* Ensure we start with an empty set of numa_maps statistics. */
memset(md, 0, sizeof(*md));
pol = __get_vma_policy(vma, vma->vm_start);
if (pol) {
mpol_to_str(buffer, sizeof(buffer), pol);
mpol_cond_put(pol);
} else {
mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
}
seq_printf(m, "%08lx %s", vma->vm_start, buffer);
if (file) {
seq_puts(m, " file=");
seq_file_path(m, file, "\n\t= ");
} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
seq_puts(m, " heap");
} else if (is_stack(proc_priv, vma)) {
seq_puts(m, " stack");
}
if (is_vm_hugetlb_page(vma))
seq_puts(m, " huge");
/* mmap_sem is held by m_start */
walk_page_vma(vma, &walk);
if (!md->pages)
goto out;
if (md->anon)
seq_printf(m, " anon=%lu", md->anon);
if (md->dirty)
seq_printf(m, " dirty=%lu", md->dirty);
if (md->pages != md->anon && md->pages != md->dirty)
seq_printf(m, " mapped=%lu", md->pages);
if (md->mapcount_max > 1)
seq_printf(m, " mapmax=%lu", md->mapcount_max);
if (md->swapcache)
seq_printf(m, " swapcache=%lu", md->swapcache);
if (md->active < md->pages && !is_vm_hugetlb_page(vma))
seq_printf(m, " active=%lu", md->active);
if (md->writeback)
seq_printf(m, " writeback=%lu", md->writeback);
for_each_node_state(nid, N_MEMORY)
if (md->node[nid])
seq_printf(m, " N%d=%lu", nid, md->node[nid]);
seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
out:
seq_putc(m, '\n');
m_cache_vma(m, vma);
return 0;
}
static int show_pid_numa_map(struct seq_file *m, void *v)
{
return show_numa_map(m, v, 1);
}
static int show_tid_numa_map(struct seq_file *m, void *v)
{
return show_numa_map(m, v, 0);
}
static const struct seq_operations proc_pid_numa_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_numa_map,
};
static const struct seq_operations proc_tid_numa_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_tid_numa_map,
};
static int numa_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops)
{
return proc_maps_open(inode, file, ops,
sizeof(struct numa_maps_private));
}
static int pid_numa_maps_open(struct inode *inode, struct file *file)
{
return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
}
static int tid_numa_maps_open(struct inode *inode, struct file *file)
{
return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
}
const struct file_operations proc_pid_numa_maps_operations = {
.open = pid_numa_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_tid_numa_maps_operations = {
.open = tid_numa_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
#endif /* CONFIG_NUMA */