// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_gc.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_key_cache.h"
#include "btree_locking.h"
#include "buckets.h"
#include "debug.h"
#include "error.h"
#include "extent_update.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "recovery.h"
#include "subvolume.h"
#include "replicas.h"
#include "trace.h"
#include <linux/prefetch.h>
#include <linux/sort.h>
static int __must_check
bch2_trans_update_by_path(struct btree_trans *, struct btree_path *,
struct bkey_i *, enum btree_update_flags);
static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
const struct btree_insert_entry *r)
{
return cmp_int(l->btree_id, r->btree_id) ?:
cmp_int(l->cached, r->cached) ?:
-cmp_int(l->level, r->level) ?:
bpos_cmp(l->k->k.p, r->k->k.p);
}
static inline struct btree_path_level *insert_l(struct btree_insert_entry *i)
{
return i->path->l + i->level;
}
static inline bool same_leaf_as_prev(struct btree_trans *trans,
struct btree_insert_entry *i)
{
return i != trans->updates &&
insert_l(&i[0])->b == insert_l(&i[-1])->b;
}
static inline bool same_leaf_as_next(struct btree_trans *trans,
struct btree_insert_entry *i)
{
return i + 1 < trans->updates + trans->nr_updates &&
insert_l(&i[0])->b == insert_l(&i[1])->b;
}
static inline void bch2_btree_node_prep_for_write(struct btree_trans *trans,
struct btree_path *path,
struct btree *b)
{
struct bch_fs *c = trans->c;
if (path->cached)
return;
if (unlikely(btree_node_just_written(b)) &&
bch2_btree_post_write_cleanup(c, b))
bch2_trans_node_reinit_iter(trans, b);
/*
* If the last bset has been written, or if it's gotten too big - start
* a new bset to insert into:
*/
if (want_new_bset(c, b))
bch2_btree_init_next(trans, b);
}
void bch2_btree_node_lock_for_insert(struct btree_trans *trans,
struct btree_path *path,
struct btree *b)
{
bch2_btree_node_lock_write(trans, path, b);
bch2_btree_node_prep_for_write(trans, path, b);
}
/* Inserting into a given leaf node (last stage of insert): */
/* Handle overwrites and do insert, for non extents: */
bool bch2_btree_bset_insert_key(struct btree_trans *trans,
struct btree_path *path,
struct btree *b,
struct btree_node_iter *node_iter,
struct bkey_i *insert)
{
struct bkey_packed *k;
unsigned clobber_u64s = 0, new_u64s = 0;
EBUG_ON(btree_node_just_written(b));
EBUG_ON(bset_written(b, btree_bset_last(b)));
EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
EBUG_ON(bpos_cmp(insert->k.p, b->data->min_key) < 0);
EBUG_ON(bpos_cmp(insert->k.p, b->data->max_key) > 0);
EBUG_ON(insert->k.u64s >
bch_btree_keys_u64s_remaining(trans->c, b));
k = bch2_btree_node_iter_peek_all(node_iter, b);
if (k && bkey_cmp_left_packed(b, k, &insert->k.p))
k = NULL;
/* @k is the key being overwritten/deleted, if any: */
EBUG_ON(k && bkey_deleted(k));
/* Deleting, but not found? nothing to do: */
if (bkey_deleted(&insert->k) && !k)
return false;
if (bkey_deleted(&insert->k)) {
/* Deleting: */
btree_account_key_drop(b, k);
k->type = KEY_TYPE_deleted;
if (k->needs_whiteout)
push_whiteout(trans->c, b, insert->k.p);
k->needs_whiteout = false;
if (k >= btree_bset_last(b)->start) {
clobber_u64s = k->u64s;
bch2_bset_delete(b, k, clobber_u64s);
goto fix_iter;
} else {
bch2_btree_path_fix_key_modified(trans, b, k);
}
return true;
}
if (k) {
/* Overwriting: */
btree_account_key_drop(b, k);
k->type = KEY_TYPE_deleted;
insert->k.needs_whiteout = k->needs_whiteout;
k->needs_whiteout = false;
if (k >= btree_bset_last(b)->start) {
clobber_u64s = k->u64s;
goto overwrite;
} else {
bch2_btree_path_fix_key_modified(trans, b, k);
}
}
k = bch2_btree_node_iter_bset_pos(node_iter, b, bset_tree_last(b));
overwrite:
bch2_bset_insert(b, node_iter, k, insert, clobber_u64s);
new_u64s = k->u64s;
fix_iter:
if (clobber_u64s != new_u64s)
bch2_btree_node_iter_fix(trans, path, b, node_iter, k,
clobber_u64s, new_u64s);
return true;
}
static int __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
unsigned i, u64 seq)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct btree_write *w = container_of(pin, struct btree_write, journal);
struct btree *b = container_of(w, struct btree, writes[i]);
unsigned long old, new, v;
unsigned idx = w - b->writes;
six_lock_read(&b->c.lock, NULL, NULL);
v = READ_ONCE(b->flags);
do {
old = new = v;
if (!(old & (1 << BTREE_NODE_dirty)) ||
!!(old & (1 << BTREE_NODE_write_idx)) != idx ||
w->journal.seq != seq)
break;
new |= 1 << BTREE_NODE_need_write;
} while ((v = cmpxchg(&b->flags, old, new)) != old);
btree_node_write_if_need(c, b, SIX_LOCK_read);
six_unlock_read(&b->c.lock);
return 0;
}
static int btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq)
{
return __btree_node_flush(j, pin, 0, seq);
}
static int btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq)
{
return __btree_node_flush(j, pin, 1, seq);
}
inline void bch2_btree_add_journal_pin(struct bch_fs *c,
struct btree *b, u64 seq)
{
struct btree_write *w = btree_current_write(b);
bch2_journal_pin_add(&c->journal, seq, &w->journal,
btree_node_write_idx(b) == 0
? btree_node_flush0
: btree_node_flush1);
}
/**
* btree_insert_key - insert a key one key into a leaf node
*/
static void btree_insert_key_leaf(struct btree_trans *trans,
struct btree_insert_entry *insert)
{
struct bch_fs *c = trans->c;
struct btree *b = insert_l(insert)->b;
struct bset_tree *t = bset_tree_last(b);
struct bset *i = bset(b, t);
int old_u64s = bset_u64s(t);
int old_live_u64s = b->nr.live_u64s;
int live_u64s_added, u64s_added;
if (unlikely(!bch2_btree_bset_insert_key(trans, insert->path, b,
&insert_l(insert)->iter, insert->k)))
return;
i->journal_seq = cpu_to_le64(max(trans->journal_res.seq,
le64_to_cpu(i->journal_seq)));
bch2_btree_add_journal_pin(c, b, trans->journal_res.seq);
if (unlikely(!btree_node_dirty(b)))
set_btree_node_dirty_acct(c, b);
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
u64s_added = (int) bset_u64s(t) - old_u64s;
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
if (u64s_added > live_u64s_added &&
bch2_maybe_compact_whiteouts(c, b))
bch2_trans_node_reinit_iter(trans, b);
}
/* Cached btree updates: */
/* Normal update interface: */
static inline void btree_insert_entry_checks(struct btree_trans *trans,
struct btree_insert_entry *i)
{
BUG_ON(bpos_cmp(i->k->k.p, i->path->pos));
BUG_ON(i->cached != i->path->cached);
BUG_ON(i->level != i->path->level);
BUG_ON(i->btree_id != i->path->btree_id);
EBUG_ON(!i->level &&
!(i->flags & BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) &&
test_bit(JOURNAL_REPLAY_DONE, &trans->c->journal.flags) &&
i->k->k.p.snapshot &&
bch2_snapshot_internal_node(trans->c, i->k->k.p.snapshot));
}
static noinline int
bch2_trans_journal_preres_get_cold(struct btree_trans *trans, unsigned u64s,
unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
int ret;
bch2_trans_unlock(trans);
ret = bch2_journal_preres_get(&c->journal,
&trans->journal_preres, u64s, 0);
if (ret)
return ret;
if (!bch2_trans_relock(trans)) {
trace_trans_restart_journal_preres_get(trans->fn, trace_ip);
return -EINTR;
}
return 0;
}
static inline int bch2_trans_journal_res_get(struct btree_trans *trans,
unsigned flags)
{
struct bch_fs *c = trans->c;
int ret;
ret = bch2_journal_res_get(&c->journal, &trans->journal_res,
trans->journal_u64s,
flags|
(trans->flags & JOURNAL_WATERMARK_MASK));
return ret == -EAGAIN ? BTREE_INSERT_NEED_JOURNAL_RES : ret;
}
#define JSET_ENTRY_LOG_U64s 4
static noinline void journal_transaction_name(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
struct jset_entry *entry = journal_res_entry(&c->journal, &trans->journal_res);
struct jset_entry_log *l = container_of(entry, struct jset_entry_log, entry);
unsigned u64s = JSET_ENTRY_LOG_U64s - 1;
unsigned b, buflen = u64s * sizeof(u64);
l->entry.u64s = cpu_to_le16(u64s);
l->entry.btree_id = 0;
l->entry.level = 0;
l->entry.type = BCH_JSET_ENTRY_log;
l->entry.pad[0] = 0;
l->entry.pad[1] = 0;
l->entry.pad[2] = 0;
b = min_t(unsigned, strlen(trans->fn), buflen);
memcpy(l->d, trans->fn, b);
while (b < buflen)
l->d[b++] = '\0';
trans->journal_res.offset += JSET_ENTRY_LOG_U64s;
trans->journal_res.u64s -= JSET_ENTRY_LOG_U64s;
}
static inline enum btree_insert_ret
btree_key_can_insert(struct btree_trans *trans,
struct btree *b,
unsigned u64s)
{
struct bch_fs *c = trans->c;
if (!bch2_btree_node_insert_fits(c, b, u64s))
return BTREE_INSERT_BTREE_NODE_FULL;
return BTREE_INSERT_OK;
}
static enum btree_insert_ret
btree_key_can_insert_cached(struct btree_trans *trans,
struct btree_path *path,
unsigned u64s)
{
struct bch_fs *c = trans->c;
struct bkey_cached *ck = (void *) path->l[0].b;
unsigned old_u64s = ck->u64s, new_u64s;
struct bkey_i *new_k;
EBUG_ON(path->level);
if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
bch2_btree_key_cache_must_wait(c) &&
!(trans->flags & BTREE_INSERT_JOURNAL_RECLAIM))
return BTREE_INSERT_NEED_JOURNAL_RECLAIM;
/*
* bch2_varint_decode can read past the end of the buffer by at most 7
* bytes (it won't be used):
*/
u64s += 1;
if (u64s <= ck->u64s)
return BTREE_INSERT_OK;
new_u64s = roundup_pow_of_two(u64s);
new_k = krealloc(ck->k, new_u64s * sizeof(u64), GFP_NOFS);
if (!new_k) {
bch_err(c, "error allocating memory for key cache key, btree %s u64s %u",
bch2_btree_ids[path->btree_id], new_u64s);
return -ENOMEM;
}
ck->u64s = new_u64s;
ck->k = new_k;
/*
* Keys returned by peek() are no longer valid pointers, so we need a
* transaction restart:
*/
trace_trans_restart_key_cache_key_realloced(trans->fn, _RET_IP_,
path->btree_id, &path->pos,
old_u64s, new_u64s);
/*
* Not using btree_trans_restart() because we can't unlock here, we have
* write locks held:
*/
trans->restarted = true;
return -EINTR;
}
static inline void do_btree_insert_one(struct btree_trans *trans,
struct btree_insert_entry *i)
{
struct bch_fs *c = trans->c;
struct journal *j = &c->journal;
EBUG_ON(trans->journal_res.ref !=
!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY));
i->k->k.needs_whiteout = false;
if (!i->cached)
btree_insert_key_leaf(trans, i);
else if (!i->key_cache_already_flushed)
bch2_btree_insert_key_cached(trans, i->path, i->k);
else {
bch2_btree_key_cache_drop(trans, i->path);
return;
}
if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) &&
!(i->flags & BTREE_UPDATE_NOJOURNAL)) {
bch2_journal_add_keys(j, &trans->journal_res,
i->btree_id,
i->level,
i->k);
if (trans->journal_seq)
*trans->journal_seq = trans->journal_res.seq;
}
}
/* Triggers: */
static int run_one_mem_trigger(struct btree_trans *trans,
struct btree_insert_entry *i,
unsigned flags)
{
struct bkey_s_c old = { &i->old_k, i->old_v };
struct bkey_i *new = i->k;
int ret;
if (unlikely(flags & BTREE_TRIGGER_NORUN))
return 0;
if (!btree_node_type_needs_gc(i->btree_id))
return 0;
if (bch2_bkey_ops[old.k->type].atomic_trigger ==
bch2_bkey_ops[i->k->k.type].atomic_trigger &&
((1U << old.k->type) & BTREE_TRIGGER_WANTS_OLD_AND_NEW)) {
ret = bch2_mark_key(trans, old, bkey_i_to_s_c(new),
BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE|flags);
} else {
struct bkey _deleted = KEY(0, 0, 0);
struct bkey_s_c deleted = (struct bkey_s_c) { &_deleted, NULL };
_deleted.p = i->path->pos;
ret = bch2_mark_key(trans, deleted, bkey_i_to_s_c(new),
BTREE_TRIGGER_INSERT|flags) ?:
bch2_mark_key(trans, old, deleted,
BTREE_TRIGGER_OVERWRITE|flags);
}
return ret;
}
static int run_one_trans_trigger(struct btree_trans *trans, struct btree_insert_entry *i,
bool overwrite)
{
/*
* Transactional triggers create new btree_insert_entries, so we can't
* pass them a pointer to a btree_insert_entry, that memory is going to
* move:
*/
struct bkey old_k = i->old_k;
struct bkey_s_c old = { &old_k, i->old_v };
if ((i->flags & BTREE_TRIGGER_NORUN) ||
!(BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS & (1U << i->bkey_type)))
return 0;
if (!i->insert_trigger_run &&
!i->overwrite_trigger_run &&
bch2_bkey_ops[old.k->type].trans_trigger ==
bch2_bkey_ops[i->k->k.type].trans_trigger &&
((1U << old.k->type) & BTREE_TRIGGER_WANTS_OLD_AND_NEW)) {
i->overwrite_trigger_run = true;
i->insert_trigger_run = true;
return bch2_trans_mark_key(trans, old, i->k,
BTREE_TRIGGER_INSERT|
BTREE_TRIGGER_OVERWRITE|
i->flags) ?: 1;
} else if (overwrite && !i->overwrite_trigger_run) {
i->overwrite_trigger_run = true;
return bch2_trans_mark_old(trans, old, i->flags) ?: 1;
} else if (!overwrite && !i->insert_trigger_run) {
i->insert_trigger_run = true;
return bch2_trans_mark_new(trans, i->k, i->flags) ?: 1;
} else {
return 0;
}
}
static int run_btree_triggers(struct btree_trans *trans, enum btree_id btree_id,
struct btree_insert_entry *btree_id_start)
{
struct btree_insert_entry *i;
bool trans_trigger_run;
int ret, overwrite;
for (overwrite = 1; overwrite >= 0; --overwrite) {
/*
* Running triggers will append more updates to the list of updates as
* we're walking it:
*/
do {
trans_trigger_run = false;
for (i = btree_id_start;
i < trans->updates + trans->nr_updates && i->btree_id <= btree_id;
i++) {
if (i->btree_id != btree_id)
continue;
ret = run_one_trans_trigger(trans, i, overwrite);
if (ret < 0)
return ret;
if (ret)
trans_trigger_run = true;
}
} while (trans_trigger_run);
}
return 0;
}
static int bch2_trans_commit_run_triggers(struct btree_trans *trans)
{
struct btree_insert_entry *i = NULL, *btree_id_start = trans->updates;
unsigned btree_id = 0;
int ret = 0;
/*
*
* For a given btree, this algorithm runs insert triggers before
* overwrite triggers: this is so that when extents are being moved
* (e.g. by FALLOCATE_FL_INSERT_RANGE), we don't drop references before
* they are re-added.
*/
for (btree_id = 0; btree_id < BTREE_ID_NR; btree_id++) {
if (btree_id == BTREE_ID_alloc)
continue;
while (btree_id_start < trans->updates + trans->nr_updates &&
btree_id_start->btree_id < btree_id)
btree_id_start++;
ret = run_btree_triggers(trans, btree_id, btree_id_start);
if (ret)
return ret;
}
trans_for_each_update(trans, i) {
if (i->btree_id > BTREE_ID_alloc)
break;
if (i->btree_id == BTREE_ID_alloc) {
ret = run_btree_triggers(trans, BTREE_ID_alloc, i);
if (ret)
return ret;
break;
}
}
trans_for_each_update(trans, i)
BUG_ON(!(i->flags & BTREE_TRIGGER_NORUN) &&
(BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS & (1U << i->bkey_type)) &&
(!i->insert_trigger_run || !i->overwrite_trigger_run));
return 0;
}
static noinline int bch2_trans_commit_run_gc_triggers(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
int ret = 0;
trans_for_each_update(trans, i) {
/*
* XXX: synchronization of cached update triggers with gc
* XXX: synchronization of interior node updates with gc
*/
BUG_ON(i->cached || i->level);
if (gc_visited(c, gc_pos_btree_node(insert_l(i)->b))) {
ret = run_one_mem_trigger(trans, i, i->flags|BTREE_TRIGGER_GC);
if (ret)
break;
}
}
return ret;
}
static inline int
bch2_trans_commit_write_locked(struct btree_trans *trans,
struct btree_insert_entry **stopped_at,
unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
struct btree_trans_commit_hook *h;
unsigned u64s = 0;
bool marking = false;
int ret;
if (race_fault()) {
trace_trans_restart_fault_inject(trans->fn, trace_ip);
trans->restarted = true;
return -EINTR;
}
/*
* Check if the insert will fit in the leaf node with the write lock
* held, otherwise another thread could write the node changing the
* amount of space available:
*/
prefetch(&trans->c->journal.flags);
h = trans->hooks;
while (h) {
ret = h->fn(trans, h);
if (ret)
return ret;
h = h->next;
}
trans_for_each_update(trans, i) {
/* Multiple inserts might go to same leaf: */
if (!same_leaf_as_prev(trans, i))
u64s = 0;
u64s += i->k->k.u64s;
ret = !i->cached
? btree_key_can_insert(trans, insert_l(i)->b, u64s)
: btree_key_can_insert_cached(trans, i->path, u64s);
if (ret) {
*stopped_at = i;
return ret;
}
if (btree_node_type_needs_gc(i->bkey_type))
marking = true;
/*
* Revalidate before calling mem triggers - XXX, ugly:
*
* - successful btree node splits don't cause transaction
* restarts and will have invalidated the pointer to the bkey
* value
* - btree_node_lock_for_insert() -> btree_node_prep_for_write()
* when it has to resort
* - btree_key_can_insert_cached() when it has to reallocate
*
* Ugly because we currently have no way to tell if the
* pointer's been invalidated, which means it's debatabale
* whether we should be stashing the old key at all.
*/
i->old_v = bch2_btree_path_peek_slot(i->path, &i->old_k).v;
if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) {
struct bkey_i *j_k =
bch2_journal_keys_peek(c, i->btree_id, i->level, i->k->k.p);
if (j_k && !bpos_cmp(j_k->k.p, i->k->k.p)) {
i->old_k = j_k->k;
i->old_v = &j_k->v;
}
}
}
/*
* Don't get journal reservation until after we know insert will
* succeed:
*/
if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) {
ret = bch2_trans_journal_res_get(trans,
JOURNAL_RES_GET_NONBLOCK);
if (ret)
return ret;
if (unlikely(trans->journal_transaction_names))
journal_transaction_name(trans);
} else {
trans->journal_res.seq = c->journal.replay_journal_seq;
}
if (unlikely(trans->extra_journal_entries.nr)) {
memcpy_u64s_small(journal_res_entry(&c->journal, &trans->journal_res),
trans->extra_journal_entries.data,
trans->extra_journal_entries.nr);
trans->journal_res.offset += trans->extra_journal_entries.nr;
trans->journal_res.u64s -= trans->extra_journal_entries.nr;
}
/*
* Not allowed to fail after we've gotten our journal reservation - we
* have to use it:
*/
if (!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) {
if (bch2_journal_seq_verify)
trans_for_each_update(trans, i)
i->k->k.version.lo = trans->journal_res.seq;
else if (bch2_inject_invalid_keys)
trans_for_each_update(trans, i)
i->k->k.version = MAX_VERSION;
}
if (trans->fs_usage_deltas &&
bch2_trans_fs_usage_apply(trans, trans->fs_usage_deltas))
return BTREE_INSERT_NEED_MARK_REPLICAS;
trans_for_each_update(trans, i)
if (BTREE_NODE_TYPE_HAS_MEM_TRIGGERS & (1U << i->bkey_type)) {
ret = run_one_mem_trigger(trans, i, i->flags);
if (ret)
return ret;
}
if (unlikely(c->gc_pos.phase)) {
ret = bch2_trans_commit_run_gc_triggers(trans);
if (ret)
return ret;
}
trans_for_each_update(trans, i)
do_btree_insert_one(trans, i);
return ret;
}
static inline void path_upgrade_readers(struct btree_trans *trans, struct btree_path *path)
{
unsigned l;
for (l = 0; l < BTREE_MAX_DEPTH; l++)
if (btree_node_read_locked(path, l))
BUG_ON(!bch2_btree_node_upgrade(trans, path, l));
}
static inline void upgrade_readers(struct btree_trans *trans, struct btree_path *path)
{
struct btree *b = path_l(path)->b;
do {
if (path->nodes_locked &&
path->nodes_locked != path->nodes_intent_locked)
path_upgrade_readers(trans, path);
} while ((path = prev_btree_path(trans, path)) &&
path_l(path)->b == b);
}
/*
* Check for nodes that we have both read and intent locks on, and upgrade the
* readers to intent:
*/
static inline void normalize_read_intent_locks(struct btree_trans *trans)
{
struct btree_path *path;
unsigned i, nr_read = 0, nr_intent = 0;
trans_for_each_path_inorder(trans, path, i) {
struct btree_path *next = i + 1 < trans->nr_sorted
? trans->paths + trans->sorted[i + 1]
: NULL;
if (path->nodes_locked) {
if (path->nodes_intent_locked)
nr_intent++;
else
nr_read++;
}
if (!next || path_l(path)->b != path_l(next)->b) {
if (nr_read && nr_intent)
upgrade_readers(trans, path);
nr_read = nr_intent = 0;
}
}
bch2_trans_verify_locks(trans);
}
static inline bool have_conflicting_read_lock(struct btree_trans *trans, struct btree_path *pos)
{
struct btree_path *path;
unsigned i;
trans_for_each_path_inorder(trans, path, i) {
//if (path == pos)
// break;
if (path->nodes_locked != path->nodes_intent_locked &&
!bch2_btree_path_upgrade(trans, path, path->level + 1))
return true;
}
return false;
}
static inline int trans_lock_write(struct btree_trans *trans)
{
struct btree_insert_entry *i;
trans_for_each_update(trans, i) {
if (same_leaf_as_prev(trans, i))
continue;
if (!six_trylock_write(&insert_l(i)->b->c.lock)) {
if (have_conflicting_read_lock(trans, i->path))
goto fail;
btree_node_lock_type(trans, i->path,
insert_l(i)->b,
i->path->pos, i->level,
SIX_LOCK_write, NULL, NULL);
}
bch2_btree_node_prep_for_write(trans, i->path, insert_l(i)->b);
}
return 0;
fail:
while (--i >= trans->updates) {
if (same_leaf_as_prev(trans, i))
continue;
bch2_btree_node_unlock_write_inlined(trans, i->path, insert_l(i)->b);
}
trace_trans_restart_would_deadlock_write(trans->fn);
return btree_trans_restart(trans);
}
static noinline void bch2_drop_overwrites_from_journal(struct btree_trans *trans)
{
struct btree_insert_entry *i;
trans_for_each_update(trans, i)
bch2_journal_key_overwritten(trans->c, i->btree_id, i->level, i->k->k.p);
}
/*
* Get journal reservation, take write locks, and attempt to do btree update(s):
*/
static inline int do_bch2_trans_commit(struct btree_trans *trans,
struct btree_insert_entry **stopped_at,
unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
struct printbuf buf = PRINTBUF;
int ret, u64s_delta = 0;
int rw = (trans->flags & BTREE_INSERT_JOURNAL_REPLAY) ? READ : WRITE;
trans_for_each_update(trans, i) {
if (bch2_bkey_invalid(c, bkey_i_to_s_c(i->k),
i->bkey_type, rw, &buf)) {
printbuf_reset(&buf);
pr_buf(&buf, "invalid bkey on insert from %s -> %ps",
trans->fn, (void *) i->ip_allocated);
pr_newline(&buf);
pr_indent_push(&buf, 2);
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(i->k));
pr_newline(&buf);
bch2_bkey_invalid(c, bkey_i_to_s_c(i->k),
i->bkey_type, rw, &buf);
bch2_trans_inconsistent(trans, "%s", buf.buf);
printbuf_exit(&buf);
return -EINVAL;
}
btree_insert_entry_checks(trans, i);
}
printbuf_exit(&buf);
trans_for_each_update(trans, i) {
if (i->cached)
continue;
u64s_delta += !bkey_deleted(&i->k->k) ? i->k->k.u64s : 0;
u64s_delta -= i->old_btree_u64s;
if (!same_leaf_as_next(trans, i)) {
if (u64s_delta <= 0) {
ret = bch2_foreground_maybe_merge(trans, i->path,
i->level, trans->flags);
if (unlikely(ret))
return ret;
}
u64s_delta = 0;
}
}
ret = bch2_journal_preres_get(&c->journal,
&trans->journal_preres, trans->journal_preres_u64s,
JOURNAL_RES_GET_NONBLOCK|
(trans->flags & JOURNAL_WATERMARK_MASK));
if (unlikely(ret == -EAGAIN))
ret = bch2_trans_journal_preres_get_cold(trans,
trans->journal_preres_u64s, trace_ip);
if (unlikely(ret))
return ret;
normalize_read_intent_locks(trans);
ret = trans_lock_write(trans);
if (unlikely(ret))
return ret;
ret = bch2_trans_commit_write_locked(trans, stopped_at, trace_ip);
if (!ret && unlikely(trans->journal_replay_not_finished))
bch2_drop_overwrites_from_journal(trans);
trans_for_each_update(trans, i)
if (!same_leaf_as_prev(trans, i))
bch2_btree_node_unlock_write_inlined(trans, i->path,
insert_l(i)->b);
if (!ret && trans->journal_pin)
bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
trans->journal_pin, NULL);
/*
* Drop journal reservation after dropping write locks, since dropping
* the journal reservation may kick off a journal write:
*/
bch2_journal_res_put(&c->journal, &trans->journal_res);
if (unlikely(ret))
return ret;
bch2_trans_downgrade(trans);
return 0;
}
static int journal_reclaim_wait_done(struct bch_fs *c)
{
int ret = bch2_journal_error(&c->journal) ?:
!bch2_btree_key_cache_must_wait(c);
if (!ret)
journal_reclaim_kick(&c->journal);
return ret;
}
static noinline
int bch2_trans_commit_error(struct btree_trans *trans,
struct btree_insert_entry *i,
int ret, unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
switch (ret) {
case BTREE_INSERT_BTREE_NODE_FULL:
ret = bch2_btree_split_leaf(trans, i->path, trans->flags);
if (!ret)
return 0;
if (ret == -EINTR)
trace_trans_restart_btree_node_split(trans->fn, trace_ip,
i->btree_id, &i->path->pos);
break;
case BTREE_INSERT_NEED_MARK_REPLICAS:
bch2_trans_unlock(trans);
ret = bch2_replicas_delta_list_mark(c, trans->fs_usage_deltas);
if (ret)
break;
if (bch2_trans_relock(trans))
return 0;
trace_trans_restart_mark_replicas(trans->fn, trace_ip);
ret = -EINTR;
break;
case BTREE_INSERT_NEED_JOURNAL_RES:
bch2_trans_unlock(trans);
if ((trans->flags & BTREE_INSERT_JOURNAL_RECLAIM) &&
!(trans->flags & JOURNAL_WATERMARK_reserved)) {
trans->restarted = true;
ret = -EAGAIN;
break;
}
ret = bch2_trans_journal_res_get(trans, JOURNAL_RES_GET_CHECK);
if (ret)
break;
if (bch2_trans_relock(trans))
return 0;
trace_trans_restart_journal_res_get(trans->fn, trace_ip);
ret = -EINTR;
break;
case BTREE_INSERT_NEED_JOURNAL_RECLAIM:
bch2_trans_unlock(trans);
trace_trans_blocked_journal_reclaim(trans->fn, trace_ip);
wait_event_freezable(c->journal.reclaim_wait,
(ret = journal_reclaim_wait_done(c)));
if (ret < 0)
break;
if (bch2_trans_relock(trans))
return 0;
trace_trans_restart_journal_reclaim(trans->fn, trace_ip);
ret = -EINTR;
break;
default:
BUG_ON(ret >= 0);
break;
}
BUG_ON((ret == EINTR || ret == -EAGAIN) && !trans->restarted);
BUG_ON(ret == -ENOSPC &&
!(trans->flags & BTREE_INSERT_NOWAIT) &&
(trans->flags & BTREE_INSERT_NOFAIL));
return ret;
}
static noinline int
bch2_trans_commit_get_rw_cold(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
int ret;
if (likely(!(trans->flags & BTREE_INSERT_LAZY_RW)) ||
test_bit(BCH_FS_STARTED, &c->flags))
return -EROFS;
bch2_trans_unlock(trans);
ret = bch2_fs_read_write_early(c);
if (ret)
return ret;
if (!bch2_trans_relock(trans))
return -EINTR;
percpu_ref_get(&c->writes);
return 0;
}
/*
* This is for updates done in the early part of fsck - btree_gc - before we've
* gone RW. we only add the new key to the list of keys for journal replay to
* do.
*/
static noinline int
do_bch2_trans_commit_to_journal_replay(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
int ret = 0;
trans_for_each_update(trans, i) {
ret = bch2_journal_key_insert(c, i->btree_id, i->level, i->k);
if (ret)
break;
}
return ret;
}
int __bch2_trans_commit(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i = NULL;
unsigned u64s;
int ret = 0;
if (!trans->nr_updates &&
!trans->extra_journal_entries.nr)
goto out_reset;
if (trans->flags & BTREE_INSERT_GC_LOCK_HELD)
lockdep_assert_held(&c->gc_lock);
ret = bch2_trans_commit_run_triggers(trans);
if (ret)
goto out_reset;
if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) {
ret = do_bch2_trans_commit_to_journal_replay(trans);
goto out_reset;
}
if (!(trans->flags & BTREE_INSERT_NOCHECK_RW) &&
unlikely(!percpu_ref_tryget(&c->writes))) {
ret = bch2_trans_commit_get_rw_cold(trans);
if (ret)
goto out_reset;
}
memset(&trans->journal_preres, 0, sizeof(trans->journal_preres));
trans->journal_u64s = trans->extra_journal_entries.nr;
trans->journal_preres_u64s = 0;
trans->journal_transaction_names = READ_ONCE(c->opts.journal_transaction_names);
if (trans->journal_transaction_names)
trans->journal_u64s += JSET_ENTRY_LOG_U64s;
trans_for_each_update(trans, i) {
BUG_ON(!i->path->should_be_locked);
if (unlikely(!bch2_btree_path_upgrade(trans, i->path, i->level + 1))) {
trace_trans_restart_upgrade(trans->fn, _RET_IP_,
i->btree_id, &i->path->pos);
ret = btree_trans_restart(trans);
goto out;
}
BUG_ON(!btree_node_intent_locked(i->path, i->level));
u64s = jset_u64s(i->k->k.u64s);
if (i->cached &&
likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)))
trans->journal_preres_u64s += u64s;
if (!(i->flags & BTREE_UPDATE_NOJOURNAL))
trans->journal_u64s += u64s;
}
if (trans->extra_journal_res) {
ret = bch2_disk_reservation_add(c, trans->disk_res,
trans->extra_journal_res,
(trans->flags & BTREE_INSERT_NOFAIL)
? BCH_DISK_RESERVATION_NOFAIL : 0);
if (ret)
goto err;
}
retry:
BUG_ON(trans->restarted);
memset(&trans->journal_res, 0, sizeof(trans->journal_res));
ret = do_bch2_trans_commit(trans, &i, _RET_IP_);
/* make sure we didn't drop or screw up locks: */
bch2_trans_verify_locks(trans);
if (ret)
goto err;
out:
bch2_journal_preres_put(&c->journal, &trans->journal_preres);
if (likely(!(trans->flags & BTREE_INSERT_NOCHECK_RW)))
percpu_ref_put(&c->writes);
out_reset:
trans_for_each_update(trans, i)
bch2_path_put(trans, i->path, true);
trans->extra_journal_res = 0;
trans->nr_updates = 0;
trans->hooks = NULL;
trans->extra_journal_entries.nr = 0;
if (trans->fs_usage_deltas) {
trans->fs_usage_deltas->used = 0;
memset((void *) trans->fs_usage_deltas +
offsetof(struct replicas_delta_list, memset_start), 0,
(void *) &trans->fs_usage_deltas->memset_end -
(void *) &trans->fs_usage_deltas->memset_start);
}
return ret;
err:
ret = bch2_trans_commit_error(trans, i, ret, _RET_IP_);
if (ret)
goto out;
goto retry;
}
static int check_pos_snapshot_overwritten(struct btree_trans *trans,
enum btree_id id,
struct bpos pos)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct bkey_s_c k;
int ret;
if (!btree_type_has_snapshots(id))
return 0;
if (!snapshot_t(c, pos.snapshot)->children[0])
return 0;
bch2_trans_iter_init(trans, &iter, id, pos,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_ALL_SNAPSHOTS);
while (1) {
k = bch2_btree_iter_prev(&iter);
ret = bkey_err(k);
if (ret)
break;
if (!k.k)
break;
if (bkey_cmp(pos, k.k->p))
break;
if (bch2_snapshot_is_ancestor(c, k.k->p.snapshot, pos.snapshot)) {
ret = 1;
break;
}
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static noinline int extent_front_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k,
struct bkey_i **insert,
enum btree_update_flags flags)
{
struct bch_fs *c = trans->c;
struct bkey_i *update;
int ret;
update = bch2_trans_kmalloc(trans, bkey_bytes(k.k));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
return ret;
bkey_reassemble(update, k);
if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
return 0;
ret = check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p) ?:
check_pos_snapshot_overwritten(trans, iter->btree_id, (*insert)->k.p);
if (ret < 0)
return ret;
if (ret)
return 0;
ret = bch2_btree_delete_at(trans, iter, flags);
if (ret)
return ret;
*insert = update;
return 0;
}
static noinline int extent_back_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *insert,
struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
int ret;
ret = check_pos_snapshot_overwritten(trans, iter->btree_id, insert->k.p) ?:
check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p);
if (ret < 0)
return ret;
if (ret)
return 0;
bch2_bkey_merge(c, bkey_i_to_s(insert), k);
return 0;
}
int bch2_trans_update_extent(struct btree_trans *trans,
struct btree_iter *orig_iter,
struct bkey_i *insert,
enum btree_update_flags flags)
{
struct btree_iter iter, update_iter;
struct bpos start = bkey_start_pos(&insert->k);
struct bkey_i *update;
struct bkey_s_c k;
enum btree_id btree_id = orig_iter->btree_id;
int ret = 0, compressed_sectors;
bch2_trans_iter_init(trans, &iter, btree_id, start,
BTREE_ITER_INTENT|
BTREE_ITER_WITH_UPDATES|
BTREE_ITER_NOT_EXTENTS);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
if (!bkey_cmp(k.k->p, bkey_start_pos(&insert->k))) {
if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
ret = extent_front_merge(trans, &iter, k, &insert, flags);
if (ret)
goto err;
}
goto next;
}
while (bkey_cmp(insert->k.p, bkey_start_pos(k.k)) > 0) {
bool front_split = bkey_cmp(bkey_start_pos(k.k), start) < 0;
bool back_split = bkey_cmp(k.k->p, insert->k.p) > 0;
/*
* If we're going to be splitting a compressed extent, note it
* so that __bch2_trans_commit() can increase our disk
* reservation:
*/
if (((front_split && back_split) ||
((front_split || back_split) && k.k->p.snapshot != insert->k.p.snapshot)) &&
(compressed_sectors = bch2_bkey_sectors_compressed(k)))
trans->extra_journal_res += compressed_sectors;
if (front_split) {
update = bch2_trans_kmalloc(trans, bkey_bytes(k.k));
if ((ret = PTR_ERR_OR_ZERO(update)))
goto err;
bkey_reassemble(update, k);
bch2_cut_back(start, update);
bch2_trans_iter_init(trans, &update_iter, btree_id, update->k.p,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_ALL_SNAPSHOTS|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&update_iter) ?:
bch2_trans_update(trans, &update_iter, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
flags);
bch2_trans_iter_exit(trans, &update_iter);
if (ret)
goto err;
}
if (k.k->p.snapshot != insert->k.p.snapshot &&
(front_split || back_split)) {
update = bch2_trans_kmalloc(trans, bkey_bytes(k.k));
if ((ret = PTR_ERR_OR_ZERO(update)))
goto err;
bkey_reassemble(update, k);
bch2_cut_front(start, update);
bch2_cut_back(insert->k.p, update);
bch2_trans_iter_init(trans, &update_iter, btree_id, update->k.p,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_ALL_SNAPSHOTS|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&update_iter) ?:
bch2_trans_update(trans, &update_iter, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
flags);
bch2_trans_iter_exit(trans, &update_iter);
if (ret)
goto err;
}
if (bkey_cmp(k.k->p, insert->k.p) <= 0) {
update = bch2_trans_kmalloc(trans, sizeof(*update));
if ((ret = PTR_ERR_OR_ZERO(update)))
goto err;
bkey_init(&update->k);
update->k.p = k.k->p;
if (insert->k.p.snapshot != k.k->p.snapshot) {
update->k.p.snapshot = insert->k.p.snapshot;
update->k.type = KEY_TYPE_whiteout;
}
bch2_trans_iter_init(trans, &update_iter, btree_id, update->k.p,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&update_iter) ?:
bch2_trans_update(trans, &update_iter, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
flags);
bch2_trans_iter_exit(trans, &update_iter);
if (ret)
goto err;
}
if (back_split) {
update = bch2_trans_kmalloc(trans, bkey_bytes(k.k));
if ((ret = PTR_ERR_OR_ZERO(update)))
goto err;
bkey_reassemble(update, k);
bch2_cut_front(insert->k.p, update);
ret = bch2_trans_update_by_path(trans, iter.path, update,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
flags);
if (ret)
goto err;
goto out;
}
next:
bch2_btree_iter_advance(&iter);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
}
if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
ret = extent_back_merge(trans, &iter, insert, k);
if (ret)
goto err;
}
out:
if (!bkey_deleted(&insert->k)) {
/*
* Rewinding iterators is expensive: get a new one and the one
* that points to the start of insert will be cloned from:
*/
bch2_trans_iter_exit(trans, &iter);
bch2_trans_iter_init(trans, &iter, btree_id, insert->k.p,
BTREE_ITER_NOT_EXTENTS|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, insert, flags);
}
err:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/*
* When deleting, check if we need to emit a whiteout (because we're overwriting
* something in an ancestor snapshot)
*/
static int need_whiteout_for_snapshot(struct btree_trans *trans,
enum btree_id btree_id, struct bpos pos)
{
struct btree_iter iter;
struct bkey_s_c k;
u32 snapshot = pos.snapshot;
int ret;
if (!bch2_snapshot_parent(trans->c, pos.snapshot))
return 0;
pos.snapshot++;
for_each_btree_key_norestart(trans, iter, btree_id, pos,
BTREE_ITER_ALL_SNAPSHOTS|
BTREE_ITER_NOPRESERVE, k, ret) {
if (bkey_cmp(k.k->p, pos))
break;
if (bch2_snapshot_is_ancestor(trans->c, snapshot,
k.k->p.snapshot)) {
ret = !bkey_whiteout(k.k);
break;
}
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static int __must_check
bch2_trans_update_by_path_trace(struct btree_trans *trans, struct btree_path *path,
struct bkey_i *k, enum btree_update_flags flags,
unsigned long ip)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i, n;
int ret = 0;
BUG_ON(!path->should_be_locked);
BUG_ON(trans->nr_updates >= BTREE_ITER_MAX);
BUG_ON(bpos_cmp(k->k.p, path->pos));
n = (struct btree_insert_entry) {
.flags = flags,
.bkey_type = __btree_node_type(path->level, path->btree_id),
.btree_id = path->btree_id,
.level = path->level,
.cached = path->cached,
.path = path,
.k = k,
.ip_allocated = ip,
};
#ifdef CONFIG_BCACHEFS_DEBUG
trans_for_each_update(trans, i)
BUG_ON(i != trans->updates &&
btree_insert_entry_cmp(i - 1, i) >= 0);
#endif
/*
* Pending updates are kept sorted: first, find position of new update,
* then delete/trim any updates the new update overwrites:
*/
trans_for_each_update(trans, i)
if (btree_insert_entry_cmp(&n, i) <= 0)
break;
if (i < trans->updates + trans->nr_updates &&
!btree_insert_entry_cmp(&n, i)) {
BUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
bch2_path_put(trans, i->path, true);
i->flags = n.flags;
i->cached = n.cached;
i->k = n.k;
i->path = n.path;
i->ip_allocated = n.ip_allocated;
} else {
array_insert_item(trans->updates, trans->nr_updates,
i - trans->updates, n);
i->old_v = bch2_btree_path_peek_slot(path, &i->old_k).v;
i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
if (unlikely(trans->journal_replay_not_finished)) {
struct bkey_i *j_k =
bch2_journal_keys_peek(c, n.btree_id, n.level, k->k.p);
if (j_k && !bpos_cmp(j_k->k.p, i->k->k.p)) {
i->old_k = j_k->k;
i->old_v = &j_k->v;
}
}
}
__btree_path_get(i->path, true);
/*
* If a key is present in the key cache, it must also exist in the
* btree - this is necessary for cache coherency. When iterating over
* a btree that's cached in the key cache, the btree iter code checks
* the key cache - but the key has to exist in the btree for that to
* work:
*/
if (path->cached &&
bkey_deleted(&i->old_k) &&
!(flags & BTREE_UPDATE_NO_KEY_CACHE_COHERENCY)) {
struct btree_path *btree_path;
i->key_cache_already_flushed = true;
i->flags |= BTREE_TRIGGER_NORUN;
btree_path = bch2_path_get(trans, path->btree_id, path->pos,
1, 0, BTREE_ITER_INTENT);
ret = bch2_btree_path_traverse(trans, btree_path, 0);
if (ret)
goto err;
btree_path->should_be_locked = true;
ret = bch2_trans_update_by_path_trace(trans, btree_path, k, flags, ip);
err:
bch2_path_put(trans, btree_path, true);
}
return ret;
}
static int __must_check
bch2_trans_update_by_path(struct btree_trans *trans, struct btree_path *path,
struct bkey_i *k, enum btree_update_flags flags)
{
return bch2_trans_update_by_path_trace(trans, path, k, flags, _RET_IP_);
}
int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
struct bkey_i *k, enum btree_update_flags flags)
{
struct btree_path *path = iter->update_path ?: iter->path;
struct bkey_cached *ck;
int ret;
if (iter->flags & BTREE_ITER_IS_EXTENTS)
return bch2_trans_update_extent(trans, iter, k, flags);
if (bkey_deleted(&k->k) &&
!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
(iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) {
ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
if (unlikely(ret < 0))
return ret;
if (ret)
k->k.type = KEY_TYPE_whiteout;
}
/*
* Ensure that updates to cached btrees go to the key cache:
*/
if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
!path->cached &&
!path->level &&
btree_id_cached(trans->c, path->btree_id)) {
if (!iter->key_cache_path ||
!iter->key_cache_path->should_be_locked ||
bpos_cmp(iter->key_cache_path->pos, k->k.p)) {
if (!iter->key_cache_path)
iter->key_cache_path =
bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
BTREE_ITER_INTENT|BTREE_ITER_CACHED);
iter->key_cache_path =
bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
iter->flags & BTREE_ITER_INTENT);
ret = bch2_btree_path_traverse(trans, iter->key_cache_path,
BTREE_ITER_CACHED);
if (unlikely(ret))
return ret;
ck = (void *) iter->key_cache_path->l[0].b;
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
trace_trans_restart_key_cache_raced(trans->fn, _RET_IP_);
btree_trans_restart(trans);
return -EINTR;
}
iter->key_cache_path->should_be_locked = true;
}
path = iter->key_cache_path;
}
return bch2_trans_update_by_path(trans, path, k, flags);
}
void bch2_trans_commit_hook(struct btree_trans *trans,
struct btree_trans_commit_hook *h)
{
h->next = trans->hooks;
trans->hooks = h;
}
int __bch2_btree_insert(struct btree_trans *trans,
enum btree_id id, struct bkey_i *k)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, 0);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/**
* bch2_btree_insert - insert keys into the extent btree
* @c: pointer to struct bch_fs
* @id: btree to insert into
* @insert_keys: list of keys to insert
* @hook: insert callback
*/
int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
struct bkey_i *k,
struct disk_reservation *disk_res,
u64 *journal_seq, int flags)
{
return bch2_trans_do(c, disk_res, journal_seq, flags,
__bch2_btree_insert(&trans, id, k));
}
int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
unsigned len, unsigned update_flags)
{
struct bkey_i *k;
k = bch2_trans_kmalloc(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.p = iter->pos;
bch2_key_resize(&k->k, len);
return bch2_trans_update(trans, iter, k, update_flags);
}
int bch2_btree_delete_at(struct btree_trans *trans,
struct btree_iter *iter, unsigned update_flags)
{
return bch2_btree_delete_extent_at(trans, iter, 0, update_flags);
}
int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_INTENT);
retry:
while ((bch2_trans_begin(trans),
(k = bch2_btree_iter_peek(&iter)).k) &&
!(ret = bkey_err(k)) &&
bkey_cmp(iter.pos, end) < 0) {
struct disk_reservation disk_res =
bch2_disk_reservation_init(trans->c, 0);
struct bkey_i delete;
bkey_init(&delete.k);
/*
* This could probably be more efficient for extents:
*/
/*
* For extents, iter.pos won't necessarily be the same as
* bkey_start_pos(k.k) (for non extents they always will be the
* same). It's important that we delete starting from iter.pos
* because the range we want to delete could start in the middle
* of k.
*
* (bch2_btree_iter_peek() does guarantee that iter.pos >=
* bkey_start_pos(k.k)).
*/
delete.k.p = iter.pos;
if (iter.flags & BTREE_ITER_IS_EXTENTS) {
unsigned max_sectors =
KEY_SIZE_MAX & (~0 << trans->c->block_bits);
/* create the biggest key we can */
bch2_key_resize(&delete.k, max_sectors);
bch2_cut_back(end, &delete);
ret = bch2_extent_trim_atomic(trans, &iter, &delete);
if (ret)
break;
}
ret = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
bch2_trans_commit(trans, &disk_res, journal_seq,
BTREE_INSERT_NOFAIL);
bch2_disk_reservation_put(trans->c, &disk_res);
if (ret)
break;
}
if (ret == -EINTR) {
ret = 0;
goto retry;
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/*
* bch_btree_delete_range - delete everything within a given range
*
* Range is a half open interval - [start, end)
*/
int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
return bch2_trans_do(c, NULL, journal_seq, 0,
bch2_btree_delete_range_trans(&trans, id, start, end,
update_flags, journal_seq));
}
int bch2_trans_log_msg(struct btree_trans *trans, const char *msg)
{
unsigned len = strlen(msg);
unsigned u64s = DIV_ROUND_UP(len, sizeof(u64));
struct jset_entry_log *l;
int ret;
ret = darray_make_room(&trans->extra_journal_entries, jset_u64s(u64s));
if (ret)
return ret;
l = (void *) &darray_top(trans->extra_journal_entries);
l->entry.u64s = cpu_to_le16(u64s);
l->entry.btree_id = 0;
l->entry.level = 1;
l->entry.type = BCH_JSET_ENTRY_log;
l->entry.pad[0] = 0;
l->entry.pad[1] = 0;
l->entry.pad[2] = 0;
memcpy(l->d, msg, len);
while (len & 7)
l->d[len++] = '\0';
trans->extra_journal_entries.nr += jset_u64s(u64s);
return 0;
}