// SPDX-License-Identifier: GPL-2.0
/*
* SPI bus driver for the Ingenic SoCs
* Copyright (c) 2017-2021 Artur Rojek <contact@artur-rojek.eu>
* Copyright (c) 2017-2021 Paul Cercueil <paul@crapouillou.net>
* Copyright (c) 2022 周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#define REG_SSIDR 0x0
#define REG_SSICR0 0x4
#define REG_SSICR1 0x8
#define REG_SSISR 0xc
#define REG_SSIGR 0x18
#define REG_SSICR0_TENDIAN_LSB BIT(19)
#define REG_SSICR0_RENDIAN_LSB BIT(17)
#define REG_SSICR0_SSIE BIT(15)
#define REG_SSICR0_LOOP BIT(10)
#define REG_SSICR0_EACLRUN BIT(7)
#define REG_SSICR0_FSEL BIT(6)
#define REG_SSICR0_TFLUSH BIT(2)
#define REG_SSICR0_RFLUSH BIT(1)
#define REG_SSICR1_FRMHL_MASK (BIT(31) | BIT(30))
#define REG_SSICR1_FRMHL BIT(30)
#define REG_SSICR1_LFST BIT(25)
#define REG_SSICR1_UNFIN BIT(23)
#define REG_SSICR1_PHA BIT(1)
#define REG_SSICR1_POL BIT(0)
#define REG_SSISR_END BIT(7)
#define REG_SSISR_BUSY BIT(6)
#define REG_SSISR_TFF BIT(5)
#define REG_SSISR_RFE BIT(4)
#define REG_SSISR_RFHF BIT(2)
#define REG_SSISR_UNDR BIT(1)
#define REG_SSISR_OVER BIT(0)
#define SPI_INGENIC_FIFO_SIZE 128u
struct jz_soc_info {
u32 bits_per_word_mask;
struct reg_field flen_field;
bool has_trendian;
unsigned int max_speed_hz;
unsigned int max_native_cs;
};
struct ingenic_spi {
const struct jz_soc_info *soc_info;
struct clk *clk;
struct resource *mem_res;
struct regmap *map;
struct regmap_field *flen_field;
};
static int spi_ingenic_wait(struct ingenic_spi *priv,
unsigned long mask,
bool condition)
{
unsigned int val;
return regmap_read_poll_timeout(priv->map, REG_SSISR, val,
!!(val & mask) == condition,
100, 10000);
}
static void spi_ingenic_set_cs(struct spi_device *spi, bool disable)
{
struct ingenic_spi *priv = spi_controller_get_devdata(spi->controller);
if (disable) {
regmap_clear_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
regmap_clear_bits(priv->map, REG_SSISR,
REG_SSISR_UNDR | REG_SSISR_OVER);
spi_ingenic_wait(priv, REG_SSISR_END, true);
} else {
regmap_set_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
}
regmap_set_bits(priv->map, REG_SSICR0,
REG_SSICR0_RFLUSH | REG_SSICR0_TFLUSH);
}
static void spi_ingenic_prepare_transfer(struct ingenic_spi *priv,
struct spi_device *spi,
struct spi_transfer *xfer)
{
unsigned long clk_hz = clk_get_rate(priv->clk);
u32 cdiv, speed_hz = xfer->speed_hz ?: spi->max_speed_hz,
bits_per_word = xfer->bits_per_word ?: spi->bits_per_word;
cdiv = clk_hz / (speed_hz * 2);
cdiv = clamp(cdiv, 1u, 0x100u) - 1;
regmap_write(priv->map, REG_SSIGR, cdiv);
regmap_field_write(priv->flen_field, bits_per_word - 2);
}
static void spi_ingenic_finalize_transfer(void *controller)
{
spi_finalize_current_transfer(controller);
}
static struct dma_async_tx_descriptor *
spi_ingenic_prepare_dma(struct spi_controller *ctlr, struct dma_chan *chan,
struct sg_table *sg, enum dma_transfer_direction dir,
unsigned int bits)
{
struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
struct dma_slave_config cfg = {
.direction = dir,
.src_addr = priv->mem_res->start + REG_SSIDR,
.dst_addr = priv->mem_res->start + REG_SSIDR,
};
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
int ret;
if (bits > 16) {
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = cfg.dst_maxburst = 4;
} else if (bits > 8) {
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
cfg.src_maxburst = cfg.dst_maxburst = 2;
} else {
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
cfg.src_maxburst = cfg.dst_maxburst = 1;
}
ret = dmaengine_slave_config(chan, &cfg);
if (ret)
return ERR_PTR(ret);
desc = dmaengine_prep_slave_sg(chan, sg->sgl, sg->nents, dir,
DMA_PREP_INTERRUPT);
if (!desc)
return ERR_PTR(-ENOMEM);
if (dir == DMA_DEV_TO_MEM) {
desc->callback = spi_ingenic_finalize_transfer;
desc->callback_param = ctlr;
}
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dmaengine_desc_free(desc);
return ERR_PTR(ret);
}
return desc;
}
static int spi_ingenic_dma_tx(struct spi_controller *ctlr,
struct spi_transfer *xfer, unsigned int bits)
{
struct dma_async_tx_descriptor *rx_desc, *tx_desc;
rx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_rx,
&xfer->rx_sg, DMA_DEV_TO_MEM, bits);
if (IS_ERR(rx_desc))
return PTR_ERR(rx_desc);
tx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_tx,
&xfer->tx_sg, DMA_MEM_TO_DEV, bits);
if (IS_ERR(tx_desc)) {
dmaengine_terminate_async(ctlr->dma_rx);
dmaengine_desc_free(rx_desc);
return PTR_ERR(tx_desc);
}
dma_async_issue_pending(ctlr->dma_rx);
dma_async_issue_pending(ctlr->dma_tx);
return 1;
}
#define SPI_INGENIC_TX(x) \
static int spi_ingenic_tx##x(struct ingenic_spi *priv, \
struct spi_transfer *xfer) \
{ \
unsigned int count = xfer->len / (x / 8); \
unsigned int prefill = min(count, SPI_INGENIC_FIFO_SIZE); \
const u##x *tx_buf = xfer->tx_buf; \
u##x *rx_buf = xfer->rx_buf; \
unsigned int i, val; \
int err; \
\
/* Fill up the TX fifo */ \
for (i = 0; i < prefill; i++) { \
val = tx_buf ? tx_buf[i] : 0; \
\
regmap_write(priv->map, REG_SSIDR, val); \
} \
\
for (i = 0; i < count; i++) { \
err = spi_ingenic_wait(priv, REG_SSISR_RFE, false); \
if (err) \
return err; \
\
regmap_read(priv->map, REG_SSIDR, &val); \
if (rx_buf) \
rx_buf[i] = val; \
\
if (i < count - prefill) { \
val = tx_buf ? tx_buf[i + prefill] : 0; \
\
regmap_write(priv->map, REG_SSIDR, val); \
} \
} \
\
return 0; \
}
SPI_INGENIC_TX(8)
SPI_INGENIC_TX(16)
SPI_INGENIC_TX(32)
#undef SPI_INGENIC_TX
static int spi_ingenic_transfer_one(struct spi_controller *ctlr,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
unsigned int bits = xfer->bits_per_word ?: spi->bits_per_word;
bool can_dma = ctlr->can_dma && ctlr->can_dma(ctlr, spi, xfer);
spi_ingenic_prepare_transfer(priv, spi, xfer);
if (ctlr->cur_msg_mapped && can_dma)
return spi_ingenic_dma_tx(ctlr, xfer, bits);
if (bits > 16)
return spi_ingenic_tx32(priv, xfer);
if (bits > 8)
return spi_ingenic_tx16(priv, xfer);
return spi_ingenic_tx8(priv, xfer);
}
static int spi_ingenic_prepare_message(struct spi_controller *ctlr,
struct spi_message *message)
{
struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
struct spi_device *spi = message->spi;
unsigned int cs = REG_SSICR1_FRMHL << spi_get_chipselect(spi, 0);
unsigned int ssicr0_mask = REG_SSICR0_LOOP | REG_SSICR0_FSEL;
unsigned int ssicr1_mask = REG_SSICR1_PHA | REG_SSICR1_POL | cs;
unsigned int ssicr0 = 0, ssicr1 = 0;
if (priv->soc_info->has_trendian) {
ssicr0_mask |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
if (spi->mode & SPI_LSB_FIRST)
ssicr0 |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
} else {
ssicr1_mask |= REG_SSICR1_LFST;
if (spi->mode & SPI_LSB_FIRST)
ssicr1 |= REG_SSICR1_LFST;
}
if (spi->mode & SPI_LOOP)
ssicr0 |= REG_SSICR0_LOOP;
if (spi_get_chipselect(spi, 0))
ssicr0 |= REG_SSICR0_FSEL;
if (spi->mode & SPI_CPHA)
ssicr1 |= REG_SSICR1_PHA;
if (spi->mode & SPI_CPOL)
ssicr1 |= REG_SSICR1_POL;
if (spi->mode & SPI_CS_HIGH)
ssicr1 |= cs;
regmap_update_bits(priv->map, REG_SSICR0, ssicr0_mask, ssicr0);
regmap_update_bits(priv->map, REG_SSICR1, ssicr1_mask, ssicr1);
return 0;
}
static int spi_ingenic_prepare_hardware(struct spi_controller *ctlr)
{
struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
int ret;
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
regmap_write(priv->map, REG_SSICR0, REG_SSICR0_EACLRUN);
regmap_write(priv->map, REG_SSICR1, 0);
regmap_write(priv->map, REG_SSISR, 0);
regmap_set_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
return 0;
}
static int spi_ingenic_unprepare_hardware(struct spi_controller *ctlr)
{
struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
regmap_clear_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
clk_disable_unprepare(priv->clk);
return 0;
}
static bool spi_ingenic_can_dma(struct spi_controller *ctlr,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct dma_slave_caps caps;
int ret;
ret = dma_get_slave_caps(ctlr->dma_tx, &caps);
if (ret) {
dev_err(&spi->dev, "Unable to get slave caps: %d\n", ret);
return false;
}
return !caps.max_sg_burst ||
xfer->len <= caps.max_sg_burst * SPI_INGENIC_FIFO_SIZE;
}
static int spi_ingenic_request_dma(struct spi_controller *ctlr,
struct device *dev)
{
ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
if (!ctlr->dma_tx)
return -ENODEV;
ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
if (!ctlr->dma_rx)
return -ENODEV;
ctlr->can_dma = spi_ingenic_can_dma;
return 0;
}
static void spi_ingenic_release_dma(void *data)
{
struct spi_controller *ctlr = data;
if (ctlr->dma_tx)
dma_release_channel(ctlr->dma_tx);
if (ctlr->dma_rx)
dma_release_channel(ctlr->dma_rx);
}
static const struct regmap_config spi_ingenic_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = REG_SSIGR,
};
static int spi_ingenic_probe(struct platform_device *pdev)
{
const struct jz_soc_info *pdata;
struct device *dev = &pdev->dev;
struct spi_controller *ctlr;
struct ingenic_spi *priv;
void __iomem *base;
int num_cs, ret;
pdata = of_device_get_match_data(dev);
if (!pdata) {
dev_err(dev, "Missing platform data.\n");
return -EINVAL;
}
ctlr = devm_spi_alloc_host(dev, sizeof(*priv));
if (!ctlr) {
dev_err(dev, "Unable to allocate SPI controller.\n");
return -ENOMEM;
}
priv = spi_controller_get_devdata(ctlr);
priv->soc_info = pdata;
priv->clk = devm_clk_get(dev, NULL);
if (IS_ERR(priv->clk)) {
return dev_err_probe(dev, PTR_ERR(priv->clk),
"Unable to get clock.\n");
}
base = devm_platform_get_and_ioremap_resource(pdev, 0, &priv->mem_res);
if (IS_ERR(base))
return PTR_ERR(base);
priv->map = devm_regmap_init_mmio(dev, base, &spi_ingenic_regmap_config);
if (IS_ERR(priv->map))
return PTR_ERR(priv->map);
priv->flen_field = devm_regmap_field_alloc(dev, priv->map,
pdata->flen_field);
if (IS_ERR(priv->flen_field))
return PTR_ERR(priv->flen_field);
if (device_property_read_u32(dev, "num-cs", &num_cs))
num_cs = pdata->max_native_cs;
platform_set_drvdata(pdev, ctlr);
ctlr->prepare_transfer_hardware = spi_ingenic_prepare_hardware;
ctlr->unprepare_transfer_hardware = spi_ingenic_unprepare_hardware;
ctlr->prepare_message = spi_ingenic_prepare_message;
ctlr->set_cs = spi_ingenic_set_cs;
ctlr->transfer_one = spi_ingenic_transfer_one;
ctlr->mode_bits = SPI_MODE_3 | SPI_LSB_FIRST | SPI_LOOP | SPI_CS_HIGH;
ctlr->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
ctlr->max_dma_len = SPI_INGENIC_FIFO_SIZE;
ctlr->bits_per_word_mask = pdata->bits_per_word_mask;
ctlr->min_speed_hz = 7200;
ctlr->max_speed_hz = pdata->max_speed_hz;
ctlr->use_gpio_descriptors = true;
ctlr->max_native_cs = pdata->max_native_cs;
ctlr->num_chipselect = num_cs;
ctlr->dev.of_node = pdev->dev.of_node;
if (spi_ingenic_request_dma(ctlr, dev))
dev_warn(dev, "DMA not available.\n");
ret = devm_add_action_or_reset(dev, spi_ingenic_release_dma, ctlr);
if (ret) {
dev_err(dev, "Unable to add action.\n");
return ret;
}
ret = devm_spi_register_controller(dev, ctlr);
if (ret)
dev_err(dev, "Unable to register SPI controller.\n");
return ret;
}
static const struct jz_soc_info jz4750_soc_info = {
.bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 17),
.flen_field = REG_FIELD(REG_SSICR1, 4, 7),
.has_trendian = false,
.max_speed_hz = 54000000,
.max_native_cs = 2,
};
static const struct jz_soc_info jz4780_soc_info = {
.bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
.flen_field = REG_FIELD(REG_SSICR1, 3, 7),
.has_trendian = true,
.max_speed_hz = 54000000,
.max_native_cs = 2,
};
static const struct jz_soc_info x1000_soc_info = {
.bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
.flen_field = REG_FIELD(REG_SSICR1, 3, 7),
.has_trendian = true,
.max_speed_hz = 50000000,
.max_native_cs = 2,
};
static const struct jz_soc_info x2000_soc_info = {
.bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
.flen_field = REG_FIELD(REG_SSICR1, 3, 7),
.has_trendian = true,
.max_speed_hz = 50000000,
.max_native_cs = 1,
};
static const struct of_device_id spi_ingenic_of_match[] = {
{ .compatible = "ingenic,jz4750-spi", .data = &jz4750_soc_info },
{ .compatible = "ingenic,jz4775-spi", .data = &jz4780_soc_info },
{ .compatible = "ingenic,jz4780-spi", .data = &jz4780_soc_info },
{ .compatible = "ingenic,x1000-spi", .data = &x1000_soc_info },
{ .compatible = "ingenic,x2000-spi", .data = &x2000_soc_info },
{}
};
MODULE_DEVICE_TABLE(of, spi_ingenic_of_match);
static struct platform_driver spi_ingenic_driver = {
.driver = {
.name = "spi-ingenic",
.of_match_table = spi_ingenic_of_match,
},
.probe = spi_ingenic_probe,
};
module_platform_driver(spi_ingenic_driver);
MODULE_DESCRIPTION("SPI bus driver for the Ingenic SoCs");
MODULE_AUTHOR("Artur Rojek <contact@artur-rojek.eu>");
MODULE_AUTHOR("Paul Cercueil <paul@crapouillou.net>");
MODULE_AUTHOR("周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com>");
MODULE_LICENSE("GPL");