// SPDX-License-Identifier: GPL-2.0-only
/*
* Designware SPI core controller driver (refer pxa2xx_spi.c)
*
* Copyright (c) 2009, Intel Corporation.
*/
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/of.h>
#include "spi-dw.h"
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#endif
/* Slave spi_device related */
struct chip_data {
u32 cr0;
u32 rx_sample_dly; /* RX sample delay */
};
#ifdef CONFIG_DEBUG_FS
#define DW_SPI_DBGFS_REG(_name, _off) \
{ \
.name = _name, \
.offset = _off, \
}
static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
};
static int dw_spi_debugfs_init(struct dw_spi *dws)
{
char name[32];
snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
dws->debugfs = debugfs_create_dir(name, NULL);
if (!dws->debugfs)
return -ENOMEM;
dws->regset.regs = dw_spi_dbgfs_regs;
dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
dws->regset.base = dws->regs;
debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
return 0;
}
static void dw_spi_debugfs_remove(struct dw_spi *dws)
{
debugfs_remove_recursive(dws->debugfs);
}
#else
static inline int dw_spi_debugfs_init(struct dw_spi *dws)
{
return 0;
}
static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
{
}
#endif /* CONFIG_DEBUG_FS */
void dw_spi_set_cs(struct spi_device *spi, bool enable)
{
struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
bool cs_high = !!(spi->mode & SPI_CS_HIGH);
/*
* DW SPI controller demands any native CS being set in order to
* proceed with data transfer. So in order to activate the SPI
* communications we must set a corresponding bit in the Slave
* Enable register no matter whether the SPI core is configured to
* support active-high or active-low CS level.
*/
if (cs_high == enable)
dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
else if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
dw_writel(dws, DW_SPI_SER, 0);
}
EXPORT_SYMBOL_GPL(dw_spi_set_cs);
/* Return the max entries we can fill into tx fifo */
static inline u32 tx_max(struct dw_spi *dws)
{
u32 tx_room, rxtx_gap;
tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
/*
* Another concern is about the tx/rx mismatch, we
* though to use (dws->fifo_len - rxflr - txflr) as
* one maximum value for tx, but it doesn't cover the
* data which is out of tx/rx fifo and inside the
* shift registers. So a control from sw point of
* view is taken.
*/
rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
return min3((u32)dws->tx_len, tx_room, rxtx_gap);
}
/* Return the max entries we should read out of rx fifo */
static inline u32 rx_max(struct dw_spi *dws)
{
return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
}
static void dw_writer(struct dw_spi *dws)
{
u32 max = tx_max(dws);
u16 txw = 0;
while (max--) {
if (dws->tx) {
if (dws->n_bytes == 1)
txw = *(u8 *)(dws->tx);
else
txw = *(u16 *)(dws->tx);
dws->tx += dws->n_bytes;
}
dw_write_io_reg(dws, DW_SPI_DR, txw);
--dws->tx_len;
}
}
static void dw_reader(struct dw_spi *dws)
{
u32 max = rx_max(dws);
u16 rxw;
while (max--) {
rxw = dw_read_io_reg(dws, DW_SPI_DR);
if (dws->rx) {
if (dws->n_bytes == 1)
*(u8 *)(dws->rx) = rxw;
else
*(u16 *)(dws->rx) = rxw;
dws->rx += dws->n_bytes;
}
--dws->rx_len;
}
}
static void int_error_stop(struct dw_spi *dws, const char *msg)
{
spi_reset_chip(dws);
dev_err(&dws->master->dev, "%s\n", msg);
dws->master->cur_msg->status = -EIO;
spi_finalize_current_transfer(dws->master);
}
static irqreturn_t interrupt_transfer(struct dw_spi *dws)
{
u16 irq_status = dw_readl(dws, DW_SPI_ISR);
/* Error handling */
if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
dw_readl(dws, DW_SPI_ICR);
int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun");
return IRQ_HANDLED;
}
/*
* Read data from the Rx FIFO every time we've got a chance executing
* this method. If there is nothing left to receive, terminate the
* procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
* final stage of the transfer. By doing so we'll get the next IRQ
* right when the leftover incoming data is received.
*/
dw_reader(dws);
if (!dws->rx_len) {
spi_mask_intr(dws, 0xff);
spi_finalize_current_transfer(dws->master);
} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
}
/*
* Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
* disabled after the data transmission is finished so not to
* have the TXE IRQ flood at the final stage of the transfer.
*/
if (irq_status & SPI_INT_TXEI) {
dw_writer(dws);
if (!dws->tx_len)
spi_mask_intr(dws, SPI_INT_TXEI);
}
return IRQ_HANDLED;
}
static irqreturn_t dw_spi_irq(int irq, void *dev_id)
{
struct spi_controller *master = dev_id;
struct dw_spi *dws = spi_controller_get_devdata(master);
u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;
if (!irq_status)
return IRQ_NONE;
if (!master->cur_msg) {
spi_mask_intr(dws, 0xff);
return IRQ_HANDLED;
}
return dws->transfer_handler(dws);
}
static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
{
u32 cr0 = 0;
if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
/* CTRLR0[ 5: 4] Frame Format */
cr0 |= SSI_MOTO_SPI << SPI_FRF_OFFSET;
/*
* SPI mode (SCPOL|SCPH)
* CTRLR0[ 6] Serial Clock Phase
* CTRLR0[ 7] Serial Clock Polarity
*/
cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET;
cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET;
/* CTRLR0[11] Shift Register Loop */
cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET;
} else {
/* CTRLR0[ 7: 6] Frame Format */
cr0 |= SSI_MOTO_SPI << DWC_SSI_CTRLR0_FRF_OFFSET;
/*
* SPI mode (SCPOL|SCPH)
* CTRLR0[ 8] Serial Clock Phase
* CTRLR0[ 9] Serial Clock Polarity
*/
cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET;
cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET;
/* CTRLR0[13] Shift Register Loop */
cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET;
if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
cr0 |= DWC_SSI_CTRLR0_KEEMBAY_MST;
}
return cr0;
}
void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
struct dw_spi_cfg *cfg)
{
struct chip_data *chip = spi_get_ctldata(spi);
u32 cr0 = chip->cr0;
u32 speed_hz;
u16 clk_div;
/* CTRLR0[ 4/3: 0] Data Frame Size */
cr0 |= (cfg->dfs - 1);
if (!(dws->caps & DW_SPI_CAP_DWC_SSI))
/* CTRLR0[ 9:8] Transfer Mode */
cr0 |= cfg->tmode << SPI_TMOD_OFFSET;
else
/* CTRLR0[11:10] Transfer Mode */
cr0 |= cfg->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET;
dw_writel(dws, DW_SPI_CTRLR0, cr0);
if (cfg->tmode == SPI_TMOD_EPROMREAD || cfg->tmode == SPI_TMOD_RO)
dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
/* Note DW APB SSI clock divider doesn't support odd numbers */
clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
speed_hz = dws->max_freq / clk_div;
if (dws->current_freq != speed_hz) {
spi_set_clk(dws, clk_div);
dws->current_freq = speed_hz;
}
/* Update RX sample delay if required */
if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
dws->cur_rx_sample_dly = chip->rx_sample_dly;
}
}
EXPORT_SYMBOL_GPL(dw_spi_update_config);
static int dw_spi_transfer_one(struct spi_controller *master,
struct spi_device *spi, struct spi_transfer *transfer)
{
struct dw_spi *dws = spi_controller_get_devdata(master);
struct dw_spi_cfg cfg = {
.tmode = SPI_TMOD_TR,
.dfs = transfer->bits_per_word,
.freq = transfer->speed_hz,
};
u8 imask = 0;
u16 txlevel = 0;
int ret;
dws->dma_mapped = 0;
dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
dws->tx = (void *)transfer->tx_buf;
dws->tx_len = transfer->len / dws->n_bytes;
dws->rx = transfer->rx_buf;
dws->rx_len = dws->tx_len;
/* Ensure the data above is visible for all CPUs */
smp_mb();
spi_enable_chip(dws, 0);
dw_spi_update_config(dws, spi, &cfg);
transfer->effective_speed_hz = dws->current_freq;
/* Check if current transfer is a DMA transaction */
if (master->can_dma && master->can_dma(master, spi, transfer))
dws->dma_mapped = master->cur_msg_mapped;
/* For poll mode just disable all interrupts */
spi_mask_intr(dws, 0xff);
if (dws->dma_mapped) {
ret = dws->dma_ops->dma_setup(dws, transfer);
if (ret < 0) {
spi_enable_chip(dws, 1);
return ret;
}
} else {
/*
* Originally Tx and Rx data lengths match. Rx FIFO Threshold level
* will be adjusted at the final stage of the IRQ-based SPI transfer
* execution so not to lose the leftover of the incoming data.
*/
txlevel = min_t(u16, dws->fifo_len / 2, dws->tx_len);
dw_writel(dws, DW_SPI_TXFTLR, txlevel);
dw_writel(dws, DW_SPI_RXFTLR, txlevel - 1);
/* Set the interrupt mask */
imask |= SPI_INT_TXEI | SPI_INT_TXOI |
SPI_INT_RXUI | SPI_INT_RXOI | SPI_INT_RXFI;
spi_umask_intr(dws, imask);
dws->transfer_handler = interrupt_transfer;
}
spi_enable_chip(dws, 1);
if (dws->dma_mapped)
return dws->dma_ops->dma_transfer(dws, transfer);
return 1;
}
static void dw_spi_handle_err(struct spi_controller *master,
struct spi_message *msg)
{
struct dw_spi *dws = spi_controller_get_devdata(master);
if (dws->dma_mapped)
dws->dma_ops->dma_stop(dws);
spi_reset_chip(dws);
}
/* This may be called twice for each spi dev */
static int dw_spi_setup(struct spi_device *spi)
{
struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
struct chip_data *chip;
/* Only alloc on first setup */
chip = spi_get_ctldata(spi);
if (!chip) {
struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
u32 rx_sample_dly_ns;
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
if (!chip)
return -ENOMEM;
spi_set_ctldata(spi, chip);
/* Get specific / default rx-sample-delay */
if (device_property_read_u32(&spi->dev,
"rx-sample-delay-ns",
&rx_sample_dly_ns) != 0)
/* Use default controller value */
rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
NSEC_PER_SEC /
dws->max_freq);
}
/*
* Update CR0 data each time the setup callback is invoked since
* the device parameters could have been changed, for instance, by
* the MMC SPI driver or something else.
*/
chip->cr0 = dw_spi_prepare_cr0(dws, spi);
return 0;
}
static void dw_spi_cleanup(struct spi_device *spi)
{
struct chip_data *chip = spi_get_ctldata(spi);
kfree(chip);
spi_set_ctldata(spi, NULL);
}
/* Restart the controller, disable all interrupts, clean rx fifo */
static void spi_hw_init(struct device *dev, struct dw_spi *dws)
{
spi_reset_chip(dws);
/*
* Try to detect the FIFO depth if not set by interface driver,
* the depth could be from 2 to 256 from HW spec
*/
if (!dws->fifo_len) {
u32 fifo;
for (fifo = 1; fifo < 256; fifo++) {
dw_writel(dws, DW_SPI_TXFTLR, fifo);
if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
break;
}
dw_writel(dws, DW_SPI_TXFTLR, 0);
dws->fifo_len = (fifo == 1) ? 0 : fifo;
dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
}
/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
}
int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
{
struct spi_controller *master;
int ret;
if (!dws)
return -EINVAL;
master = spi_alloc_master(dev, 0);
if (!master)
return -ENOMEM;
dws->master = master;
dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
spi_controller_set_devdata(master, dws);
/* Basic HW init */
spi_hw_init(dev, dws);
ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
master);
if (ret < 0) {
dev_err(dev, "can not get IRQ\n");
goto err_free_master;
}
master->use_gpio_descriptors = true;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
master->bus_num = dws->bus_num;
master->num_chipselect = dws->num_cs;
master->setup = dw_spi_setup;
master->cleanup = dw_spi_cleanup;
if (dws->set_cs)
master->set_cs = dws->set_cs;
else
master->set_cs = dw_spi_set_cs;
master->transfer_one = dw_spi_transfer_one;
master->handle_err = dw_spi_handle_err;
master->max_speed_hz = dws->max_freq;
master->dev.of_node = dev->of_node;
master->dev.fwnode = dev->fwnode;
master->flags = SPI_MASTER_GPIO_SS;
master->auto_runtime_pm = true;
/* Get default rx sample delay */
device_property_read_u32(dev, "rx-sample-delay-ns",
&dws->def_rx_sample_dly_ns);
if (dws->dma_ops && dws->dma_ops->dma_init) {
ret = dws->dma_ops->dma_init(dev, dws);
if (ret) {
dev_warn(dev, "DMA init failed\n");
} else {
master->can_dma = dws->dma_ops->can_dma;
master->flags |= SPI_CONTROLLER_MUST_TX;
}
}
ret = spi_register_controller(master);
if (ret) {
dev_err(&master->dev, "problem registering spi master\n");
goto err_dma_exit;
}
dw_spi_debugfs_init(dws);
return 0;
err_dma_exit:
if (dws->dma_ops && dws->dma_ops->dma_exit)
dws->dma_ops->dma_exit(dws);
spi_enable_chip(dws, 0);
free_irq(dws->irq, master);
err_free_master:
spi_controller_put(master);
return ret;
}
EXPORT_SYMBOL_GPL(dw_spi_add_host);
void dw_spi_remove_host(struct dw_spi *dws)
{
dw_spi_debugfs_remove(dws);
spi_unregister_controller(dws->master);
if (dws->dma_ops && dws->dma_ops->dma_exit)
dws->dma_ops->dma_exit(dws);
spi_shutdown_chip(dws);
free_irq(dws->irq, dws->master);
}
EXPORT_SYMBOL_GPL(dw_spi_remove_host);
int dw_spi_suspend_host(struct dw_spi *dws)
{
int ret;
ret = spi_controller_suspend(dws->master);
if (ret)
return ret;
spi_shutdown_chip(dws);
return 0;
}
EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
int dw_spi_resume_host(struct dw_spi *dws)
{
spi_hw_init(&dws->master->dev, dws);
return spi_controller_resume(dws->master);
}
EXPORT_SYMBOL_GPL(dw_spi_resume_host);
MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
MODULE_LICENSE("GPL v2");