// SPDX-License-Identifier: GPL-2.0
/* Texas Instruments ICSSG Ethernet Driver
*
* Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
*
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dma/ti-cppi5.h>
#include <linux/etherdevice.h>
#include <linux/genalloc.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/remoteproc/pruss.h>
#include <linux/regmap.h>
#include <linux/remoteproc.h>
#include "icssg_prueth.h"
#include "icssg_mii_rt.h"
#include "../k3-cppi-desc-pool.h"
#define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG Ethernet driver"
/* Netif debug messages possible */
#define PRUETH_EMAC_DEBUG (NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR | \
NETIF_MSG_TX_QUEUED | \
NETIF_MSG_INTR | \
NETIF_MSG_TX_DONE | \
NETIF_MSG_RX_STATUS | \
NETIF_MSG_PKTDATA | \
NETIF_MSG_HW | \
NETIF_MSG_WOL)
#define prueth_napi_to_emac(napi) container_of(napi, struct prueth_emac, napi_rx)
/* CTRLMMR_ICSSG_RGMII_CTRL register bits */
#define ICSSG_CTRL_RGMII_ID_MODE BIT(24)
#define IEP_DEFAULT_CYCLE_TIME_NS 1000000 /* 1 ms */
static void prueth_cleanup_rx_chns(struct prueth_emac *emac,
struct prueth_rx_chn *rx_chn,
int max_rflows)
{
if (rx_chn->desc_pool)
k3_cppi_desc_pool_destroy(rx_chn->desc_pool);
if (rx_chn->rx_chn)
k3_udma_glue_release_rx_chn(rx_chn->rx_chn);
}
static void prueth_cleanup_tx_chns(struct prueth_emac *emac)
{
int i;
for (i = 0; i < emac->tx_ch_num; i++) {
struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
if (tx_chn->desc_pool)
k3_cppi_desc_pool_destroy(tx_chn->desc_pool);
if (tx_chn->tx_chn)
k3_udma_glue_release_tx_chn(tx_chn->tx_chn);
/* Assume prueth_cleanup_tx_chns() is called at the
* end after all channel resources are freed
*/
memset(tx_chn, 0, sizeof(*tx_chn));
}
}
static void prueth_ndev_del_tx_napi(struct prueth_emac *emac, int num)
{
int i;
for (i = 0; i < num; i++) {
struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
if (tx_chn->irq)
free_irq(tx_chn->irq, tx_chn);
netif_napi_del(&tx_chn->napi_tx);
}
}
static void prueth_xmit_free(struct prueth_tx_chn *tx_chn,
struct cppi5_host_desc_t *desc)
{
struct cppi5_host_desc_t *first_desc, *next_desc;
dma_addr_t buf_dma, next_desc_dma;
u32 buf_dma_len;
first_desc = desc;
next_desc = first_desc;
cppi5_hdesc_get_obuf(first_desc, &buf_dma, &buf_dma_len);
k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
dma_unmap_single(tx_chn->dma_dev, buf_dma, buf_dma_len,
DMA_TO_DEVICE);
next_desc_dma = cppi5_hdesc_get_next_hbdesc(first_desc);
k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
while (next_desc_dma) {
next_desc = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
next_desc_dma);
cppi5_hdesc_get_obuf(next_desc, &buf_dma, &buf_dma_len);
k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
dma_unmap_page(tx_chn->dma_dev, buf_dma, buf_dma_len,
DMA_TO_DEVICE);
next_desc_dma = cppi5_hdesc_get_next_hbdesc(next_desc);
k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
}
k3_cppi_desc_pool_free(tx_chn->desc_pool, first_desc);
}
static int emac_tx_complete_packets(struct prueth_emac *emac, int chn,
int budget)
{
struct net_device *ndev = emac->ndev;
struct cppi5_host_desc_t *desc_tx;
struct netdev_queue *netif_txq;
struct prueth_tx_chn *tx_chn;
unsigned int total_bytes = 0;
struct sk_buff *skb;
dma_addr_t desc_dma;
int res, num_tx = 0;
void **swdata;
tx_chn = &emac->tx_chns[chn];
while (true) {
res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma);
if (res == -ENODATA)
break;
/* teardown completion */
if (cppi5_desc_is_tdcm(desc_dma)) {
if (atomic_dec_and_test(&emac->tdown_cnt))
complete(&emac->tdown_complete);
break;
}
desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
desc_dma);
swdata = cppi5_hdesc_get_swdata(desc_tx);
skb = *(swdata);
prueth_xmit_free(tx_chn, desc_tx);
ndev = skb->dev;
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += skb->len;
total_bytes += skb->len;
napi_consume_skb(skb, budget);
num_tx++;
}
if (!num_tx)
return 0;
netif_txq = netdev_get_tx_queue(ndev, chn);
netdev_tx_completed_queue(netif_txq, num_tx, total_bytes);
if (netif_tx_queue_stopped(netif_txq)) {
/* If the TX queue was stopped, wake it now
* if we have enough room.
*/
__netif_tx_lock(netif_txq, smp_processor_id());
if (netif_running(ndev) &&
(k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
MAX_SKB_FRAGS))
netif_tx_wake_queue(netif_txq);
__netif_tx_unlock(netif_txq);
}
return num_tx;
}
static int emac_napi_tx_poll(struct napi_struct *napi_tx, int budget)
{
struct prueth_tx_chn *tx_chn = prueth_napi_to_tx_chn(napi_tx);
struct prueth_emac *emac = tx_chn->emac;
int num_tx_packets;
num_tx_packets = emac_tx_complete_packets(emac, tx_chn->id, budget);
if (num_tx_packets >= budget)
return budget;
if (napi_complete_done(napi_tx, num_tx_packets))
enable_irq(tx_chn->irq);
return num_tx_packets;
}
static irqreturn_t prueth_tx_irq(int irq, void *dev_id)
{
struct prueth_tx_chn *tx_chn = dev_id;
disable_irq_nosync(irq);
napi_schedule(&tx_chn->napi_tx);
return IRQ_HANDLED;
}
static int prueth_ndev_add_tx_napi(struct prueth_emac *emac)
{
struct prueth *prueth = emac->prueth;
int i, ret;
for (i = 0; i < emac->tx_ch_num; i++) {
struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
netif_napi_add_tx(emac->ndev, &tx_chn->napi_tx, emac_napi_tx_poll);
ret = request_irq(tx_chn->irq, prueth_tx_irq,
IRQF_TRIGGER_HIGH, tx_chn->name,
tx_chn);
if (ret) {
netif_napi_del(&tx_chn->napi_tx);
dev_err(prueth->dev, "unable to request TX IRQ %d\n",
tx_chn->irq);
goto fail;
}
}
return 0;
fail:
prueth_ndev_del_tx_napi(emac, i);
return ret;
}
static int prueth_init_tx_chns(struct prueth_emac *emac)
{
static const struct k3_ring_cfg ring_cfg = {
.elm_size = K3_RINGACC_RING_ELSIZE_8,
.mode = K3_RINGACC_RING_MODE_RING,
.flags = 0,
.size = PRUETH_MAX_TX_DESC,
};
struct k3_udma_glue_tx_channel_cfg tx_cfg;
struct device *dev = emac->prueth->dev;
struct net_device *ndev = emac->ndev;
int ret, slice, i;
u32 hdesc_size;
slice = prueth_emac_slice(emac);
if (slice < 0)
return slice;
init_completion(&emac->tdown_complete);
hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
PRUETH_NAV_SW_DATA_SIZE);
memset(&tx_cfg, 0, sizeof(tx_cfg));
tx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
tx_cfg.tx_cfg = ring_cfg;
tx_cfg.txcq_cfg = ring_cfg;
for (i = 0; i < emac->tx_ch_num; i++) {
struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
/* To differentiate channels for SLICE0 vs SLICE1 */
snprintf(tx_chn->name, sizeof(tx_chn->name),
"tx%d-%d", slice, i);
tx_chn->emac = emac;
tx_chn->id = i;
tx_chn->descs_num = PRUETH_MAX_TX_DESC;
tx_chn->tx_chn =
k3_udma_glue_request_tx_chn(dev, tx_chn->name,
&tx_cfg);
if (IS_ERR(tx_chn->tx_chn)) {
ret = PTR_ERR(tx_chn->tx_chn);
tx_chn->tx_chn = NULL;
netdev_err(ndev,
"Failed to request tx dma ch: %d\n", ret);
goto fail;
}
tx_chn->dma_dev = k3_udma_glue_tx_get_dma_device(tx_chn->tx_chn);
tx_chn->desc_pool =
k3_cppi_desc_pool_create_name(tx_chn->dma_dev,
tx_chn->descs_num,
hdesc_size,
tx_chn->name);
if (IS_ERR(tx_chn->desc_pool)) {
ret = PTR_ERR(tx_chn->desc_pool);
tx_chn->desc_pool = NULL;
netdev_err(ndev, "Failed to create tx pool: %d\n", ret);
goto fail;
}
tx_chn->irq = k3_udma_glue_tx_get_irq(tx_chn->tx_chn);
if (tx_chn->irq <= 0) {
ret = -EINVAL;
netdev_err(ndev, "failed to get tx irq\n");
goto fail;
}
snprintf(tx_chn->name, sizeof(tx_chn->name), "%s-tx%d",
dev_name(dev), tx_chn->id);
}
return 0;
fail:
prueth_cleanup_tx_chns(emac);
return ret;
}
static int prueth_init_rx_chns(struct prueth_emac *emac,
struct prueth_rx_chn *rx_chn,
char *name, u32 max_rflows,
u32 max_desc_num)
{
struct k3_udma_glue_rx_channel_cfg rx_cfg;
struct device *dev = emac->prueth->dev;
struct net_device *ndev = emac->ndev;
u32 fdqring_id, hdesc_size;
int i, ret = 0, slice;
slice = prueth_emac_slice(emac);
if (slice < 0)
return slice;
/* To differentiate channels for SLICE0 vs SLICE1 */
snprintf(rx_chn->name, sizeof(rx_chn->name), "%s%d", name, slice);
hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
PRUETH_NAV_SW_DATA_SIZE);
memset(&rx_cfg, 0, sizeof(rx_cfg));
rx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
rx_cfg.flow_id_num = max_rflows;
rx_cfg.flow_id_base = -1; /* udmax will auto select flow id base */
/* init all flows */
rx_chn->dev = dev;
rx_chn->descs_num = max_desc_num;
rx_chn->rx_chn = k3_udma_glue_request_rx_chn(dev, rx_chn->name,
&rx_cfg);
if (IS_ERR(rx_chn->rx_chn)) {
ret = PTR_ERR(rx_chn->rx_chn);
rx_chn->rx_chn = NULL;
netdev_err(ndev, "Failed to request rx dma ch: %d\n", ret);
goto fail;
}
rx_chn->dma_dev = k3_udma_glue_rx_get_dma_device(rx_chn->rx_chn);
rx_chn->desc_pool = k3_cppi_desc_pool_create_name(rx_chn->dma_dev,
rx_chn->descs_num,
hdesc_size,
rx_chn->name);
if (IS_ERR(rx_chn->desc_pool)) {
ret = PTR_ERR(rx_chn->desc_pool);
rx_chn->desc_pool = NULL;
netdev_err(ndev, "Failed to create rx pool: %d\n", ret);
goto fail;
}
emac->rx_flow_id_base = k3_udma_glue_rx_get_flow_id_base(rx_chn->rx_chn);
netdev_dbg(ndev, "flow id base = %d\n", emac->rx_flow_id_base);
fdqring_id = K3_RINGACC_RING_ID_ANY;
for (i = 0; i < rx_cfg.flow_id_num; i++) {
struct k3_ring_cfg rxring_cfg = {
.elm_size = K3_RINGACC_RING_ELSIZE_8,
.mode = K3_RINGACC_RING_MODE_RING,
.flags = 0,
};
struct k3_ring_cfg fdqring_cfg = {
.elm_size = K3_RINGACC_RING_ELSIZE_8,
.flags = K3_RINGACC_RING_SHARED,
};
struct k3_udma_glue_rx_flow_cfg rx_flow_cfg = {
.rx_cfg = rxring_cfg,
.rxfdq_cfg = fdqring_cfg,
.ring_rxq_id = K3_RINGACC_RING_ID_ANY,
.src_tag_lo_sel =
K3_UDMA_GLUE_SRC_TAG_LO_USE_REMOTE_SRC_TAG,
};
rx_flow_cfg.ring_rxfdq0_id = fdqring_id;
rx_flow_cfg.rx_cfg.size = max_desc_num;
rx_flow_cfg.rxfdq_cfg.size = max_desc_num;
rx_flow_cfg.rxfdq_cfg.mode = emac->prueth->pdata.fdqring_mode;
ret = k3_udma_glue_rx_flow_init(rx_chn->rx_chn,
i, &rx_flow_cfg);
if (ret) {
netdev_err(ndev, "Failed to init rx flow%d %d\n",
i, ret);
goto fail;
}
if (!i)
fdqring_id = k3_udma_glue_rx_flow_get_fdq_id(rx_chn->rx_chn,
i);
rx_chn->irq[i] = k3_udma_glue_rx_get_irq(rx_chn->rx_chn, i);
if (rx_chn->irq[i] <= 0) {
ret = rx_chn->irq[i];
netdev_err(ndev, "Failed to get rx dma irq");
goto fail;
}
}
return 0;
fail:
prueth_cleanup_rx_chns(emac, rx_chn, max_rflows);
return ret;
}
static int prueth_dma_rx_push(struct prueth_emac *emac,
struct sk_buff *skb,
struct prueth_rx_chn *rx_chn)
{
struct net_device *ndev = emac->ndev;
struct cppi5_host_desc_t *desc_rx;
u32 pkt_len = skb_tailroom(skb);
dma_addr_t desc_dma;
dma_addr_t buf_dma;
void **swdata;
desc_rx = k3_cppi_desc_pool_alloc(rx_chn->desc_pool);
if (!desc_rx) {
netdev_err(ndev, "rx push: failed to allocate descriptor\n");
return -ENOMEM;
}
desc_dma = k3_cppi_desc_pool_virt2dma(rx_chn->desc_pool, desc_rx);
buf_dma = dma_map_single(rx_chn->dma_dev, skb->data, pkt_len, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(rx_chn->dma_dev, buf_dma))) {
k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
netdev_err(ndev, "rx push: failed to map rx pkt buffer\n");
return -EINVAL;
}
cppi5_hdesc_init(desc_rx, CPPI5_INFO0_HDESC_EPIB_PRESENT,
PRUETH_NAV_PS_DATA_SIZE);
k3_udma_glue_rx_dma_to_cppi5_addr(rx_chn->rx_chn, &buf_dma);
cppi5_hdesc_attach_buf(desc_rx, buf_dma, skb_tailroom(skb), buf_dma, skb_tailroom(skb));
swdata = cppi5_hdesc_get_swdata(desc_rx);
*swdata = skb;
return k3_udma_glue_push_rx_chn(rx_chn->rx_chn, 0,
desc_rx, desc_dma);
}
static u64 icssg_ts_to_ns(u32 hi_sw, u32 hi, u32 lo, u32 cycle_time_ns)
{
u32 iepcount_lo, iepcount_hi, hi_rollover_count;
u64 ns;
iepcount_lo = lo & GENMASK(19, 0);
iepcount_hi = (hi & GENMASK(11, 0)) << 12 | lo >> 20;
hi_rollover_count = hi >> 11;
ns = ((u64)hi_rollover_count) << 23 | (iepcount_hi + hi_sw);
ns = ns * cycle_time_ns + iepcount_lo;
return ns;
}
static void emac_rx_timestamp(struct prueth_emac *emac,
struct sk_buff *skb, u32 *psdata)
{
struct skb_shared_hwtstamps *ssh;
u64 ns;
u32 hi_sw = readl(emac->prueth->shram.va +
TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
ns = icssg_ts_to_ns(hi_sw, psdata[1], psdata[0],
IEP_DEFAULT_CYCLE_TIME_NS);
ssh = skb_hwtstamps(skb);
memset(ssh, 0, sizeof(*ssh));
ssh->hwtstamp = ns_to_ktime(ns);
}
static int emac_rx_packet(struct prueth_emac *emac, u32 flow_id)
{
struct prueth_rx_chn *rx_chn = &emac->rx_chns;
u32 buf_dma_len, pkt_len, port_id = 0;
struct net_device *ndev = emac->ndev;
struct cppi5_host_desc_t *desc_rx;
struct sk_buff *skb, *new_skb;
dma_addr_t desc_dma, buf_dma;
void **swdata;
u32 *psdata;
int ret;
ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma);
if (ret) {
if (ret != -ENODATA)
netdev_err(ndev, "rx pop: failed: %d\n", ret);
return ret;
}
if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown ? */
return 0;
desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
swdata = cppi5_hdesc_get_swdata(desc_rx);
skb = *swdata;
psdata = cppi5_hdesc_get_psdata(desc_rx);
/* RX HW timestamp */
if (emac->rx_ts_enabled)
emac_rx_timestamp(emac, skb, psdata);
cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
pkt_len = cppi5_hdesc_get_pktlen(desc_rx);
/* firmware adds 4 CRC bytes, strip them */
pkt_len -= 4;
cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL);
dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE);
k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
skb->dev = ndev;
new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE);
/* if allocation fails we drop the packet but push the
* descriptor back to the ring with old skb to prevent a stall
*/
if (!new_skb) {
ndev->stats.rx_dropped++;
new_skb = skb;
} else {
/* send the filled skb up the n/w stack */
skb_put(skb, pkt_len);
skb->protocol = eth_type_trans(skb, ndev);
napi_gro_receive(&emac->napi_rx, skb);
ndev->stats.rx_bytes += pkt_len;
ndev->stats.rx_packets++;
}
/* queue another RX DMA */
ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_chns);
if (WARN_ON(ret < 0)) {
dev_kfree_skb_any(new_skb);
ndev->stats.rx_errors++;
ndev->stats.rx_dropped++;
}
return ret;
}
static void prueth_rx_cleanup(void *data, dma_addr_t desc_dma)
{
struct prueth_rx_chn *rx_chn = data;
struct cppi5_host_desc_t *desc_rx;
struct sk_buff *skb;
dma_addr_t buf_dma;
u32 buf_dma_len;
void **swdata;
desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
swdata = cppi5_hdesc_get_swdata(desc_rx);
skb = *swdata;
cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len,
DMA_FROM_DEVICE);
k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
dev_kfree_skb_any(skb);
}
static int emac_get_tx_ts(struct prueth_emac *emac,
struct emac_tx_ts_response *rsp)
{
struct prueth *prueth = emac->prueth;
int slice = prueth_emac_slice(emac);
int addr;
addr = icssg_queue_pop(prueth, slice == 0 ?
ICSSG_TS_POP_SLICE0 : ICSSG_TS_POP_SLICE1);
if (addr < 0)
return addr;
memcpy_fromio(rsp, prueth->shram.va + addr, sizeof(*rsp));
/* return buffer back for to pool */
icssg_queue_push(prueth, slice == 0 ?
ICSSG_TS_PUSH_SLICE0 : ICSSG_TS_PUSH_SLICE1, addr);
return 0;
}
static void tx_ts_work(struct prueth_emac *emac)
{
struct skb_shared_hwtstamps ssh;
struct emac_tx_ts_response tsr;
struct sk_buff *skb;
int ret = 0;
u32 hi_sw;
u64 ns;
/* There may be more than one pending requests */
while (1) {
ret = emac_get_tx_ts(emac, &tsr);
if (ret) /* nothing more */
break;
if (tsr.cookie >= PRUETH_MAX_TX_TS_REQUESTS ||
!emac->tx_ts_skb[tsr.cookie]) {
netdev_err(emac->ndev, "Invalid TX TS cookie 0x%x\n",
tsr.cookie);
break;
}
skb = emac->tx_ts_skb[tsr.cookie];
emac->tx_ts_skb[tsr.cookie] = NULL; /* free slot */
if (!skb) {
netdev_err(emac->ndev, "Driver Bug! got NULL skb\n");
break;
}
hi_sw = readl(emac->prueth->shram.va +
TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
ns = icssg_ts_to_ns(hi_sw, tsr.hi_ts, tsr.lo_ts,
IEP_DEFAULT_CYCLE_TIME_NS);
memset(&ssh, 0, sizeof(ssh));
ssh.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(skb, &ssh);
dev_consume_skb_any(skb);
if (atomic_dec_and_test(&emac->tx_ts_pending)) /* no more? */
break;
}
}
static int prueth_tx_ts_cookie_get(struct prueth_emac *emac)
{
int i;
/* search and get the next free slot */
for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
if (!emac->tx_ts_skb[i]) {
emac->tx_ts_skb[i] = ERR_PTR(-EBUSY); /* reserve slot */
return i;
}
}
return -EBUSY;
}
/**
* emac_ndo_start_xmit - EMAC Transmit function
* @skb: SKB pointer
* @ndev: EMAC network adapter
*
* Called by the system to transmit a packet - we queue the packet in
* EMAC hardware transmit queue
* Doesn't wait for completion we'll check for TX completion in
* emac_tx_complete_packets().
*
* Return: enum netdev_tx
*/
static enum netdev_tx emac_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct cppi5_host_desc_t *first_desc, *next_desc, *cur_desc;
struct prueth_emac *emac = netdev_priv(ndev);
struct netdev_queue *netif_txq;
struct prueth_tx_chn *tx_chn;
dma_addr_t desc_dma, buf_dma;
int i, ret = 0, q_idx;
bool in_tx_ts = 0;
int tx_ts_cookie;
void **swdata;
u32 pkt_len;
u32 *epib;
pkt_len = skb_headlen(skb);
q_idx = skb_get_queue_mapping(skb);
tx_chn = &emac->tx_chns[q_idx];
netif_txq = netdev_get_tx_queue(ndev, q_idx);
/* Map the linear buffer */
buf_dma = dma_map_single(tx_chn->dma_dev, skb->data, pkt_len, DMA_TO_DEVICE);
if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
netdev_err(ndev, "tx: failed to map skb buffer\n");
ret = NETDEV_TX_OK;
goto drop_free_skb;
}
first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
if (!first_desc) {
netdev_dbg(ndev, "tx: failed to allocate descriptor\n");
dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE);
goto drop_stop_q_busy;
}
cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT,
PRUETH_NAV_PS_DATA_SIZE);
cppi5_hdesc_set_pkttype(first_desc, 0);
epib = first_desc->epib;
epib[0] = 0;
epib[1] = 0;
if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
emac->tx_ts_enabled) {
tx_ts_cookie = prueth_tx_ts_cookie_get(emac);
if (tx_ts_cookie >= 0) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
/* Request TX timestamp */
epib[0] = (u32)tx_ts_cookie;
epib[1] = 0x80000000; /* TX TS request */
emac->tx_ts_skb[tx_ts_cookie] = skb_get(skb);
in_tx_ts = 1;
}
}
/* set dst tag to indicate internal qid at the firmware which is at
* bit8..bit15. bit0..bit7 indicates port num for directed
* packets in case of switch mode operation
*/
cppi5_desc_set_tags_ids(&first_desc->hdr, 0, (emac->port_id | (q_idx << 8)));
k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len);
swdata = cppi5_hdesc_get_swdata(first_desc);
*swdata = skb;
/* Handle the case where skb is fragmented in pages */
cur_desc = first_desc;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
u32 frag_size = skb_frag_size(frag);
next_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
if (!next_desc) {
netdev_err(ndev,
"tx: failed to allocate frag. descriptor\n");
goto free_desc_stop_q_busy_cleanup_tx_ts;
}
buf_dma = skb_frag_dma_map(tx_chn->dma_dev, frag, 0, frag_size,
DMA_TO_DEVICE);
if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
netdev_err(ndev, "tx: Failed to map skb page\n");
k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
ret = NETDEV_TX_OK;
goto cleanup_tx_ts;
}
cppi5_hdesc_reset_hbdesc(next_desc);
k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
cppi5_hdesc_attach_buf(next_desc,
buf_dma, frag_size, buf_dma, frag_size);
desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool,
next_desc);
k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &desc_dma);
cppi5_hdesc_link_hbdesc(cur_desc, desc_dma);
pkt_len += frag_size;
cur_desc = next_desc;
}
WARN_ON_ONCE(pkt_len != skb->len);
/* report bql before sending packet */
netdev_tx_sent_queue(netif_txq, pkt_len);
cppi5_hdesc_set_pktlen(first_desc, pkt_len);
desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc);
/* cppi5_desc_dump(first_desc, 64); */
skb_tx_timestamp(skb); /* SW timestamp if SKBTX_IN_PROGRESS not set */
ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma);
if (ret) {
netdev_err(ndev, "tx: push failed: %d\n", ret);
goto drop_free_descs;
}
if (in_tx_ts)
atomic_inc(&emac->tx_ts_pending);
if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) < MAX_SKB_FRAGS) {
netif_tx_stop_queue(netif_txq);
/* Barrier, so that stop_queue visible to other cpus */
smp_mb__after_atomic();
if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
MAX_SKB_FRAGS)
netif_tx_wake_queue(netif_txq);
}
return NETDEV_TX_OK;
cleanup_tx_ts:
if (in_tx_ts) {
dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
emac->tx_ts_skb[tx_ts_cookie] = NULL;
}
drop_free_descs:
prueth_xmit_free(tx_chn, first_desc);
drop_free_skb:
dev_kfree_skb_any(skb);
/* error */
ndev->stats.tx_dropped++;
netdev_err(ndev, "tx: error: %d\n", ret);
return ret;
free_desc_stop_q_busy_cleanup_tx_ts:
if (in_tx_ts) {
dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
emac->tx_ts_skb[tx_ts_cookie] = NULL;
}
prueth_xmit_free(tx_chn, first_desc);
drop_stop_q_busy:
netif_tx_stop_queue(netif_txq);
return NETDEV_TX_BUSY;
}
static void prueth_tx_cleanup(void *data, dma_addr_t desc_dma)
{
struct prueth_tx_chn *tx_chn = data;
struct cppi5_host_desc_t *desc_tx;
struct sk_buff *skb;
void **swdata;
desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma);
swdata = cppi5_hdesc_get_swdata(desc_tx);
skb = *(swdata);
prueth_xmit_free(tx_chn, desc_tx);
dev_kfree_skb_any(skb);
}
static irqreturn_t prueth_tx_ts_irq(int irq, void *dev_id)
{
struct prueth_emac *emac = dev_id;
/* currently only TX timestamp is being returned */
tx_ts_work(emac);
return IRQ_HANDLED;
}
static irqreturn_t prueth_rx_irq(int irq, void *dev_id)
{
struct prueth_emac *emac = dev_id;
disable_irq_nosync(irq);
napi_schedule(&emac->napi_rx);
return IRQ_HANDLED;
}
struct icssg_firmwares {
char *pru;
char *rtu;
char *txpru;
};
static struct icssg_firmwares icssg_emac_firmwares[] = {
{
.pru = "ti-pruss/am65x-sr2-pru0-prueth-fw.elf",
.rtu = "ti-pruss/am65x-sr2-rtu0-prueth-fw.elf",
.txpru = "ti-pruss/am65x-sr2-txpru0-prueth-fw.elf",
},
{
.pru = "ti-pruss/am65x-sr2-pru1-prueth-fw.elf",
.rtu = "ti-pruss/am65x-sr2-rtu1-prueth-fw.elf",
.txpru = "ti-pruss/am65x-sr2-txpru1-prueth-fw.elf",
}
};
static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac)
{
struct icssg_firmwares *firmwares;
struct device *dev = prueth->dev;
int slice, ret;
firmwares = icssg_emac_firmwares;
slice = prueth_emac_slice(emac);
if (slice < 0) {
netdev_err(emac->ndev, "invalid port\n");
return -EINVAL;
}
ret = icssg_config(prueth, emac, slice);
if (ret)
return ret;
ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru);
ret = rproc_boot(prueth->pru[slice]);
if (ret) {
dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret);
return -EINVAL;
}
ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu);
ret = rproc_boot(prueth->rtu[slice]);
if (ret) {
dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret);
goto halt_pru;
}
ret = rproc_set_firmware(prueth->txpru[slice], firmwares[slice].txpru);
ret = rproc_boot(prueth->txpru[slice]);
if (ret) {
dev_err(dev, "failed to boot TX_PRU%d: %d\n", slice, ret);
goto halt_rtu;
}
emac->fw_running = 1;
return 0;
halt_rtu:
rproc_shutdown(prueth->rtu[slice]);
halt_pru:
rproc_shutdown(prueth->pru[slice]);
return ret;
}
static void prueth_emac_stop(struct prueth_emac *emac)
{
struct prueth *prueth = emac->prueth;
int slice;
switch (emac->port_id) {
case PRUETH_PORT_MII0:
slice = ICSS_SLICE0;
break;
case PRUETH_PORT_MII1:
slice = ICSS_SLICE1;
break;
default:
netdev_err(emac->ndev, "invalid port\n");
return;
}
emac->fw_running = 0;
rproc_shutdown(prueth->txpru[slice]);
rproc_shutdown(prueth->rtu[slice]);
rproc_shutdown(prueth->pru[slice]);
}
static void prueth_cleanup_tx_ts(struct prueth_emac *emac)
{
int i;
for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
if (emac->tx_ts_skb[i]) {
dev_kfree_skb_any(emac->tx_ts_skb[i]);
emac->tx_ts_skb[i] = NULL;
}
}
}
/* called back by PHY layer if there is change in link state of hw port*/
static void emac_adjust_link(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct phy_device *phydev = ndev->phydev;
struct prueth *prueth = emac->prueth;
bool new_state = false;
unsigned long flags;
if (phydev->link) {
/* check the mode of operation - full/half duplex */
if (phydev->duplex != emac->duplex) {
new_state = true;
emac->duplex = phydev->duplex;
}
if (phydev->speed != emac->speed) {
new_state = true;
emac->speed = phydev->speed;
}
if (!emac->link) {
new_state = true;
emac->link = 1;
}
} else if (emac->link) {
new_state = true;
emac->link = 0;
/* f/w should support 100 & 1000 */
emac->speed = SPEED_1000;
/* half duplex may not be supported by f/w */
emac->duplex = DUPLEX_FULL;
}
if (new_state) {
phy_print_status(phydev);
/* update RGMII and MII configuration based on PHY negotiated
* values
*/
if (emac->link) {
/* Set the RGMII cfg for gig en and full duplex */
icssg_update_rgmii_cfg(prueth->miig_rt, emac);
/* update the Tx IPG based on 100M/1G speed */
spin_lock_irqsave(&emac->lock, flags);
icssg_config_ipg(emac);
spin_unlock_irqrestore(&emac->lock, flags);
icssg_config_set_speed(emac);
emac_set_port_state(emac, ICSSG_EMAC_PORT_FORWARD);
} else {
emac_set_port_state(emac, ICSSG_EMAC_PORT_DISABLE);
}
}
if (emac->link) {
/* reactivate the transmit queue */
netif_tx_wake_all_queues(ndev);
} else {
netif_tx_stop_all_queues(ndev);
prueth_cleanup_tx_ts(emac);
}
}
static int emac_napi_rx_poll(struct napi_struct *napi_rx, int budget)
{
struct prueth_emac *emac = prueth_napi_to_emac(napi_rx);
int rx_flow = PRUETH_RX_FLOW_DATA;
int flow = PRUETH_MAX_RX_FLOWS;
int num_rx = 0;
int cur_budget;
int ret;
while (flow--) {
cur_budget = budget - num_rx;
while (cur_budget--) {
ret = emac_rx_packet(emac, flow);
if (ret)
break;
num_rx++;
}
if (num_rx >= budget)
break;
}
if (num_rx < budget && napi_complete_done(napi_rx, num_rx))
enable_irq(emac->rx_chns.irq[rx_flow]);
return num_rx;
}
static int prueth_prepare_rx_chan(struct prueth_emac *emac,
struct prueth_rx_chn *chn,
int buf_size)
{
struct sk_buff *skb;
int i, ret;
for (i = 0; i < chn->descs_num; i++) {
skb = __netdev_alloc_skb_ip_align(NULL, buf_size, GFP_KERNEL);
if (!skb)
return -ENOMEM;
ret = prueth_dma_rx_push(emac, skb, chn);
if (ret < 0) {
netdev_err(emac->ndev,
"cannot submit skb for rx chan %s ret %d\n",
chn->name, ret);
kfree_skb(skb);
return ret;
}
}
return 0;
}
static void prueth_reset_tx_chan(struct prueth_emac *emac, int ch_num,
bool free_skb)
{
int i;
for (i = 0; i < ch_num; i++) {
if (free_skb)
k3_udma_glue_reset_tx_chn(emac->tx_chns[i].tx_chn,
&emac->tx_chns[i],
prueth_tx_cleanup);
k3_udma_glue_disable_tx_chn(emac->tx_chns[i].tx_chn);
}
}
static void prueth_reset_rx_chan(struct prueth_rx_chn *chn,
int num_flows, bool disable)
{
int i;
for (i = 0; i < num_flows; i++)
k3_udma_glue_reset_rx_chn(chn->rx_chn, i, chn,
prueth_rx_cleanup, !!i);
if (disable)
k3_udma_glue_disable_rx_chn(chn->rx_chn);
}
static int emac_phy_connect(struct prueth_emac *emac)
{
struct prueth *prueth = emac->prueth;
struct net_device *ndev = emac->ndev;
/* connect PHY */
ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node,
&emac_adjust_link, 0,
emac->phy_if);
if (!ndev->phydev) {
dev_err(prueth->dev, "couldn't connect to phy %s\n",
emac->phy_node->full_name);
return -ENODEV;
}
/* remove unsupported modes */
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
if (emac->phy_if == PHY_INTERFACE_MODE_MII)
phy_set_max_speed(ndev->phydev, SPEED_100);
return 0;
}
static u64 prueth_iep_gettime(void *clockops_data, struct ptp_system_timestamp *sts)
{
u32 hi_rollover_count, hi_rollover_count_r;
struct prueth_emac *emac = clockops_data;
struct prueth *prueth = emac->prueth;
void __iomem *fw_hi_r_count_addr;
void __iomem *fw_count_hi_addr;
u32 iepcount_hi, iepcount_hi_r;
unsigned long flags;
u32 iepcount_lo;
u64 ts = 0;
fw_count_hi_addr = prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET;
fw_hi_r_count_addr = prueth->shram.va + TIMESYNC_FW_WC_HI_ROLLOVER_COUNT_OFFSET;
local_irq_save(flags);
do {
iepcount_hi = icss_iep_get_count_hi(emac->iep);
iepcount_hi += readl(fw_count_hi_addr);
hi_rollover_count = readl(fw_hi_r_count_addr);
ptp_read_system_prets(sts);
iepcount_lo = icss_iep_get_count_low(emac->iep);
ptp_read_system_postts(sts);
iepcount_hi_r = icss_iep_get_count_hi(emac->iep);
iepcount_hi_r += readl(fw_count_hi_addr);
hi_rollover_count_r = readl(fw_hi_r_count_addr);
} while ((iepcount_hi_r != iepcount_hi) ||
(hi_rollover_count != hi_rollover_count_r));
local_irq_restore(flags);
ts = ((u64)hi_rollover_count) << 23 | iepcount_hi;
ts = ts * (u64)IEP_DEFAULT_CYCLE_TIME_NS + iepcount_lo;
return ts;
}
static void prueth_iep_settime(void *clockops_data, u64 ns)
{
struct icssg_setclock_desc __iomem *sc_descp;
struct prueth_emac *emac = clockops_data;
struct icssg_setclock_desc sc_desc;
u64 cyclecount;
u32 cycletime;
int timeout;
if (!emac->fw_running)
return;
sc_descp = emac->prueth->shram.va + TIMESYNC_FW_WC_SETCLOCK_DESC_OFFSET;
cycletime = IEP_DEFAULT_CYCLE_TIME_NS;
cyclecount = ns / cycletime;
memset(&sc_desc, 0, sizeof(sc_desc));
sc_desc.margin = cycletime - 1000;
sc_desc.cyclecounter0_set = cyclecount & GENMASK(31, 0);
sc_desc.cyclecounter1_set = (cyclecount & GENMASK(63, 32)) >> 32;
sc_desc.iepcount_set = ns % cycletime;
sc_desc.CMP0_current = cycletime - 4; //Count from 0 to (cycle time)-4
memcpy_toio(sc_descp, &sc_desc, sizeof(sc_desc));
writeb(1, &sc_descp->request);
timeout = 5; /* fw should take 2-3 ms */
while (timeout--) {
if (readb(&sc_descp->acknowledgment))
return;
usleep_range(500, 1000);
}
dev_err(emac->prueth->dev, "settime timeout\n");
}
static int prueth_perout_enable(void *clockops_data,
struct ptp_perout_request *req, int on,
u64 *cmp)
{
struct prueth_emac *emac = clockops_data;
u32 reduction_factor = 0, offset = 0;
struct timespec64 ts;
u64 ns_period;
if (!on)
return 0;
/* Any firmware specific stuff for PPS/PEROUT handling */
ts.tv_sec = req->period.sec;
ts.tv_nsec = req->period.nsec;
ns_period = timespec64_to_ns(&ts);
/* f/w doesn't support period less than cycle time */
if (ns_period < IEP_DEFAULT_CYCLE_TIME_NS)
return -ENXIO;
reduction_factor = ns_period / IEP_DEFAULT_CYCLE_TIME_NS;
offset = ns_period % IEP_DEFAULT_CYCLE_TIME_NS;
/* f/w requires at least 1uS within a cycle so CMP
* can trigger after SYNC is enabled
*/
if (offset < 5 * NSEC_PER_USEC)
offset = 5 * NSEC_PER_USEC;
/* if offset is close to cycle time then we will miss
* the CMP event for last tick when IEP rolls over.
* In normal mode, IEP tick is 4ns.
* In slow compensation it could be 0ns or 8ns at
* every slow compensation cycle.
*/
if (offset > IEP_DEFAULT_CYCLE_TIME_NS - 8)
offset = IEP_DEFAULT_CYCLE_TIME_NS - 8;
/* we're in shadow mode so need to set upper 32-bits */
*cmp = (u64)offset << 32;
writel(reduction_factor, emac->prueth->shram.va +
TIMESYNC_FW_WC_SYNCOUT_REDUCTION_FACTOR_OFFSET);
writel(0, emac->prueth->shram.va +
TIMESYNC_FW_WC_SYNCOUT_START_TIME_CYCLECOUNT_OFFSET);
return 0;
}
const struct icss_iep_clockops prueth_iep_clockops = {
.settime = prueth_iep_settime,
.gettime = prueth_iep_gettime,
.perout_enable = prueth_perout_enable,
};
/**
* emac_ndo_open - EMAC device open
* @ndev: network adapter device
*
* Called when system wants to start the interface.
*
* Return: 0 for a successful open, or appropriate error code
*/
static int emac_ndo_open(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
int ret, i, num_data_chn = emac->tx_ch_num;
struct prueth *prueth = emac->prueth;
int slice = prueth_emac_slice(emac);
struct device *dev = prueth->dev;
int max_rx_flows;
int rx_flow;
/* clear SMEM and MSMC settings for all slices */
if (!prueth->emacs_initialized) {
memset_io(prueth->msmcram.va, 0, prueth->msmcram.size);
memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS);
}
/* set h/w MAC as user might have re-configured */
ether_addr_copy(emac->mac_addr, ndev->dev_addr);
icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
icssg_ft1_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
icssg_class_default(prueth->miig_rt, slice, 0);
/* Notify the stack of the actual queue counts. */
ret = netif_set_real_num_tx_queues(ndev, num_data_chn);
if (ret) {
dev_err(dev, "cannot set real number of tx queues\n");
return ret;
}
init_completion(&emac->cmd_complete);
ret = prueth_init_tx_chns(emac);
if (ret) {
dev_err(dev, "failed to init tx channel: %d\n", ret);
return ret;
}
max_rx_flows = PRUETH_MAX_RX_FLOWS;
ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx",
max_rx_flows, PRUETH_MAX_RX_DESC);
if (ret) {
dev_err(dev, "failed to init rx channel: %d\n", ret);
goto cleanup_tx;
}
ret = prueth_ndev_add_tx_napi(emac);
if (ret)
goto cleanup_rx;
/* we use only the highest priority flow for now i.e. @irq[3] */
rx_flow = PRUETH_RX_FLOW_DATA;
ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq,
IRQF_TRIGGER_HIGH, dev_name(dev), emac);
if (ret) {
dev_err(dev, "unable to request RX IRQ\n");
goto cleanup_napi;
}
/* reset and start PRU firmware */
ret = prueth_emac_start(prueth, emac);
if (ret)
goto free_rx_irq;
icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu);
if (!prueth->emacs_initialized) {
ret = icss_iep_init(emac->iep, &prueth_iep_clockops,
emac, IEP_DEFAULT_CYCLE_TIME_NS);
}
ret = request_threaded_irq(emac->tx_ts_irq, NULL, prueth_tx_ts_irq,
IRQF_ONESHOT, dev_name(dev), emac);
if (ret)
goto stop;
/* Prepare RX */
ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE);
if (ret)
goto free_tx_ts_irq;
ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn);
if (ret)
goto reset_rx_chn;
for (i = 0; i < emac->tx_ch_num; i++) {
ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn);
if (ret)
goto reset_tx_chan;
}
/* Enable NAPI in Tx and Rx direction */
for (i = 0; i < emac->tx_ch_num; i++)
napi_enable(&emac->tx_chns[i].napi_tx);
napi_enable(&emac->napi_rx);
/* start PHY */
phy_start(ndev->phydev);
prueth->emacs_initialized++;
queue_work(system_long_wq, &emac->stats_work.work);
return 0;
reset_tx_chan:
/* Since interface is not yet up, there is wouldn't be
* any SKB for completion. So set false to free_skb
*/
prueth_reset_tx_chan(emac, i, false);
reset_rx_chn:
prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false);
free_tx_ts_irq:
free_irq(emac->tx_ts_irq, emac);
stop:
prueth_emac_stop(emac);
free_rx_irq:
free_irq(emac->rx_chns.irq[rx_flow], emac);
cleanup_napi:
prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
cleanup_rx:
prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
cleanup_tx:
prueth_cleanup_tx_chns(emac);
return ret;
}
/**
* emac_ndo_stop - EMAC device stop
* @ndev: network adapter device
*
* Called when system wants to stop or down the interface.
*
* Return: Always 0 (Success)
*/
static int emac_ndo_stop(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct prueth *prueth = emac->prueth;
int rx_flow = PRUETH_RX_FLOW_DATA;
int max_rx_flows;
int ret, i;
/* inform the upper layers. */
netif_tx_stop_all_queues(ndev);
/* block packets from wire */
if (ndev->phydev)
phy_stop(ndev->phydev);
icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac));
atomic_set(&emac->tdown_cnt, emac->tx_ch_num);
/* ensure new tdown_cnt value is visible */
smp_mb__after_atomic();
/* tear down and disable UDMA channels */
reinit_completion(&emac->tdown_complete);
for (i = 0; i < emac->tx_ch_num; i++)
k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false);
ret = wait_for_completion_timeout(&emac->tdown_complete,
msecs_to_jiffies(1000));
if (!ret)
netdev_err(ndev, "tx teardown timeout\n");
prueth_reset_tx_chan(emac, emac->tx_ch_num, true);
for (i = 0; i < emac->tx_ch_num; i++)
napi_disable(&emac->tx_chns[i].napi_tx);
max_rx_flows = PRUETH_MAX_RX_FLOWS;
k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true);
prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true);
napi_disable(&emac->napi_rx);
cancel_work_sync(&emac->rx_mode_work);
/* Destroying the queued work in ndo_stop() */
cancel_delayed_work_sync(&emac->stats_work);
/* stop PRUs */
prueth_emac_stop(emac);
if (prueth->emacs_initialized == 1)
icss_iep_exit(emac->iep);
/* stop PRUs */
prueth_emac_stop(emac);
free_irq(emac->tx_ts_irq, emac);
free_irq(emac->rx_chns.irq[rx_flow], emac);
prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
prueth_cleanup_tx_chns(emac);
prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
prueth_cleanup_tx_chns(emac);
prueth->emacs_initialized--;
return 0;
}
static void emac_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
{
ndev->stats.tx_errors++;
}
static void emac_ndo_set_rx_mode_work(struct work_struct *work)
{
struct prueth_emac *emac = container_of(work, struct prueth_emac, rx_mode_work);
struct net_device *ndev = emac->ndev;
bool promisc, allmulti;
if (!netif_running(ndev))
return;
promisc = ndev->flags & IFF_PROMISC;
allmulti = ndev->flags & IFF_ALLMULTI;
emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_DISABLE);
emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_DISABLE);
if (promisc) {
emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_ENABLE);
emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
return;
}
if (allmulti) {
emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
return;
}
if (!netdev_mc_empty(ndev)) {
emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
return;
}
}
/**
* emac_ndo_set_rx_mode - EMAC set receive mode function
* @ndev: The EMAC network adapter
*
* Called when system wants to set the receive mode of the device.
*
*/
static void emac_ndo_set_rx_mode(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
queue_work(emac->cmd_wq, &emac->rx_mode_work);
}
static int emac_set_ts_config(struct net_device *ndev, struct ifreq *ifr)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct hwtstamp_config config;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
emac->tx_ts_enabled = 0;
break;
case HWTSTAMP_TX_ON:
emac->tx_ts_enabled = 1;
break;
default:
return -ERANGE;
}
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
emac->rx_ts_enabled = 0;
break;
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_SOME:
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_NTP_ALL:
emac->rx_ts_enabled = 1;
config.rx_filter = HWTSTAMP_FILTER_ALL;
break;
default:
return -ERANGE;
}
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int emac_get_ts_config(struct net_device *ndev, struct ifreq *ifr)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct hwtstamp_config config;
config.flags = 0;
config.tx_type = emac->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
config.rx_filter = emac->rx_ts_enabled ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int emac_ndo_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGHWTSTAMP:
return emac_get_ts_config(ndev, ifr);
case SIOCSHWTSTAMP:
return emac_set_ts_config(ndev, ifr);
default:
break;
}
return phy_do_ioctl(ndev, ifr, cmd);
}
static void emac_ndo_get_stats64(struct net_device *ndev,
struct rtnl_link_stats64 *stats)
{
struct prueth_emac *emac = netdev_priv(ndev);
emac_update_hardware_stats(emac);
stats->rx_packets = emac_get_stat_by_name(emac, "rx_packets");
stats->rx_bytes = emac_get_stat_by_name(emac, "rx_bytes");
stats->tx_packets = emac_get_stat_by_name(emac, "tx_packets");
stats->tx_bytes = emac_get_stat_by_name(emac, "tx_bytes");
stats->rx_crc_errors = emac_get_stat_by_name(emac, "rx_crc_errors");
stats->rx_over_errors = emac_get_stat_by_name(emac, "rx_over_errors");
stats->multicast = emac_get_stat_by_name(emac, "rx_multicast_frames");
stats->rx_errors = ndev->stats.rx_errors;
stats->rx_dropped = ndev->stats.rx_dropped;
stats->tx_errors = ndev->stats.tx_errors;
stats->tx_dropped = ndev->stats.tx_dropped;
}
static const struct net_device_ops emac_netdev_ops = {
.ndo_open = emac_ndo_open,
.ndo_stop = emac_ndo_stop,
.ndo_start_xmit = emac_ndo_start_xmit,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = emac_ndo_tx_timeout,
.ndo_set_rx_mode = emac_ndo_set_rx_mode,
.ndo_eth_ioctl = emac_ndo_ioctl,
.ndo_get_stats64 = emac_ndo_get_stats64,
};
/* get emac_port corresponding to eth_node name */
static int prueth_node_port(struct device_node *eth_node)
{
u32 port_id;
int ret;
ret = of_property_read_u32(eth_node, "reg", &port_id);
if (ret)
return ret;
if (port_id == 0)
return PRUETH_PORT_MII0;
else if (port_id == 1)
return PRUETH_PORT_MII1;
else
return PRUETH_PORT_INVALID;
}
/* get MAC instance corresponding to eth_node name */
static int prueth_node_mac(struct device_node *eth_node)
{
u32 port_id;
int ret;
ret = of_property_read_u32(eth_node, "reg", &port_id);
if (ret)
return ret;
if (port_id == 0)
return PRUETH_MAC0;
else if (port_id == 1)
return PRUETH_MAC1;
else
return PRUETH_MAC_INVALID;
}
static int prueth_netdev_init(struct prueth *prueth,
struct device_node *eth_node)
{
int ret, num_tx_chn = PRUETH_MAX_TX_QUEUES;
struct prueth_emac *emac;
struct net_device *ndev;
enum prueth_port port;
const char *irq_name;
enum prueth_mac mac;
port = prueth_node_port(eth_node);
if (port == PRUETH_PORT_INVALID)
return -EINVAL;
mac = prueth_node_mac(eth_node);
if (mac == PRUETH_MAC_INVALID)
return -EINVAL;
ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn);
if (!ndev)
return -ENOMEM;
emac = netdev_priv(ndev);
emac->prueth = prueth;
emac->ndev = ndev;
emac->port_id = port;
emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq");
if (!emac->cmd_wq) {
ret = -ENOMEM;
goto free_ndev;
}
INIT_WORK(&emac->rx_mode_work, emac_ndo_set_rx_mode_work);
INIT_DELAYED_WORK(&emac->stats_work, emac_stats_work_handler);
ret = pruss_request_mem_region(prueth->pruss,
port == PRUETH_PORT_MII0 ?
PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1,
&emac->dram);
if (ret) {
dev_err(prueth->dev, "unable to get DRAM: %d\n", ret);
ret = -ENOMEM;
goto free_wq;
}
emac->tx_ch_num = 1;
irq_name = "tx_ts0";
if (emac->port_id == PRUETH_PORT_MII1)
irq_name = "tx_ts1";
emac->tx_ts_irq = platform_get_irq_byname_optional(prueth->pdev, irq_name);
if (emac->tx_ts_irq < 0) {
ret = dev_err_probe(prueth->dev, emac->tx_ts_irq, "could not get tx_ts_irq\n");
goto free;
}
SET_NETDEV_DEV(ndev, prueth->dev);
spin_lock_init(&emac->lock);
mutex_init(&emac->cmd_lock);
emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0);
if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) {
dev_err(prueth->dev, "couldn't find phy-handle\n");
ret = -ENODEV;
goto free;
} else if (of_phy_is_fixed_link(eth_node)) {
ret = of_phy_register_fixed_link(eth_node);
if (ret) {
ret = dev_err_probe(prueth->dev, ret,
"failed to register fixed-link phy\n");
goto free;
}
emac->phy_node = eth_node;
}
ret = of_get_phy_mode(eth_node, &emac->phy_if);
if (ret) {
dev_err(prueth->dev, "could not get phy-mode property\n");
goto free;
}
if (emac->phy_if != PHY_INTERFACE_MODE_MII &&
!phy_interface_mode_is_rgmii(emac->phy_if)) {
dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if));
ret = -EINVAL;
goto free;
}
/* AM65 SR2.0 has TX Internal delay always enabled by hardware
* and it is not possible to disable TX Internal delay. The below
* switch case block describes how we handle different phy modes
* based on hardware restriction.
*/
switch (emac->phy_if) {
case PHY_INTERFACE_MODE_RGMII_ID:
emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
emac->phy_if = PHY_INTERFACE_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_RXID:
dev_err(prueth->dev, "RGMII mode without TX delay is not supported");
ret = -EINVAL;
goto free;
default:
break;
}
/* get mac address from DT and set private and netdev addr */
ret = of_get_ethdev_address(eth_node, ndev);
if (!is_valid_ether_addr(ndev->dev_addr)) {
eth_hw_addr_random(ndev);
dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n",
port, ndev->dev_addr);
}
ether_addr_copy(emac->mac_addr, ndev->dev_addr);
ndev->min_mtu = PRUETH_MIN_PKT_SIZE;
ndev->max_mtu = PRUETH_MAX_MTU;
ndev->netdev_ops = &emac_netdev_ops;
ndev->ethtool_ops = &icssg_ethtool_ops;
ndev->hw_features = NETIF_F_SG;
ndev->features = ndev->hw_features;
netif_napi_add(ndev, &emac->napi_rx, emac_napi_rx_poll);
prueth->emac[mac] = emac;
return 0;
free:
pruss_release_mem_region(prueth->pruss, &emac->dram);
free_wq:
destroy_workqueue(emac->cmd_wq);
free_ndev:
emac->ndev = NULL;
prueth->emac[mac] = NULL;
free_netdev(ndev);
return ret;
}
static void prueth_netdev_exit(struct prueth *prueth,
struct device_node *eth_node)
{
struct prueth_emac *emac;
enum prueth_mac mac;
mac = prueth_node_mac(eth_node);
if (mac == PRUETH_MAC_INVALID)
return;
emac = prueth->emac[mac];
if (!emac)
return;
if (of_phy_is_fixed_link(emac->phy_node))
of_phy_deregister_fixed_link(emac->phy_node);
netif_napi_del(&emac->napi_rx);
pruss_release_mem_region(prueth->pruss, &emac->dram);
destroy_workqueue(emac->cmd_wq);
free_netdev(emac->ndev);
prueth->emac[mac] = NULL;
}
static int prueth_get_cores(struct prueth *prueth, int slice)
{
struct device *dev = prueth->dev;
enum pruss_pru_id pruss_id;
struct device_node *np;
int idx = -1, ret;
np = dev->of_node;
switch (slice) {
case ICSS_SLICE0:
idx = 0;
break;
case ICSS_SLICE1:
idx = 3;
break;
default:
return -EINVAL;
}
prueth->pru[slice] = pru_rproc_get(np, idx, &pruss_id);
if (IS_ERR(prueth->pru[slice])) {
ret = PTR_ERR(prueth->pru[slice]);
prueth->pru[slice] = NULL;
return dev_err_probe(dev, ret, "unable to get PRU%d\n", slice);
}
prueth->pru_id[slice] = pruss_id;
idx++;
prueth->rtu[slice] = pru_rproc_get(np, idx, NULL);
if (IS_ERR(prueth->rtu[slice])) {
ret = PTR_ERR(prueth->rtu[slice]);
prueth->rtu[slice] = NULL;
return dev_err_probe(dev, ret, "unable to get RTU%d\n", slice);
}
idx++;
prueth->txpru[slice] = pru_rproc_get(np, idx, NULL);
if (IS_ERR(prueth->txpru[slice])) {
ret = PTR_ERR(prueth->txpru[slice]);
prueth->txpru[slice] = NULL;
return dev_err_probe(dev, ret, "unable to get TX_PRU%d\n", slice);
}
return 0;
}
static void prueth_put_cores(struct prueth *prueth, int slice)
{
if (prueth->txpru[slice])
pru_rproc_put(prueth->txpru[slice]);
if (prueth->rtu[slice])
pru_rproc_put(prueth->rtu[slice]);
if (prueth->pru[slice])
pru_rproc_put(prueth->pru[slice]);
}
static const struct of_device_id prueth_dt_match[];
static int prueth_probe(struct platform_device *pdev)
{
struct device_node *eth_node, *eth_ports_node;
struct device_node *eth0_node = NULL;
struct device_node *eth1_node = NULL;
struct genpool_data_align gp_data = {
.align = SZ_64K,
};
const struct of_device_id *match;
struct device *dev = &pdev->dev;
struct device_node *np;
struct prueth *prueth;
struct pruss *pruss;
u32 msmc_ram_size;
int i, ret;
np = dev->of_node;
match = of_match_device(prueth_dt_match, dev);
if (!match)
return -ENODEV;
prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL);
if (!prueth)
return -ENOMEM;
dev_set_drvdata(dev, prueth);
prueth->pdev = pdev;
prueth->pdata = *(const struct prueth_pdata *)match->data;
prueth->dev = dev;
eth_ports_node = of_get_child_by_name(np, "ethernet-ports");
if (!eth_ports_node)
return -ENOENT;
for_each_child_of_node(eth_ports_node, eth_node) {
u32 reg;
if (strcmp(eth_node->name, "port"))
continue;
ret = of_property_read_u32(eth_node, "reg", ®);
if (ret < 0) {
dev_err(dev, "%pOF error reading port_id %d\n",
eth_node, ret);
}
of_node_get(eth_node);
if (reg == 0) {
eth0_node = eth_node;
if (!of_device_is_available(eth0_node)) {
of_node_put(eth0_node);
eth0_node = NULL;
}
} else if (reg == 1) {
eth1_node = eth_node;
if (!of_device_is_available(eth1_node)) {
of_node_put(eth1_node);
eth1_node = NULL;
}
} else {
dev_err(dev, "port reg should be 0 or 1\n");
}
}
of_node_put(eth_ports_node);
/* At least one node must be present and available else we fail */
if (!eth0_node && !eth1_node) {
dev_err(dev, "neither port0 nor port1 node available\n");
return -ENODEV;
}
if (eth0_node == eth1_node) {
dev_err(dev, "port0 and port1 can't have same reg\n");
of_node_put(eth0_node);
return -ENODEV;
}
prueth->eth_node[PRUETH_MAC0] = eth0_node;
prueth->eth_node[PRUETH_MAC1] = eth1_node;
prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt");
if (IS_ERR(prueth->miig_rt)) {
dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n");
return -ENODEV;
}
prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt");
if (IS_ERR(prueth->mii_rt)) {
dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n");
return -ENODEV;
}
if (eth0_node) {
ret = prueth_get_cores(prueth, ICSS_SLICE0);
if (ret)
goto put_cores;
}
if (eth1_node) {
ret = prueth_get_cores(prueth, ICSS_SLICE1);
if (ret)
goto put_cores;
}
pruss = pruss_get(eth0_node ?
prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]);
if (IS_ERR(pruss)) {
ret = PTR_ERR(pruss);
dev_err(dev, "unable to get pruss handle\n");
goto put_cores;
}
prueth->pruss = pruss;
ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2,
&prueth->shram);
if (ret) {
dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret);
pruss_put(prueth->pruss);
}
prueth->sram_pool = of_gen_pool_get(np, "sram", 0);
if (!prueth->sram_pool) {
dev_err(dev, "unable to get SRAM pool\n");
ret = -ENODEV;
goto put_mem;
}
msmc_ram_size = MSMC_RAM_SIZE;
/* NOTE: FW bug needs buffer base to be 64KB aligned */
prueth->msmcram.va =
(void __iomem *)gen_pool_alloc_algo(prueth->sram_pool,
msmc_ram_size,
gen_pool_first_fit_align,
&gp_data);
if (!prueth->msmcram.va) {
ret = -ENOMEM;
dev_err(dev, "unable to allocate MSMC resource\n");
goto put_mem;
}
prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool,
(unsigned long)prueth->msmcram.va);
prueth->msmcram.size = msmc_ram_size;
memset_io(prueth->msmcram.va, 0, msmc_ram_size);
dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa,
prueth->msmcram.va, prueth->msmcram.size);
prueth->iep0 = icss_iep_get_idx(np, 0);
if (IS_ERR(prueth->iep0)) {
ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n");
prueth->iep0 = NULL;
goto free_pool;
}
/* setup netdev interfaces */
if (eth0_node) {
ret = prueth_netdev_init(prueth, eth0_node);
if (ret) {
dev_err_probe(dev, ret, "netdev init %s failed\n",
eth0_node->name);
goto netdev_exit;
}
prueth->emac[PRUETH_MAC0]->iep = prueth->iep0;
}
if (eth1_node) {
ret = prueth_netdev_init(prueth, eth1_node);
if (ret) {
dev_err_probe(dev, ret, "netdev init %s failed\n",
eth1_node->name);
goto netdev_exit;
}
prueth->emac[PRUETH_MAC1]->iep = prueth->iep0;
}
/* register the network devices */
if (eth0_node) {
ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev);
if (ret) {
dev_err(dev, "can't register netdev for port MII0");
goto netdev_exit;
}
prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev;
emac_phy_connect(prueth->emac[PRUETH_MAC0]);
phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev);
}
if (eth1_node) {
ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev);
if (ret) {
dev_err(dev, "can't register netdev for port MII1");
goto netdev_unregister;
}
prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev;
emac_phy_connect(prueth->emac[PRUETH_MAC1]);
phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev);
}
dev_info(dev, "TI PRU ethernet driver initialized: %s EMAC mode\n",
(!eth0_node || !eth1_node) ? "single" : "dual");
if (eth1_node)
of_node_put(eth1_node);
if (eth0_node)
of_node_put(eth0_node);
return 0;
netdev_unregister:
for (i = 0; i < PRUETH_NUM_MACS; i++) {
if (!prueth->registered_netdevs[i])
continue;
if (prueth->emac[i]->ndev->phydev) {
phy_disconnect(prueth->emac[i]->ndev->phydev);
prueth->emac[i]->ndev->phydev = NULL;
}
unregister_netdev(prueth->registered_netdevs[i]);
}
netdev_exit:
for (i = 0; i < PRUETH_NUM_MACS; i++) {
eth_node = prueth->eth_node[i];
if (!eth_node)
continue;
prueth_netdev_exit(prueth, eth_node);
}
free_pool:
gen_pool_free(prueth->sram_pool,
(unsigned long)prueth->msmcram.va, msmc_ram_size);
put_mem:
pruss_release_mem_region(prueth->pruss, &prueth->shram);
pruss_put(prueth->pruss);
put_cores:
if (eth1_node) {
prueth_put_cores(prueth, ICSS_SLICE1);
of_node_put(eth1_node);
}
if (eth0_node) {
prueth_put_cores(prueth, ICSS_SLICE0);
of_node_put(eth0_node);
}
return ret;
}
static void prueth_remove(struct platform_device *pdev)
{
struct prueth *prueth = platform_get_drvdata(pdev);
struct device_node *eth_node;
int i;
for (i = 0; i < PRUETH_NUM_MACS; i++) {
if (!prueth->registered_netdevs[i])
continue;
phy_stop(prueth->emac[i]->ndev->phydev);
phy_disconnect(prueth->emac[i]->ndev->phydev);
prueth->emac[i]->ndev->phydev = NULL;
unregister_netdev(prueth->registered_netdevs[i]);
}
for (i = 0; i < PRUETH_NUM_MACS; i++) {
eth_node = prueth->eth_node[i];
if (!eth_node)
continue;
prueth_netdev_exit(prueth, eth_node);
}
icss_iep_put(prueth->iep0);
gen_pool_free(prueth->sram_pool,
(unsigned long)prueth->msmcram.va,
MSMC_RAM_SIZE);
pruss_release_mem_region(prueth->pruss, &prueth->shram);
pruss_put(prueth->pruss);
if (prueth->eth_node[PRUETH_MAC1])
prueth_put_cores(prueth, ICSS_SLICE1);
if (prueth->eth_node[PRUETH_MAC0])
prueth_put_cores(prueth, ICSS_SLICE0);
}
#ifdef CONFIG_PM_SLEEP
static int prueth_suspend(struct device *dev)
{
struct prueth *prueth = dev_get_drvdata(dev);
struct net_device *ndev;
int i, ret;
for (i = 0; i < PRUETH_NUM_MACS; i++) {
ndev = prueth->registered_netdevs[i];
if (!ndev)
continue;
if (netif_running(ndev)) {
netif_device_detach(ndev);
ret = emac_ndo_stop(ndev);
if (ret < 0) {
netdev_err(ndev, "failed to stop: %d", ret);
return ret;
}
}
}
return 0;
}
static int prueth_resume(struct device *dev)
{
struct prueth *prueth = dev_get_drvdata(dev);
struct net_device *ndev;
int i, ret;
for (i = 0; i < PRUETH_NUM_MACS; i++) {
ndev = prueth->registered_netdevs[i];
if (!ndev)
continue;
if (netif_running(ndev)) {
ret = emac_ndo_open(ndev);
if (ret < 0) {
netdev_err(ndev, "failed to start: %d", ret);
return ret;
}
netif_device_attach(ndev);
}
}
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops prueth_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(prueth_suspend, prueth_resume)
};
static const struct prueth_pdata am654_icssg_pdata = {
.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
.quirk_10m_link_issue = 1,
};
static const struct of_device_id prueth_dt_match[] = {
{ .compatible = "ti,am654-icssg-prueth", .data = &am654_icssg_pdata },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, prueth_dt_match);
static struct platform_driver prueth_driver = {
.probe = prueth_probe,
.remove_new = prueth_remove,
.driver = {
.name = "icssg-prueth",
.of_match_table = prueth_dt_match,
.pm = &prueth_dev_pm_ops,
},
};
module_platform_driver(prueth_driver);
MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>");
MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver");
MODULE_LICENSE("GPL");