/*
* Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
*
* Copyright 2004 IDT Inc. (rischelp@idt.com)
* Copyright 2006 Felix Fietkau <nbd@openwrt.org>
* Copyright 2008 Florian Fainelli <florian@openwrt.org>
* Copyright 2017 Roman Yeryomin <roman@advem.lv>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Writing to a DMA status register:
*
* When writing to the status register, you should mask the bit you have
* been testing the status register with. Both Tx and Rx DMA registers
* should stick to this procedure.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/ctype.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/iopoll.h>
#include <linux/in.h>
#include <linux/of_device.h>
#include <linux/of_net.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/pgtable.h>
#include <linux/clk.h>
#define DRV_NAME "korina"
#define DRV_VERSION "0.20"
#define DRV_RELDATE "15Sep2017"
struct eth_regs {
u32 ethintfc;
u32 ethfifott;
u32 etharc;
u32 ethhash0;
u32 ethhash1;
u32 ethu0[4]; /* Reserved. */
u32 ethpfs;
u32 ethmcp;
u32 eth_u1[10]; /* Reserved. */
u32 ethspare;
u32 eth_u2[42]; /* Reserved. */
u32 ethsal0;
u32 ethsah0;
u32 ethsal1;
u32 ethsah1;
u32 ethsal2;
u32 ethsah2;
u32 ethsal3;
u32 ethsah3;
u32 ethrbc;
u32 ethrpc;
u32 ethrupc;
u32 ethrfc;
u32 ethtbc;
u32 ethgpf;
u32 eth_u9[50]; /* Reserved. */
u32 ethmac1;
u32 ethmac2;
u32 ethipgt;
u32 ethipgr;
u32 ethclrt;
u32 ethmaxf;
u32 eth_u10; /* Reserved. */
u32 ethmtest;
u32 miimcfg;
u32 miimcmd;
u32 miimaddr;
u32 miimwtd;
u32 miimrdd;
u32 miimind;
u32 eth_u11; /* Reserved. */
u32 eth_u12; /* Reserved. */
u32 ethcfsa0;
u32 ethcfsa1;
u32 ethcfsa2;
};
/* Ethernet interrupt registers */
#define ETH_INT_FC_EN BIT(0)
#define ETH_INT_FC_ITS BIT(1)
#define ETH_INT_FC_RIP BIT(2)
#define ETH_INT_FC_JAM BIT(3)
#define ETH_INT_FC_OVR BIT(4)
#define ETH_INT_FC_UND BIT(5)
#define ETH_INT_FC_IOC 0x000000c0
/* Ethernet FIFO registers */
#define ETH_FIFI_TT_TTH_BIT 0
#define ETH_FIFO_TT_TTH 0x0000007f
/* Ethernet ARC/multicast registers */
#define ETH_ARC_PRO BIT(0)
#define ETH_ARC_AM BIT(1)
#define ETH_ARC_AFM BIT(2)
#define ETH_ARC_AB BIT(3)
/* Ethernet SAL registers */
#define ETH_SAL_BYTE_5 0x000000ff
#define ETH_SAL_BYTE_4 0x0000ff00
#define ETH_SAL_BYTE_3 0x00ff0000
#define ETH_SAL_BYTE_2 0xff000000
/* Ethernet SAH registers */
#define ETH_SAH_BYTE1 0x000000ff
#define ETH_SAH_BYTE0 0x0000ff00
/* Ethernet GPF register */
#define ETH_GPF_PTV 0x0000ffff
/* Ethernet PFG register */
#define ETH_PFS_PFD BIT(0)
/* Ethernet CFSA[0-3] registers */
#define ETH_CFSA0_CFSA4 0x000000ff
#define ETH_CFSA0_CFSA5 0x0000ff00
#define ETH_CFSA1_CFSA2 0x000000ff
#define ETH_CFSA1_CFSA3 0x0000ff00
#define ETH_CFSA1_CFSA0 0x000000ff
#define ETH_CFSA1_CFSA1 0x0000ff00
/* Ethernet MAC1 registers */
#define ETH_MAC1_RE BIT(0)
#define ETH_MAC1_PAF BIT(1)
#define ETH_MAC1_RFC BIT(2)
#define ETH_MAC1_TFC BIT(3)
#define ETH_MAC1_LB BIT(4)
#define ETH_MAC1_MR BIT(31)
/* Ethernet MAC2 registers */
#define ETH_MAC2_FD BIT(0)
#define ETH_MAC2_FLC BIT(1)
#define ETH_MAC2_HFE BIT(2)
#define ETH_MAC2_DC BIT(3)
#define ETH_MAC2_CEN BIT(4)
#define ETH_MAC2_PE BIT(5)
#define ETH_MAC2_VPE BIT(6)
#define ETH_MAC2_APE BIT(7)
#define ETH_MAC2_PPE BIT(8)
#define ETH_MAC2_LPE BIT(9)
#define ETH_MAC2_NB BIT(12)
#define ETH_MAC2_BP BIT(13)
#define ETH_MAC2_ED BIT(14)
/* Ethernet IPGT register */
#define ETH_IPGT 0x0000007f
/* Ethernet IPGR registers */
#define ETH_IPGR_IPGR2 0x0000007f
#define ETH_IPGR_IPGR1 0x00007f00
/* Ethernet CLRT registers */
#define ETH_CLRT_MAX_RET 0x0000000f
#define ETH_CLRT_COL_WIN 0x00003f00
/* Ethernet MAXF register */
#define ETH_MAXF 0x0000ffff
/* Ethernet test registers */
#define ETH_TEST_REG BIT(2)
#define ETH_MCP_DIV 0x000000ff
/* MII registers */
#define ETH_MII_CFG_RSVD 0x0000000c
#define ETH_MII_CMD_RD BIT(0)
#define ETH_MII_CMD_SCN BIT(1)
#define ETH_MII_REG_ADDR 0x0000001f
#define ETH_MII_PHY_ADDR 0x00001f00
#define ETH_MII_WTD_DATA 0x0000ffff
#define ETH_MII_RDD_DATA 0x0000ffff
#define ETH_MII_IND_BSY BIT(0)
#define ETH_MII_IND_SCN BIT(1)
#define ETH_MII_IND_NV BIT(2)
/* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
#define ETH_RX_FD BIT(0)
#define ETH_RX_LD BIT(1)
#define ETH_RX_ROK BIT(2)
#define ETH_RX_FM BIT(3)
#define ETH_RX_MP BIT(4)
#define ETH_RX_BP BIT(5)
#define ETH_RX_VLT BIT(6)
#define ETH_RX_CF BIT(7)
#define ETH_RX_OVR BIT(8)
#define ETH_RX_CRC BIT(9)
#define ETH_RX_CV BIT(10)
#define ETH_RX_DB BIT(11)
#define ETH_RX_LE BIT(12)
#define ETH_RX_LOR BIT(13)
#define ETH_RX_CES BIT(14)
#define ETH_RX_LEN_BIT 16
#define ETH_RX_LEN 0xffff0000
#define ETH_TX_FD BIT(0)
#define ETH_TX_LD BIT(1)
#define ETH_TX_OEN BIT(2)
#define ETH_TX_PEN BIT(3)
#define ETH_TX_CEN BIT(4)
#define ETH_TX_HEN BIT(5)
#define ETH_TX_TOK BIT(6)
#define ETH_TX_MP BIT(7)
#define ETH_TX_BP BIT(8)
#define ETH_TX_UND BIT(9)
#define ETH_TX_OF BIT(10)
#define ETH_TX_ED BIT(11)
#define ETH_TX_EC BIT(12)
#define ETH_TX_LC BIT(13)
#define ETH_TX_TD BIT(14)
#define ETH_TX_CRC BIT(15)
#define ETH_TX_LE BIT(16)
#define ETH_TX_CC 0x001E0000
/* DMA descriptor (in physical memory). */
struct dma_desc {
u32 control; /* Control. use DMAD_* */
u32 ca; /* Current Address. */
u32 devcs; /* Device control and status. */
u32 link; /* Next descriptor in chain. */
};
#define DMA_DESC_COUNT_BIT 0
#define DMA_DESC_COUNT_MSK 0x0003ffff
#define DMA_DESC_DS_BIT 20
#define DMA_DESC_DS_MSK 0x00300000
#define DMA_DESC_DEV_CMD_BIT 22
#define DMA_DESC_DEV_CMD_MSK 0x01c00000
/* DMA descriptors interrupts */
#define DMA_DESC_COF BIT(25) /* Chain on finished */
#define DMA_DESC_COD BIT(26) /* Chain on done */
#define DMA_DESC_IOF BIT(27) /* Interrupt on finished */
#define DMA_DESC_IOD BIT(28) /* Interrupt on done */
#define DMA_DESC_TERM BIT(29) /* Terminated */
#define DMA_DESC_DONE BIT(30) /* Done */
#define DMA_DESC_FINI BIT(31) /* Finished */
/* DMA register (within Internal Register Map). */
struct dma_reg {
u32 dmac; /* Control. */
u32 dmas; /* Status. */
u32 dmasm; /* Mask. */
u32 dmadptr; /* Descriptor pointer. */
u32 dmandptr; /* Next descriptor pointer. */
};
/* DMA channels specific registers */
#define DMA_CHAN_RUN_BIT BIT(0)
#define DMA_CHAN_DONE_BIT BIT(1)
#define DMA_CHAN_MODE_BIT BIT(2)
#define DMA_CHAN_MODE_MSK 0x0000000c
#define DMA_CHAN_MODE_AUTO 0
#define DMA_CHAN_MODE_BURST 1
#define DMA_CHAN_MODE_XFRT 2
#define DMA_CHAN_MODE_RSVD 3
#define DMA_CHAN_ACT_BIT BIT(4)
/* DMA status registers */
#define DMA_STAT_FINI BIT(0)
#define DMA_STAT_DONE BIT(1)
#define DMA_STAT_CHAIN BIT(2)
#define DMA_STAT_ERR BIT(3)
#define DMA_STAT_HALT BIT(4)
#define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
((dev)->dev_addr[1]))
#define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
((dev)->dev_addr[3] << 16) | \
((dev)->dev_addr[4] << 8) | \
((dev)->dev_addr[5]))
#define MII_CLOCK 1250000 /* no more than 2.5MHz */
/* the following must be powers of two */
#define KORINA_NUM_RDS 64 /* number of receive descriptors */
#define KORINA_NUM_TDS 64 /* number of transmit descriptors */
/* KORINA_RBSIZE is the hardware's default maximum receive
* frame size in bytes. Having this hardcoded means that there
* is no support for MTU sizes greater than 1500. */
#define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
#define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
#define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
#define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
#define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
#define TX_TIMEOUT (6000 * HZ / 1000)
enum chain_status {
desc_filled,
desc_is_empty
};
#define DMA_COUNT(count) ((count) & DMA_DESC_COUNT_MSK)
#define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
#define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
#define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
/* Information that need to be kept for each board. */
struct korina_private {
struct eth_regs __iomem *eth_regs;
struct dma_reg __iomem *rx_dma_regs;
struct dma_reg __iomem *tx_dma_regs;
struct dma_desc *td_ring; /* transmit descriptor ring */
struct dma_desc *rd_ring; /* receive descriptor ring */
dma_addr_t td_dma;
dma_addr_t rd_dma;
struct sk_buff *tx_skb[KORINA_NUM_TDS];
struct sk_buff *rx_skb[KORINA_NUM_RDS];
dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
int rx_next_done;
int rx_chain_head;
int rx_chain_tail;
enum chain_status rx_chain_status;
int tx_next_done;
int tx_chain_head;
int tx_chain_tail;
enum chain_status tx_chain_status;
int tx_count;
int tx_full;
int rx_irq;
int tx_irq;
spinlock_t lock; /* NIC xmit lock */
int dma_halt_cnt;
int dma_run_cnt;
struct napi_struct napi;
struct timer_list media_check_timer;
struct mii_if_info mii_if;
struct work_struct restart_task;
struct net_device *dev;
struct device *dmadev;
int mii_clock_freq;
};
static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
{
return lp->td_dma + (idx * sizeof(struct dma_desc));
}
static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
{
return lp->rd_dma + (idx * sizeof(struct dma_desc));
}
static inline void korina_abort_dma(struct net_device *dev,
struct dma_reg *ch)
{
if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
writel(0x10, &ch->dmac);
while (!(readl(&ch->dmas) & DMA_STAT_HALT))
netif_trans_update(dev);
writel(0, &ch->dmas);
}
writel(0, &ch->dmadptr);
writel(0, &ch->dmandptr);
}
static void korina_abort_tx(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
korina_abort_dma(dev, lp->tx_dma_regs);
}
static void korina_abort_rx(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
korina_abort_dma(dev, lp->rx_dma_regs);
}
/* transmit packet */
static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
u32 chain_prev, chain_next;
unsigned long flags;
struct dma_desc *td;
dma_addr_t ca;
u32 length;
int idx;
spin_lock_irqsave(&lp->lock, flags);
idx = lp->tx_chain_tail;
td = &lp->td_ring[idx];
/* stop queue when full, drop pkts if queue already full */
if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
lp->tx_full = 1;
if (lp->tx_count == (KORINA_NUM_TDS - 2))
netif_stop_queue(dev);
else
goto drop_packet;
}
lp->tx_count++;
lp->tx_skb[idx] = skb;
length = skb->len;
/* Setup the transmit descriptor. */
ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
if (dma_mapping_error(lp->dmadev, ca))
goto drop_packet;
lp->tx_skb_dma[idx] = ca;
td->ca = ca;
chain_prev = (idx - 1) & KORINA_TDS_MASK;
chain_next = (idx + 1) & KORINA_TDS_MASK;
if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
if (lp->tx_chain_status == desc_is_empty) {
/* Update tail */
td->control = DMA_COUNT(length) |
DMA_DESC_COF | DMA_DESC_IOF;
/* Move tail */
lp->tx_chain_tail = chain_next;
/* Write to NDPTR */
writel(korina_tx_dma(lp, lp->tx_chain_head),
&lp->tx_dma_regs->dmandptr);
/* Move head to tail */
lp->tx_chain_head = lp->tx_chain_tail;
} else {
/* Update tail */
td->control = DMA_COUNT(length) |
DMA_DESC_COF | DMA_DESC_IOF;
/* Link to prev */
lp->td_ring[chain_prev].control &=
~DMA_DESC_COF;
/* Link to prev */
lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
/* Move tail */
lp->tx_chain_tail = chain_next;
/* Write to NDPTR */
writel(korina_tx_dma(lp, lp->tx_chain_head),
&lp->tx_dma_regs->dmandptr);
/* Move head to tail */
lp->tx_chain_head = lp->tx_chain_tail;
lp->tx_chain_status = desc_is_empty;
}
} else {
if (lp->tx_chain_status == desc_is_empty) {
/* Update tail */
td->control = DMA_COUNT(length) |
DMA_DESC_COF | DMA_DESC_IOF;
/* Move tail */
lp->tx_chain_tail = chain_next;
lp->tx_chain_status = desc_filled;
} else {
/* Update tail */
td->control = DMA_COUNT(length) |
DMA_DESC_COF | DMA_DESC_IOF;
lp->td_ring[chain_prev].control &=
~DMA_DESC_COF;
lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
lp->tx_chain_tail = chain_next;
}
}
netif_trans_update(dev);
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
drop_packet:
dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
}
static int korina_mdio_wait(struct korina_private *lp)
{
u32 value;
return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
value, value & ETH_MII_IND_BSY,
1, 1000);
}
static int korina_mdio_read(struct net_device *dev, int phy, int reg)
{
struct korina_private *lp = netdev_priv(dev);
int ret;
ret = korina_mdio_wait(lp);
if (ret < 0)
return ret;
writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
writel(1, &lp->eth_regs->miimcmd);
ret = korina_mdio_wait(lp);
if (ret < 0)
return ret;
if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
return -EINVAL;
ret = readl(&lp->eth_regs->miimrdd);
writel(0, &lp->eth_regs->miimcmd);
return ret;
}
static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
{
struct korina_private *lp = netdev_priv(dev);
if (korina_mdio_wait(lp))
return;
writel(0, &lp->eth_regs->miimcmd);
writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
writel(val, &lp->eth_regs->miimwtd);
}
/* Ethernet Rx DMA interrupt */
static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct korina_private *lp = netdev_priv(dev);
u32 dmas, dmasm;
irqreturn_t retval;
dmas = readl(&lp->rx_dma_regs->dmas);
if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
dmasm = readl(&lp->rx_dma_regs->dmasm);
writel(dmasm | (DMA_STAT_DONE |
DMA_STAT_HALT | DMA_STAT_ERR),
&lp->rx_dma_regs->dmasm);
napi_schedule(&lp->napi);
if (dmas & DMA_STAT_ERR)
printk(KERN_ERR "%s: DMA error\n", dev->name);
retval = IRQ_HANDLED;
} else
retval = IRQ_NONE;
return retval;
}
static int korina_rx(struct net_device *dev, int limit)
{
struct korina_private *lp = netdev_priv(dev);
struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
struct sk_buff *skb, *skb_new;
u32 devcs, pkt_len, dmas;
dma_addr_t ca;
int count;
for (count = 0; count < limit; count++) {
skb = lp->rx_skb[lp->rx_next_done];
skb_new = NULL;
devcs = rd->devcs;
if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
break;
/* check that this is a whole packet
* WARNING: DMA_FD bit incorrectly set
* in Rc32434 (errata ref #077) */
if (!(devcs & ETH_RX_LD))
goto next;
if (!(devcs & ETH_RX_ROK)) {
/* Update statistics counters */
dev->stats.rx_errors++;
dev->stats.rx_dropped++;
if (devcs & ETH_RX_CRC)
dev->stats.rx_crc_errors++;
if (devcs & ETH_RX_LE)
dev->stats.rx_length_errors++;
if (devcs & ETH_RX_OVR)
dev->stats.rx_fifo_errors++;
if (devcs & ETH_RX_CV)
dev->stats.rx_frame_errors++;
if (devcs & ETH_RX_CES)
dev->stats.rx_frame_errors++;
goto next;
}
/* Malloc up new buffer. */
skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
if (!skb_new)
break;
ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(lp->dmadev, ca)) {
dev_kfree_skb_any(skb_new);
break;
}
pkt_len = RCVPKT_LENGTH(devcs);
dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
pkt_len, DMA_FROM_DEVICE);
/* Do not count the CRC */
skb_put(skb, pkt_len - 4);
skb->protocol = eth_type_trans(skb, dev);
/* Pass the packet to upper layers */
napi_gro_receive(&lp->napi, skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
/* Update the mcast stats */
if (devcs & ETH_RX_MP)
dev->stats.multicast++;
lp->rx_skb[lp->rx_next_done] = skb_new;
lp->rx_skb_dma[lp->rx_next_done] = ca;
next:
rd->devcs = 0;
/* Restore descriptor's curr_addr */
rd->ca = lp->rx_skb_dma[lp->rx_next_done];
rd->control = DMA_COUNT(KORINA_RBSIZE) |
DMA_DESC_COD | DMA_DESC_IOD;
lp->rd_ring[(lp->rx_next_done - 1) &
KORINA_RDS_MASK].control &=
~DMA_DESC_COD;
lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
rd = &lp->rd_ring[lp->rx_next_done];
writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
}
dmas = readl(&lp->rx_dma_regs->dmas);
if (dmas & DMA_STAT_HALT) {
writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
&lp->rx_dma_regs->dmas);
lp->dma_halt_cnt++;
rd->devcs = 0;
rd->ca = lp->rx_skb_dma[lp->rx_next_done];
writel(korina_rx_dma(lp, rd - lp->rd_ring),
&lp->rx_dma_regs->dmandptr);
}
return count;
}
static int korina_poll(struct napi_struct *napi, int budget)
{
struct korina_private *lp =
container_of(napi, struct korina_private, napi);
struct net_device *dev = lp->dev;
int work_done;
work_done = korina_rx(dev, budget);
if (work_done < budget) {
napi_complete_done(napi, work_done);
writel(readl(&lp->rx_dma_regs->dmasm) &
~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
&lp->rx_dma_regs->dmasm);
}
return work_done;
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void korina_multicast_list(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
unsigned long flags;
struct netdev_hw_addr *ha;
u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
/* Set promiscuous mode */
if (dev->flags & IFF_PROMISC)
recognise |= ETH_ARC_PRO;
else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
/* All multicast and broadcast */
recognise |= ETH_ARC_AM;
/* Build the hash table */
if (netdev_mc_count(dev) > 4) {
u16 hash_table[4] = { 0 };
u32 crc;
netdev_for_each_mc_addr(ha, dev) {
crc = ether_crc_le(6, ha->addr);
crc >>= 26;
hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
}
/* Accept filtered multicast */
recognise |= ETH_ARC_AFM;
/* Fill the MAC hash tables with their values */
writel((u32)(hash_table[1] << 16 | hash_table[0]),
&lp->eth_regs->ethhash0);
writel((u32)(hash_table[3] << 16 | hash_table[2]),
&lp->eth_regs->ethhash1);
}
spin_lock_irqsave(&lp->lock, flags);
writel(recognise, &lp->eth_regs->etharc);
spin_unlock_irqrestore(&lp->lock, flags);
}
static void korina_tx(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
u32 devcs;
u32 dmas;
spin_lock(&lp->lock);
/* Process all desc that are done */
while (IS_DMA_FINISHED(td->control)) {
if (lp->tx_full == 1) {
netif_wake_queue(dev);
lp->tx_full = 0;
}
devcs = lp->td_ring[lp->tx_next_done].devcs;
if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
(ETH_TX_FD | ETH_TX_LD)) {
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
/* Should never happen */
printk(KERN_ERR "%s: split tx ignored\n",
dev->name);
} else if (devcs & ETH_TX_TOK) {
dev->stats.tx_packets++;
dev->stats.tx_bytes +=
lp->tx_skb[lp->tx_next_done]->len;
} else {
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
/* Underflow */
if (devcs & ETH_TX_UND)
dev->stats.tx_fifo_errors++;
/* Oversized frame */
if (devcs & ETH_TX_OF)
dev->stats.tx_aborted_errors++;
/* Excessive deferrals */
if (devcs & ETH_TX_ED)
dev->stats.tx_carrier_errors++;
/* Collisions: medium busy */
if (devcs & ETH_TX_EC)
dev->stats.collisions++;
/* Late collision */
if (devcs & ETH_TX_LC)
dev->stats.tx_window_errors++;
}
/* We must always free the original skb */
if (lp->tx_skb[lp->tx_next_done]) {
dma_unmap_single(lp->dmadev,
lp->tx_skb_dma[lp->tx_next_done],
lp->tx_skb[lp->tx_next_done]->len,
DMA_TO_DEVICE);
dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
lp->tx_skb[lp->tx_next_done] = NULL;
}
lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
lp->td_ring[lp->tx_next_done].link = 0;
lp->td_ring[lp->tx_next_done].ca = 0;
lp->tx_count--;
/* Go on to next transmission */
lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
td = &lp->td_ring[lp->tx_next_done];
}
/* Clear the DMA status register */
dmas = readl(&lp->tx_dma_regs->dmas);
writel(~dmas, &lp->tx_dma_regs->dmas);
writel(readl(&lp->tx_dma_regs->dmasm) &
~(DMA_STAT_FINI | DMA_STAT_ERR),
&lp->tx_dma_regs->dmasm);
spin_unlock(&lp->lock);
}
static irqreturn_t
korina_tx_dma_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct korina_private *lp = netdev_priv(dev);
u32 dmas, dmasm;
irqreturn_t retval;
dmas = readl(&lp->tx_dma_regs->dmas);
if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
dmasm = readl(&lp->tx_dma_regs->dmasm);
writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
&lp->tx_dma_regs->dmasm);
korina_tx(dev);
if (lp->tx_chain_status == desc_filled &&
(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
writel(korina_tx_dma(lp, lp->tx_chain_head),
&lp->tx_dma_regs->dmandptr);
lp->tx_chain_status = desc_is_empty;
lp->tx_chain_head = lp->tx_chain_tail;
netif_trans_update(dev);
}
if (dmas & DMA_STAT_ERR)
printk(KERN_ERR "%s: DMA error\n", dev->name);
retval = IRQ_HANDLED;
} else
retval = IRQ_NONE;
return retval;
}
static void korina_check_media(struct net_device *dev, unsigned int init_media)
{
struct korina_private *lp = netdev_priv(dev);
mii_check_media(&lp->mii_if, 1, init_media);
if (lp->mii_if.full_duplex)
writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
&lp->eth_regs->ethmac2);
else
writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
&lp->eth_regs->ethmac2);
}
static void korina_poll_media(struct timer_list *t)
{
struct korina_private *lp = from_timer(lp, t, media_check_timer);
struct net_device *dev = lp->dev;
korina_check_media(dev, 0);
mod_timer(&lp->media_check_timer, jiffies + HZ);
}
static void korina_set_carrier(struct mii_if_info *mii)
{
if (mii->force_media) {
/* autoneg is off: Link is always assumed to be up */
if (!netif_carrier_ok(mii->dev))
netif_carrier_on(mii->dev);
} else /* Let MMI library update carrier status */
korina_check_media(mii->dev, 0);
}
static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct korina_private *lp = netdev_priv(dev);
struct mii_ioctl_data *data = if_mii(rq);
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irq(&lp->lock);
rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
spin_unlock_irq(&lp->lock);
korina_set_carrier(&lp->mii_if);
return rc;
}
/* ethtool helpers */
static void netdev_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct korina_private *lp = netdev_priv(dev);
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
}
static int netdev_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct korina_private *lp = netdev_priv(dev);
spin_lock_irq(&lp->lock);
mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
spin_unlock_irq(&lp->lock);
return 0;
}
static int netdev_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct korina_private *lp = netdev_priv(dev);
int rc;
spin_lock_irq(&lp->lock);
rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
spin_unlock_irq(&lp->lock);
korina_set_carrier(&lp->mii_if);
return rc;
}
static u32 netdev_get_link(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
return mii_link_ok(&lp->mii_if);
}
static const struct ethtool_ops netdev_ethtool_ops = {
.get_drvinfo = netdev_get_drvinfo,
.get_link = netdev_get_link,
.get_link_ksettings = netdev_get_link_ksettings,
.set_link_ksettings = netdev_set_link_ksettings,
};
static int korina_alloc_ring(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
struct sk_buff *skb;
dma_addr_t ca;
int i;
/* Initialize the transmit descriptors */
for (i = 0; i < KORINA_NUM_TDS; i++) {
lp->td_ring[i].control = DMA_DESC_IOF;
lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
lp->td_ring[i].ca = 0;
lp->td_ring[i].link = 0;
}
lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
lp->tx_full = lp->tx_count = 0;
lp->tx_chain_status = desc_is_empty;
/* Initialize the receive descriptors */
for (i = 0; i < KORINA_NUM_RDS; i++) {
skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
if (!skb)
return -ENOMEM;
lp->rx_skb[i] = skb;
lp->rd_ring[i].control = DMA_DESC_IOD |
DMA_COUNT(KORINA_RBSIZE);
lp->rd_ring[i].devcs = 0;
ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(lp->dmadev, ca))
return -ENOMEM;
lp->rd_ring[i].ca = ca;
lp->rx_skb_dma[i] = ca;
lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
}
/* loop back receive descriptors, so the last
* descriptor points to the first one */
lp->rd_ring[i - 1].link = lp->rd_dma;
lp->rd_ring[i - 1].control |= DMA_DESC_COD;
lp->rx_next_done = 0;
lp->rx_chain_head = 0;
lp->rx_chain_tail = 0;
lp->rx_chain_status = desc_is_empty;
return 0;
}
static void korina_free_ring(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
int i;
for (i = 0; i < KORINA_NUM_RDS; i++) {
lp->rd_ring[i].control = 0;
if (lp->rx_skb[i]) {
dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
KORINA_RBSIZE, DMA_FROM_DEVICE);
dev_kfree_skb_any(lp->rx_skb[i]);
lp->rx_skb[i] = NULL;
}
}
for (i = 0; i < KORINA_NUM_TDS; i++) {
lp->td_ring[i].control = 0;
if (lp->tx_skb[i]) {
dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
lp->tx_skb[i]->len, DMA_TO_DEVICE);
dev_kfree_skb_any(lp->tx_skb[i]);
lp->tx_skb[i] = NULL;
}
}
}
/*
* Initialize the RC32434 ethernet controller.
*/
static int korina_init(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
/* Disable DMA */
korina_abort_tx(dev);
korina_abort_rx(dev);
/* reset ethernet logic */
writel(0, &lp->eth_regs->ethintfc);
while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
netif_trans_update(dev);
/* Enable Ethernet Interface */
writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
/* Allocate rings */
if (korina_alloc_ring(dev)) {
printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
korina_free_ring(dev);
return -ENOMEM;
}
writel(0, &lp->rx_dma_regs->dmas);
/* Start Rx DMA */
writel(0, &lp->rx_dma_regs->dmandptr);
writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
writel(readl(&lp->tx_dma_regs->dmasm) &
~(DMA_STAT_FINI | DMA_STAT_ERR),
&lp->tx_dma_regs->dmasm);
writel(readl(&lp->rx_dma_regs->dmasm) &
~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
&lp->rx_dma_regs->dmasm);
/* Accept only packets destined for this Ethernet device address */
writel(ETH_ARC_AB, &lp->eth_regs->etharc);
/* Set all Ether station address registers to their initial values */
writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
&lp->eth_regs->ethmac2);
/* Back to back inter-packet-gap */
writel(0x15, &lp->eth_regs->ethipgt);
/* Non - Back to back inter-packet-gap */
writel(0x12, &lp->eth_regs->ethipgr);
/* Management Clock Prescaler Divisor
* Clock independent setting */
writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
&lp->eth_regs->ethmcp);
writel(0, &lp->eth_regs->miimcfg);
/* don't transmit until fifo contains 48b */
writel(48, &lp->eth_regs->ethfifott);
writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
korina_check_media(dev, 1);
napi_enable(&lp->napi);
netif_start_queue(dev);
return 0;
}
/*
* Restart the RC32434 ethernet controller.
*/
static void korina_restart_task(struct work_struct *work)
{
struct korina_private *lp = container_of(work,
struct korina_private, restart_task);
struct net_device *dev = lp->dev;
/*
* Disable interrupts
*/
disable_irq(lp->rx_irq);
disable_irq(lp->tx_irq);
writel(readl(&lp->tx_dma_regs->dmasm) |
DMA_STAT_FINI | DMA_STAT_ERR,
&lp->tx_dma_regs->dmasm);
writel(readl(&lp->rx_dma_regs->dmasm) |
DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
&lp->rx_dma_regs->dmasm);
napi_disable(&lp->napi);
korina_free_ring(dev);
if (korina_init(dev) < 0) {
printk(KERN_ERR "%s: cannot restart device\n", dev->name);
return;
}
korina_multicast_list(dev);
enable_irq(lp->tx_irq);
enable_irq(lp->rx_irq);
}
static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct korina_private *lp = netdev_priv(dev);
schedule_work(&lp->restart_task);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void korina_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
korina_tx_dma_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
static int korina_open(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
int ret;
/* Initialize */
ret = korina_init(dev);
if (ret < 0) {
printk(KERN_ERR "%s: cannot open device\n", dev->name);
goto out;
}
/* Install the interrupt handler
* that handles the Done Finished */
ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
0, "Korina ethernet Rx", dev);
if (ret < 0) {
printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
dev->name, lp->rx_irq);
goto err_release;
}
ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
0, "Korina ethernet Tx", dev);
if (ret < 0) {
printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
dev->name, lp->tx_irq);
goto err_free_rx_irq;
}
mod_timer(&lp->media_check_timer, jiffies + 1);
out:
return ret;
err_free_rx_irq:
free_irq(lp->rx_irq, dev);
err_release:
korina_free_ring(dev);
goto out;
}
static int korina_close(struct net_device *dev)
{
struct korina_private *lp = netdev_priv(dev);
u32 tmp;
del_timer(&lp->media_check_timer);
/* Disable interrupts */
disable_irq(lp->rx_irq);
disable_irq(lp->tx_irq);
korina_abort_tx(dev);
tmp = readl(&lp->tx_dma_regs->dmasm);
tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
writel(tmp, &lp->tx_dma_regs->dmasm);
korina_abort_rx(dev);
tmp = readl(&lp->rx_dma_regs->dmasm);
tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
writel(tmp, &lp->rx_dma_regs->dmasm);
napi_disable(&lp->napi);
cancel_work_sync(&lp->restart_task);
korina_free_ring(dev);
free_irq(lp->rx_irq, dev);
free_irq(lp->tx_irq, dev);
return 0;
}
static const struct net_device_ops korina_netdev_ops = {
.ndo_open = korina_open,
.ndo_stop = korina_close,
.ndo_start_xmit = korina_send_packet,
.ndo_set_rx_mode = korina_multicast_list,
.ndo_tx_timeout = korina_tx_timeout,
.ndo_eth_ioctl = korina_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = korina_poll_controller,
#endif
};
static int korina_probe(struct platform_device *pdev)
{
u8 *mac_addr = dev_get_platdata(&pdev->dev);
struct korina_private *lp;
struct net_device *dev;
struct clk *clk;
void __iomem *p;
int rc;
dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
lp = netdev_priv(dev);
if (mac_addr)
eth_hw_addr_set(dev, mac_addr);
else if (of_get_ethdev_address(pdev->dev.of_node, dev) < 0)
eth_hw_addr_random(dev);
clk = devm_clk_get_optional(&pdev->dev, "mdioclk");
if (IS_ERR(clk))
return PTR_ERR(clk);
if (clk) {
clk_prepare_enable(clk);
lp->mii_clock_freq = clk_get_rate(clk);
} else {
lp->mii_clock_freq = 200000000; /* max possible input clk */
}
lp->rx_irq = platform_get_irq_byname(pdev, "rx");
lp->tx_irq = platform_get_irq_byname(pdev, "tx");
p = devm_platform_ioremap_resource_byname(pdev, "emac");
if (IS_ERR(p)) {
printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
return PTR_ERR(p);
}
lp->eth_regs = p;
p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
if (IS_ERR(p)) {
printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
return PTR_ERR(p);
}
lp->rx_dma_regs = p;
p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
if (IS_ERR(p)) {
printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
return PTR_ERR(p);
}
lp->tx_dma_regs = p;
lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
&lp->td_dma, GFP_KERNEL);
if (!lp->td_ring)
return -ENOMEM;
lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
&lp->rd_dma, GFP_KERNEL);
if (!lp->rd_ring)
return -ENOMEM;
spin_lock_init(&lp->lock);
/* just use the rx dma irq */
dev->irq = lp->rx_irq;
lp->dev = dev;
lp->dmadev = &pdev->dev;
dev->netdev_ops = &korina_netdev_ops;
dev->ethtool_ops = &netdev_ethtool_ops;
dev->watchdog_timeo = TX_TIMEOUT;
netif_napi_add(dev, &lp->napi, korina_poll, NAPI_POLL_WEIGHT);
lp->mii_if.dev = dev;
lp->mii_if.mdio_read = korina_mdio_read;
lp->mii_if.mdio_write = korina_mdio_write;
lp->mii_if.phy_id = 1;
lp->mii_if.phy_id_mask = 0x1f;
lp->mii_if.reg_num_mask = 0x1f;
platform_set_drvdata(pdev, dev);
rc = register_netdev(dev);
if (rc < 0) {
printk(KERN_ERR DRV_NAME
": cannot register net device: %d\n", rc);
return rc;
}
timer_setup(&lp->media_check_timer, korina_poll_media, 0);
INIT_WORK(&lp->restart_task, korina_restart_task);
printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
dev->name);
return rc;
}
static int korina_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
unregister_netdev(dev);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id korina_match[] = {
{
.compatible = "idt,3243x-emac",
},
{ }
};
MODULE_DEVICE_TABLE(of, korina_match);
#endif
static struct platform_driver korina_driver = {
.driver = {
.name = "korina",
.of_match_table = of_match_ptr(korina_match),
},
.probe = korina_probe,
.remove = korina_remove,
};
module_platform_driver(korina_driver);
MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
MODULE_LICENSE("GPL");