// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice.h"
#include "ice_lib.h"
/**
* ice_setup_rx_ctx - Configure a receive ring context
* @ring: The Rx ring to configure
*
* Configure the Rx descriptor ring in RLAN context.
*/
static int ice_setup_rx_ctx(struct ice_ring *ring)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
u32 rxdid = ICE_RXDID_FLEX_NIC;
struct ice_rlan_ctx rlan_ctx;
u32 regval;
u16 pf_q;
int err;
/* what is Rx queue number in global space of 2K Rx queues */
pf_q = vsi->rxq_map[ring->q_index];
/* clear the context structure first */
memset(&rlan_ctx, 0, sizeof(rlan_ctx));
rlan_ctx.base = ring->dma >> 7;
rlan_ctx.qlen = ring->count;
/* Receive Packet Data Buffer Size.
* The Packet Data Buffer Size is defined in 128 byte units.
*/
rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
/* use 32 byte descriptors */
rlan_ctx.dsize = 1;
/* Strip the Ethernet CRC bytes before the packet is posted to host
* memory.
*/
rlan_ctx.crcstrip = 1;
/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
rlan_ctx.l2tsel = 1;
rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
/* This controls whether VLAN is stripped from inner headers
* The VLAN in the inner L2 header is stripped to the receive
* descriptor if enabled by this flag.
*/
rlan_ctx.showiv = 0;
/* Max packet size for this queue - must not be set to a larger value
* than 5 x DBUF
*/
rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
/* Rx queue threshold in units of 64 */
rlan_ctx.lrxqthresh = 1;
/* Enable Flexible Descriptors in the queue context which
* allows this driver to select a specific receive descriptor format
*/
if (vsi->type != ICE_VSI_VF) {
regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
/* increasing context priority to pick up profile id;
* default is 0x01; setting to 0x03 to ensure profile
* is programming if prev context is of same priority
*/
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
}
/* Absolute queue number out of 2K needs to be passed */
err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
if (err) {
dev_err(&vsi->back->pdev->dev,
"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
pf_q, err);
return -EIO;
}
if (vsi->type == ICE_VSI_VF)
return 0;
/* init queue specific tail register */
ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
writel(0, ring->tail);
ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
return 0;
}
/**
* ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
* @ring: The Tx ring to configure
* @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
* @pf_q: queue index in the PF space
*
* Configure the Tx descriptor ring in TLAN context.
*/
static void
ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
tlan_ctx->port_num = vsi->port_info->lport;
/* Transmit Queue Length */
tlan_ctx->qlen = ring->count;
/* PF number */
tlan_ctx->pf_num = hw->pf_id;
/* queue belongs to a specific VSI type
* VF / VM index should be programmed per vmvf_type setting:
* for vmvf_type = VF, it is VF number between 0-256
* for vmvf_type = VM, it is VM number between 0-767
* for PF or EMP this field should be set to zero
*/
switch (vsi->type) {
case ICE_VSI_PF:
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
break;
case ICE_VSI_VF:
/* Firmware expects vmvf_num to be absolute VF id */
tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
break;
default:
return;
}
/* make sure the context is associated with the right VSI */
tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
tlan_ctx->tso_ena = ICE_TX_LEGACY;
tlan_ctx->tso_qnum = pf_q;
/* Legacy or Advanced Host Interface:
* 0: Advanced Host Interface
* 1: Legacy Host Interface
*/
tlan_ctx->legacy_int = ICE_TX_LEGACY;
}
/**
* ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
* @pf: the PF being configured
* @pf_q: the PF queue
* @ena: enable or disable state of the queue
*
* This routine will wait for the given Rx queue of the PF to reach the
* enabled or disabled state.
* Returns -ETIMEDOUT in case of failing to reach the requested state after
* multiple retries; else will return 0 in case of success.
*/
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
int i;
for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q));
if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
break;
usleep_range(20, 40);
}
if (i >= ICE_Q_WAIT_MAX_RETRY)
return -ETIMEDOUT;
return 0;
}
/**
* ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
* @vsi: the VSI being configured
* @ena: start or stop the Rx rings
*/
static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int i, j, ret = 0;
for (i = 0; i < vsi->num_rxq; i++) {
int pf_q = vsi->rxq_map[i];
u32 rx_reg;
for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) {
rx_reg = rd32(hw, QRX_CTRL(pf_q));
if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) ==
((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1))
break;
usleep_range(1000, 2000);
}
/* Skip if the queue is already in the requested state */
if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
continue;
/* turn on/off the queue */
if (ena)
rx_reg |= QRX_CTRL_QENA_REQ_M;
else
rx_reg &= ~QRX_CTRL_QENA_REQ_M;
wr32(hw, QRX_CTRL(pf_q), rx_reg);
/* wait for the change to finish */
ret = ice_pf_rxq_wait(pf, pf_q, ena);
if (ret) {
dev_err(&pf->pdev->dev,
"VSI idx %d Rx ring %d %sable timeout\n",
vsi->idx, pf_q, (ena ? "en" : "dis"));
break;
}
}
return ret;
}
/**
* ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
* @vsi: VSI pointer
* @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
*
* On error: returns error code (negative)
* On success: returns 0
*/
static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors)
{
struct ice_pf *pf = vsi->back;
/* allocate memory for both Tx and Rx ring pointers */
vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
sizeof(*vsi->tx_rings), GFP_KERNEL);
if (!vsi->tx_rings)
goto err_txrings;
vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
sizeof(*vsi->rx_rings), GFP_KERNEL);
if (!vsi->rx_rings)
goto err_rxrings;
if (alloc_qvectors) {
/* allocate memory for q_vector pointers */
vsi->q_vectors = devm_kcalloc(&pf->pdev->dev,
vsi->num_q_vectors,
sizeof(*vsi->q_vectors),
GFP_KERNEL);
if (!vsi->q_vectors)
goto err_vectors;
}
return 0;
err_vectors:
devm_kfree(&pf->pdev->dev, vsi->rx_rings);
err_rxrings:
devm_kfree(&pf->pdev->dev, vsi->tx_rings);
err_txrings:
return -ENOMEM;
}
/**
* ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
*/
static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
switch (vsi->type) {
case ICE_VSI_PF:
vsi->alloc_txq = pf->num_lan_tx;
vsi->alloc_rxq = pf->num_lan_rx;
vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE);
vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
break;
case ICE_VSI_VF:
vsi->alloc_txq = pf->num_vf_qps;
vsi->alloc_rxq = pf->num_vf_qps;
/* pf->num_vf_msix includes (VF miscellaneous vector +
* data queue interrupts). Since vsi->num_q_vectors is number
* of queues vectors, subtract 1 from the original vector
* count
*/
vsi->num_q_vectors = pf->num_vf_msix - 1;
break;
default:
dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
vsi->type);
break;
}
}
/**
* ice_get_free_slot - get the next non-NULL location index in array
* @array: array to search
* @size: size of the array
* @curr: last known occupied index to be used as a search hint
*
* void * is being used to keep the functionality generic. This lets us use this
* function on any array of pointers.
*/
static int ice_get_free_slot(void *array, int size, int curr)
{
int **tmp_array = (int **)array;
int next;
if (curr < (size - 1) && !tmp_array[curr + 1]) {
next = curr + 1;
} else {
int i = 0;
while ((i < size) && (tmp_array[i]))
i++;
if (i == size)
next = ICE_NO_VSI;
else
next = i;
}
return next;
}
/**
* ice_vsi_delete - delete a VSI from the switch
* @vsi: pointer to VSI being removed
*/
void ice_vsi_delete(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_vsi_ctx *ctxt;
enum ice_status status;
ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return;
if (vsi->type == ICE_VSI_VF)
ctxt->vf_num = vsi->vf_id;
ctxt->vsi_num = vsi->vsi_num;
memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
if (status)
dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
vsi->vsi_num);
devm_kfree(&pf->pdev->dev, ctxt);
}
/**
* ice_vsi_free_arrays - clean up VSI resources
* @vsi: pointer to VSI being cleared
* @free_qvectors: bool to specify if q_vectors should be deallocated
*/
static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors)
{
struct ice_pf *pf = vsi->back;
/* free the ring and vector containers */
if (free_qvectors && vsi->q_vectors) {
devm_kfree(&pf->pdev->dev, vsi->q_vectors);
vsi->q_vectors = NULL;
}
if (vsi->tx_rings) {
devm_kfree(&pf->pdev->dev, vsi->tx_rings);
vsi->tx_rings = NULL;
}
if (vsi->rx_rings) {
devm_kfree(&pf->pdev->dev, vsi->rx_rings);
vsi->rx_rings = NULL;
}
}
/**
* ice_vsi_clear - clean up and deallocate the provided VSI
* @vsi: pointer to VSI being cleared
*
* This deallocates the VSI's queue resources, removes it from the PF's
* VSI array if necessary, and deallocates the VSI
*
* Returns 0 on success, negative on failure
*/
int ice_vsi_clear(struct ice_vsi *vsi)
{
struct ice_pf *pf = NULL;
if (!vsi)
return 0;
if (!vsi->back)
return -EINVAL;
pf = vsi->back;
if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
vsi->idx);
return -EINVAL;
}
mutex_lock(&pf->sw_mutex);
/* updates the PF for this cleared VSI */
pf->vsi[vsi->idx] = NULL;
if (vsi->idx < pf->next_vsi)
pf->next_vsi = vsi->idx;
ice_vsi_free_arrays(vsi, true);
mutex_unlock(&pf->sw_mutex);
devm_kfree(&pf->pdev->dev, vsi);
return 0;
}
/**
* ice_msix_clean_rings - MSIX mode Interrupt Handler
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
{
struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
if (!q_vector->tx.ring && !q_vector->rx.ring)
return IRQ_HANDLED;
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* ice_vsi_alloc - Allocates the next available struct VSI in the PF
* @pf: board private structure
* @type: type of VSI
*
* returns a pointer to a VSI on success, NULL on failure.
*/
static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type)
{
struct ice_vsi *vsi = NULL;
/* Need to protect the allocation of the VSIs at the PF level */
mutex_lock(&pf->sw_mutex);
/* If we have already allocated our maximum number of VSIs,
* pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
* is available to be populated
*/
if (pf->next_vsi == ICE_NO_VSI) {
dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
goto unlock_pf;
}
vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
if (!vsi)
goto unlock_pf;
vsi->type = type;
vsi->back = pf;
set_bit(__ICE_DOWN, vsi->state);
vsi->idx = pf->next_vsi;
vsi->work_lmt = ICE_DFLT_IRQ_WORK;
ice_vsi_set_num_qs(vsi);
switch (vsi->type) {
case ICE_VSI_PF:
if (ice_vsi_alloc_arrays(vsi, true))
goto err_rings;
/* Setup default MSIX irq handler for VSI */
vsi->irq_handler = ice_msix_clean_rings;
break;
case ICE_VSI_VF:
if (ice_vsi_alloc_arrays(vsi, true))
goto err_rings;
break;
default:
dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
goto unlock_pf;
}
/* fill VSI slot in the PF struct */
pf->vsi[pf->next_vsi] = vsi;
/* prepare pf->next_vsi for next use */
pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
pf->next_vsi);
goto unlock_pf;
err_rings:
devm_kfree(&pf->pdev->dev, vsi);
vsi = NULL;
unlock_pf:
mutex_unlock(&pf->sw_mutex);
return vsi;
}
/**
* __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
* @qs_cfg: gathered variables needed for PF->VSI queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
{
int offset, i;
mutex_lock(qs_cfg->qs_mutex);
offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
0, qs_cfg->q_count, 0);
if (offset >= qs_cfg->pf_map_size) {
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
for (i = 0; i < qs_cfg->q_count; i++)
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
mutex_unlock(qs_cfg->qs_mutex);
return 0;
}
/**
* __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
* @qs_cfg: gathered variables needed for PF->VSI queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
{
int i, index = 0;
mutex_lock(qs_cfg->qs_mutex);
for (i = 0; i < qs_cfg->q_count; i++) {
index = find_next_zero_bit(qs_cfg->pf_map,
qs_cfg->pf_map_size, index);
if (index >= qs_cfg->pf_map_size)
goto err_scatter;
set_bit(index, qs_cfg->pf_map);
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
}
mutex_unlock(qs_cfg->qs_mutex);
return 0;
err_scatter:
for (index = 0; index < i; index++) {
clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
}
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
/**
* __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
* @qs_cfg: gathered variables needed for PF->VSI queues assignment
*
* This is an internal function for assigning queues from the PF to VSI and
* initially tries to find contiguous space. If it is not successful to find
* contiguous space, then it tries with the scatter approach.
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
{
int ret = 0;
ret = __ice_vsi_get_qs_contig(qs_cfg);
if (ret) {
/* contig failed, so try with scatter approach */
qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
qs_cfg->scatter_count);
ret = __ice_vsi_get_qs_sc(qs_cfg);
}
return ret;
}
/**
* ice_vsi_get_qs - Assign queues from PF to VSI
* @vsi: the VSI to assign queues to
*
* Returns 0 on success and a negative value on error
*/
static int ice_vsi_get_qs(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_qs_cfg tx_qs_cfg = {
.qs_mutex = &pf->avail_q_mutex,
.pf_map = pf->avail_txqs,
.pf_map_size = ICE_MAX_TXQS,
.q_count = vsi->alloc_txq,
.scatter_count = ICE_MAX_SCATTER_TXQS,
.vsi_map = vsi->txq_map,
.vsi_map_offset = 0,
.mapping_mode = vsi->tx_mapping_mode
};
struct ice_qs_cfg rx_qs_cfg = {
.qs_mutex = &pf->avail_q_mutex,
.pf_map = pf->avail_rxqs,
.pf_map_size = ICE_MAX_RXQS,
.q_count = vsi->alloc_rxq,
.scatter_count = ICE_MAX_SCATTER_RXQS,
.vsi_map = vsi->rxq_map,
.vsi_map_offset = 0,
.mapping_mode = vsi->rx_mapping_mode
};
int ret = 0;
vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
ret = __ice_vsi_get_qs(&tx_qs_cfg);
if (!ret)
ret = __ice_vsi_get_qs(&rx_qs_cfg);
return ret;
}
/**
* ice_vsi_put_qs - Release queues from VSI to PF
* @vsi: the VSI that is going to release queues
*/
void ice_vsi_put_qs(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int i;
mutex_lock(&pf->avail_q_mutex);
for (i = 0; i < vsi->alloc_txq; i++) {
clear_bit(vsi->txq_map[i], pf->avail_txqs);
vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
}
for (i = 0; i < vsi->alloc_rxq; i++) {
clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
}
mutex_unlock(&pf->avail_q_mutex);
}
/**
* ice_rss_clean - Delete RSS related VSI structures that hold user inputs
* @vsi: the VSI being removed
*/
static void ice_rss_clean(struct ice_vsi *vsi)
{
struct ice_pf *pf;
pf = vsi->back;
if (vsi->rss_hkey_user)
devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
if (vsi->rss_lut_user)
devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
}
/**
* ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
* @vsi: the VSI being configured
*/
static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
{
struct ice_hw_common_caps *cap;
struct ice_pf *pf = vsi->back;
if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
vsi->rss_size = 1;
return;
}
cap = &pf->hw.func_caps.common_cap;
switch (vsi->type) {
case ICE_VSI_PF:
/* PF VSI will inherit RSS instance of PF */
vsi->rss_table_size = cap->rss_table_size;
vsi->rss_size = min_t(int, num_online_cpus(),
BIT(cap->rss_table_entry_width));
vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
break;
case ICE_VSI_VF:
/* VF VSI will gets a small RSS table
* For VSI_LUT, LUT size should be set to 64 bytes
*/
vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
vsi->rss_size = min_t(int, num_online_cpus(),
BIT(cap->rss_table_entry_width));
vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
break;
default:
dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
vsi->type);
break;
}
}
/**
* ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
* @ctxt: the VSI context being set
*
* This initializes a default VSI context for all sections except the Queues.
*/
static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
{
u32 table = 0;
memset(&ctxt->info, 0, sizeof(ctxt->info));
/* VSI's should be allocated from shared pool */
ctxt->alloc_from_pool = true;
/* Src pruning enabled by default */
ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
/* Traffic from VSI can be sent to LAN */
ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
* behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
* packets untagged/tagged.
*/
ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
ICE_AQ_VSI_VLAN_MODE_M) >>
ICE_AQ_VSI_VLAN_MODE_S);
/* Have 1:1 UP mapping for both ingress/egress tables */
table |= ICE_UP_TABLE_TRANSLATE(0, 0);
table |= ICE_UP_TABLE_TRANSLATE(1, 1);
table |= ICE_UP_TABLE_TRANSLATE(2, 2);
table |= ICE_UP_TABLE_TRANSLATE(3, 3);
table |= ICE_UP_TABLE_TRANSLATE(4, 4);
table |= ICE_UP_TABLE_TRANSLATE(5, 5);
table |= ICE_UP_TABLE_TRANSLATE(6, 6);
table |= ICE_UP_TABLE_TRANSLATE(7, 7);
ctxt->info.ingress_table = cpu_to_le32(table);
ctxt->info.egress_table = cpu_to_le32(table);
/* Have 1:1 UP mapping for outer to inner UP table */
ctxt->info.outer_up_table = cpu_to_le32(table);
/* No Outer tag support outer_tag_flags remains to zero */
}
/**
* ice_vsi_setup_q_map - Setup a VSI queue map
* @vsi: the VSI being configured
* @ctxt: VSI context structure
*/
static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
{
u16 offset = 0, qmap = 0, tx_count = 0;
u16 qcount_tx = vsi->alloc_txq;
u16 qcount_rx = vsi->alloc_rxq;
u16 tx_numq_tc, rx_numq_tc;
u16 pow = 0, max_rss = 0;
bool ena_tc0 = false;
u8 netdev_tc = 0;
int i;
/* at least TC0 should be enabled by default */
if (vsi->tc_cfg.numtc) {
if (!(vsi->tc_cfg.ena_tc & BIT(0)))
ena_tc0 = true;
} else {
ena_tc0 = true;
}
if (ena_tc0) {
vsi->tc_cfg.numtc++;
vsi->tc_cfg.ena_tc |= 1;
}
rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
if (!rx_numq_tc)
rx_numq_tc = 1;
tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
if (!tx_numq_tc)
tx_numq_tc = 1;
/* TC mapping is a function of the number of Rx queues assigned to the
* VSI for each traffic class and the offset of these queues.
* The first 10 bits are for queue offset for TC0, next 4 bits for no:of
* queues allocated to TC0. No:of queues is a power-of-2.
*
* If TC is not enabled, the queue offset is set to 0, and allocate one
* queue, this way, traffic for the given TC will be sent to the default
* queue.
*
* Setup number and offset of Rx queues for all TCs for the VSI
*/
qcount_rx = rx_numq_tc;
/* qcount will change if RSS is enabled */
if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
if (vsi->type == ICE_VSI_PF)
max_rss = ICE_MAX_LG_RSS_QS;
else
max_rss = ICE_MAX_SMALL_RSS_QS;
qcount_rx = min_t(int, rx_numq_tc, max_rss);
qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
}
}
/* find the (rounded up) power-of-2 of qcount */
pow = order_base_2(qcount_rx);
for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
/* TC is not enabled */
vsi->tc_cfg.tc_info[i].qoffset = 0;
vsi->tc_cfg.tc_info[i].qcount_rx = 1;
vsi->tc_cfg.tc_info[i].qcount_tx = 1;
vsi->tc_cfg.tc_info[i].netdev_tc = 0;
ctxt->info.tc_mapping[i] = 0;
continue;
}
/* TC is enabled */
vsi->tc_cfg.tc_info[i].qoffset = offset;
vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
ICE_AQ_VSI_TC_Q_OFFSET_M) |
((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
ICE_AQ_VSI_TC_Q_NUM_M);
offset += qcount_rx;
tx_count += tx_numq_tc;
ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
}
vsi->num_rxq = offset;
vsi->num_txq = tx_count;
if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
/* since there is a chance that num_rxq could have been changed
* in the above for loop, make num_txq equal to num_rxq.
*/
vsi->num_txq = vsi->num_rxq;
}
/* Rx queue mapping */
ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
/* q_mapping buffer holds the info for the first queue allocated for
* this VSI in the PF space and also the number of queues associated
* with this VSI.
*/
ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
}
/**
* ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
* @ctxt: the VSI context being set
* @vsi: the VSI being configured
*/
static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
{
u8 lut_type, hash_type;
switch (vsi->type) {
case ICE_VSI_PF:
/* PF VSI will inherit RSS instance of PF */
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
break;
case ICE_VSI_VF:
/* VF VSI will gets a small RSS table which is a VSI LUT type */
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
break;
default:
dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
vsi->type);
return;
}
ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
}
/**
* ice_vsi_init - Create and initialize a VSI
* @vsi: the VSI being configured
*
* This initializes a VSI context depending on the VSI type to be added and
* passes it down to the add_vsi aq command to create a new VSI.
*/
static int ice_vsi_init(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct ice_vsi_ctx *ctxt;
int ret = 0;
ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
switch (vsi->type) {
case ICE_VSI_PF:
ctxt->flags = ICE_AQ_VSI_TYPE_PF;
break;
case ICE_VSI_VF:
ctxt->flags = ICE_AQ_VSI_TYPE_VF;
/* VF number here is the absolute VF number (0-255) */
ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
break;
default:
return -ENODEV;
}
ice_set_dflt_vsi_ctx(ctxt);
/* if the switch is in VEB mode, allow VSI loopback */
if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
/* Set LUT type and HASH type if RSS is enabled */
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
ice_set_rss_vsi_ctx(ctxt, vsi);
ctxt->info.sw_id = vsi->port_info->sw_id;
ice_vsi_setup_q_map(vsi, ctxt);
ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
if (ret) {
dev_err(&pf->pdev->dev,
"Add VSI failed, err %d\n", ret);
return -EIO;
}
/* keep context for update VSI operations */
vsi->info = ctxt->info;
/* record VSI number returned */
vsi->vsi_num = ctxt->vsi_num;
devm_kfree(&pf->pdev->dev, ctxt);
return ret;
}
/**
* ice_free_q_vector - Free memory allocated for a specific interrupt vector
* @vsi: VSI having the memory freed
* @v_idx: index of the vector to be freed
*/
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_q_vector *q_vector;
struct ice_ring *ring;
if (!vsi->q_vectors[v_idx]) {
dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n",
v_idx);
return;
}
q_vector = vsi->q_vectors[v_idx];
ice_for_each_ring(ring, q_vector->tx)
ring->q_vector = NULL;
ice_for_each_ring(ring, q_vector->rx)
ring->q_vector = NULL;
/* only VSI with an associated netdev is set up with NAPI */
if (vsi->netdev)
netif_napi_del(&q_vector->napi);
devm_kfree(&vsi->back->pdev->dev, q_vector);
vsi->q_vectors[v_idx] = NULL;
}
/**
* ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
* @vsi: the VSI having memory freed
*/
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
int v_idx;
for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
ice_free_q_vector(vsi, v_idx);
}
/**
* ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
* @vsi: the VSI being configured
* @v_idx: index of the vector in the VSI struct
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
*/
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
/* allocate q_vector */
q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
q_vector->vsi = vsi;
q_vector->v_idx = v_idx;
if (vsi->type == ICE_VSI_VF)
goto out;
/* only set affinity_mask if the CPU is online */
if (cpu_online(v_idx))
cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
/* This will not be called in the driver load path because the netdev
* will not be created yet. All other cases with register the NAPI
* handler here (i.e. resume, reset/rebuild, etc.)
*/
if (vsi->netdev)
netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
NAPI_POLL_WEIGHT);
out:
/* tie q_vector and VSI together */
vsi->q_vectors[v_idx] = q_vector;
return 0;
}
/**
* ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
* @vsi: the VSI being configured
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int v_idx = 0, num_q_vectors;
int err;
if (vsi->q_vectors[0]) {
dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
vsi->vsi_num);
return -EEXIST;
}
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
num_q_vectors = vsi->num_q_vectors;
} else {
err = -EINVAL;
goto err_out;
}
for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
err = ice_vsi_alloc_q_vector(vsi, v_idx);
if (err)
goto err_out;
}
return 0;
err_out:
while (v_idx--)
ice_free_q_vector(vsi, v_idx);
dev_err(&pf->pdev->dev,
"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
vsi->num_q_vectors, vsi->vsi_num, err);
vsi->num_q_vectors = 0;
return err;
}
/**
* ice_vsi_setup_vector_base - Set up the base vector for the given VSI
* @vsi: ptr to the VSI
*
* This should only be called after ice_vsi_alloc() which allocates the
* corresponding SW VSI structure and initializes num_queue_pairs for the
* newly allocated VSI.
*
* Returns 0 on success or negative on failure
*/
static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int num_q_vectors = 0;
if (vsi->sw_base_vector || vsi->hw_base_vector) {
dev_dbg(&pf->pdev->dev, "VSI %d has non-zero HW base vector %d or SW base vector %d\n",
vsi->vsi_num, vsi->hw_base_vector, vsi->sw_base_vector);
return -EEXIST;
}
if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
return -ENOENT;
switch (vsi->type) {
case ICE_VSI_PF:
num_q_vectors = vsi->num_q_vectors;
/* reserve slots from OS requested IRQs */
vsi->sw_base_vector = ice_get_res(pf, pf->sw_irq_tracker,
num_q_vectors, vsi->idx);
if (vsi->sw_base_vector < 0) {
dev_err(&pf->pdev->dev,
"Failed to get tracking for %d SW vectors for VSI %d, err=%d\n",
num_q_vectors, vsi->vsi_num,
vsi->sw_base_vector);
return -ENOENT;
}
pf->num_avail_sw_msix -= num_q_vectors;
/* reserve slots from HW interrupts */
vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker,
num_q_vectors, vsi->idx);
break;
case ICE_VSI_VF:
/* take VF misc vector and data vectors into account */
num_q_vectors = pf->num_vf_msix;
/* For VF VSI, reserve slots only from HW interrupts */
vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker,
num_q_vectors, vsi->idx);
break;
default:
dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
vsi->type);
break;
}
if (vsi->hw_base_vector < 0) {
dev_err(&pf->pdev->dev,
"Failed to get tracking for %d HW vectors for VSI %d, err=%d\n",
num_q_vectors, vsi->vsi_num, vsi->hw_base_vector);
if (vsi->type != ICE_VSI_VF) {
ice_free_res(vsi->back->sw_irq_tracker,
vsi->sw_base_vector, vsi->idx);
pf->num_avail_sw_msix += num_q_vectors;
}
return -ENOENT;
}
pf->num_avail_hw_msix -= num_q_vectors;
return 0;
}
/**
* ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
* @vsi: the VSI having rings deallocated
*/
static void ice_vsi_clear_rings(struct ice_vsi *vsi)
{
int i;
if (vsi->tx_rings) {
for (i = 0; i < vsi->alloc_txq; i++) {
if (vsi->tx_rings[i]) {
kfree_rcu(vsi->tx_rings[i], rcu);
vsi->tx_rings[i] = NULL;
}
}
}
if (vsi->rx_rings) {
for (i = 0; i < vsi->alloc_rxq; i++) {
if (vsi->rx_rings[i]) {
kfree_rcu(vsi->rx_rings[i], rcu);
vsi->rx_rings[i] = NULL;
}
}
}
}
/**
* ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
* @vsi: VSI which is having rings allocated
*/
static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int i;
/* Allocate Tx rings */
for (i = 0; i < vsi->alloc_txq; i++) {
struct ice_ring *ring;
/* allocate with kzalloc(), free with kfree_rcu() */
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto err_out;
ring->q_index = i;
ring->reg_idx = vsi->txq_map[i];
ring->ring_active = false;
ring->vsi = vsi;
ring->dev = &pf->pdev->dev;
ring->count = vsi->num_desc;
vsi->tx_rings[i] = ring;
}
/* Allocate Rx rings */
for (i = 0; i < vsi->alloc_rxq; i++) {
struct ice_ring *ring;
/* allocate with kzalloc(), free with kfree_rcu() */
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto err_out;
ring->q_index = i;
ring->reg_idx = vsi->rxq_map[i];
ring->ring_active = false;
ring->vsi = vsi;
ring->netdev = vsi->netdev;
ring->dev = &pf->pdev->dev;
ring->count = vsi->num_desc;
vsi->rx_rings[i] = ring;
}
return 0;
err_out:
ice_vsi_clear_rings(vsi);
return -ENOMEM;
}
/**
* ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
* @vsi: the VSI being configured
*
* This function maps descriptor rings to the queue-specific vectors allotted
* through the MSI-X enabling code. On a constrained vector budget, we map Tx
* and Rx rings to the vector as "efficiently" as possible.
*/
static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
{
int q_vectors = vsi->num_q_vectors;
int tx_rings_rem, rx_rings_rem;
int v_id;
/* initially assigning remaining rings count to VSIs num queue value */
tx_rings_rem = vsi->num_txq;
rx_rings_rem = vsi->num_rxq;
for (v_id = 0; v_id < q_vectors; v_id++) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
/* Tx rings mapping to vector */
tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
q_vector->num_ring_tx = tx_rings_per_v;
q_vector->tx.ring = NULL;
q_vector->tx.itr_idx = ICE_TX_ITR;
q_base = vsi->num_txq - tx_rings_rem;
for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
struct ice_ring *tx_ring = vsi->tx_rings[q_id];
tx_ring->q_vector = q_vector;
tx_ring->next = q_vector->tx.ring;
q_vector->tx.ring = tx_ring;
}
tx_rings_rem -= tx_rings_per_v;
/* Rx rings mapping to vector */
rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
q_vector->num_ring_rx = rx_rings_per_v;
q_vector->rx.ring = NULL;
q_vector->rx.itr_idx = ICE_RX_ITR;
q_base = vsi->num_rxq - rx_rings_rem;
for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
struct ice_ring *rx_ring = vsi->rx_rings[q_id];
rx_ring->q_vector = q_vector;
rx_ring->next = q_vector->rx.ring;
q_vector->rx.ring = rx_ring;
}
rx_rings_rem -= rx_rings_per_v;
}
}
/**
* ice_vsi_manage_rss_lut - disable/enable RSS
* @vsi: the VSI being changed
* @ena: boolean value indicating if this is an enable or disable request
*
* In the event of disable request for RSS, this function will zero out RSS
* LUT, while in the event of enable request for RSS, it will reconfigure RSS
* LUT.
*/
int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
{
int err = 0;
u8 *lut;
lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
GFP_KERNEL);
if (!lut)
return -ENOMEM;
if (ena) {
if (vsi->rss_lut_user)
memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
else
ice_fill_rss_lut(lut, vsi->rss_table_size,
vsi->rss_size);
}
err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
devm_kfree(&vsi->back->pdev->dev, lut);
return err;
}
/**
* ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
* @vsi: VSI to be configured
*/
static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
{
u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE];
struct ice_aqc_get_set_rss_keys *key;
struct ice_pf *pf = vsi->back;
enum ice_status status;
int err = 0;
u8 *lut;
vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
if (!lut)
return -ENOMEM;
if (vsi->rss_lut_user)
memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
else
ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
vsi->rss_table_size);
if (status) {
dev_err(&vsi->back->pdev->dev,
"set_rss_lut failed, error %d\n", status);
err = -EIO;
goto ice_vsi_cfg_rss_exit;
}
key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL);
if (!key) {
err = -ENOMEM;
goto ice_vsi_cfg_rss_exit;
}
if (vsi->rss_hkey_user)
memcpy(seed, vsi->rss_hkey_user,
ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
else
netdev_rss_key_fill((void *)seed,
ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
memcpy(&key->standard_rss_key, seed,
ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
if (status) {
dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n",
status);
err = -EIO;
}
devm_kfree(&pf->pdev->dev, key);
ice_vsi_cfg_rss_exit:
devm_kfree(&pf->pdev->dev, lut);
return err;
}
/**
* ice_add_mac_to_list - Add a mac address filter entry to the list
* @vsi: the VSI to be forwarded to
* @add_list: pointer to the list which contains MAC filter entries
* @macaddr: the MAC address to be added.
*
* Adds mac address filter entry to the temp list
*
* Returns 0 on success or ENOMEM on failure.
*/
int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
const u8 *macaddr)
{
struct ice_fltr_list_entry *tmp;
struct ice_pf *pf = vsi->back;
tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
if (!tmp)
return -ENOMEM;
tmp->fltr_info.flag = ICE_FLTR_TX;
tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
tmp->fltr_info.vsi_handle = vsi->idx;
ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
INIT_LIST_HEAD(&tmp->list_entry);
list_add(&tmp->list_entry, add_list);
return 0;
}
/**
* ice_update_eth_stats - Update VSI-specific ethernet statistics counters
* @vsi: the VSI to be updated
*/
void ice_update_eth_stats(struct ice_vsi *vsi)
{
struct ice_eth_stats *prev_es, *cur_es;
struct ice_hw *hw = &vsi->back->hw;
u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
prev_es = &vsi->eth_stats_prev;
cur_es = &vsi->eth_stats;
ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->rx_bytes,
&cur_es->rx_bytes);
ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->rx_unicast,
&cur_es->rx_unicast);
ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->rx_multicast,
&cur_es->rx_multicast);
ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
&cur_es->rx_broadcast);
ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_discards, &cur_es->rx_discards);
ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->tx_bytes,
&cur_es->tx_bytes);
ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->tx_unicast,
&cur_es->tx_unicast);
ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->tx_multicast,
&cur_es->tx_multicast);
ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
&cur_es->tx_broadcast);
ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_errors, &cur_es->tx_errors);
vsi->stat_offsets_loaded = true;
}
/**
* ice_free_fltr_list - free filter lists helper
* @dev: pointer to the device struct
* @h: pointer to the list head to be freed
*
* Helper function to free filter lists previously created using
* ice_add_mac_to_list
*/
void ice_free_fltr_list(struct device *dev, struct list_head *h)
{
struct ice_fltr_list_entry *e, *tmp;
list_for_each_entry_safe(e, tmp, h, list_entry) {
list_del(&e->list_entry);
devm_kfree(dev, e);
}
}
/**
* ice_vsi_add_vlan - Add VSI membership for given VLAN
* @vsi: the VSI being configured
* @vid: VLAN id to be added
*/
int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
{
struct ice_fltr_list_entry *tmp;
struct ice_pf *pf = vsi->back;
LIST_HEAD(tmp_add_list);
enum ice_status status;
int err = 0;
tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return -ENOMEM;
tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
tmp->fltr_info.flag = ICE_FLTR_TX;
tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
tmp->fltr_info.vsi_handle = vsi->idx;
tmp->fltr_info.l_data.vlan.vlan_id = vid;
INIT_LIST_HEAD(&tmp->list_entry);
list_add(&tmp->list_entry, &tmp_add_list);
status = ice_add_vlan(&pf->hw, &tmp_add_list);
if (status) {
err = -ENODEV;
dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
vid, vsi->vsi_num);
}
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
return err;
}
/**
* ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
* @vsi: the VSI being configured
* @vid: VLAN id to be removed
*
* Returns 0 on success and negative on failure
*/
int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
{
struct ice_fltr_list_entry *list;
struct ice_pf *pf = vsi->back;
LIST_HEAD(tmp_add_list);
int status = 0;
list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
if (!list)
return -ENOMEM;
list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
list->fltr_info.vsi_handle = vsi->idx;
list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
list->fltr_info.l_data.vlan.vlan_id = vid;
list->fltr_info.flag = ICE_FLTR_TX;
list->fltr_info.src_id = ICE_SRC_ID_VSI;
INIT_LIST_HEAD(&list->list_entry);
list_add(&list->list_entry, &tmp_add_list);
if (ice_remove_vlan(&pf->hw, &tmp_add_list)) {
dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n",
vid, vsi->vsi_num);
status = -EIO;
}
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
return status;
}
/**
* ice_vsi_cfg_rxqs - Configure the VSI for Rx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Rx VSI for operation.
*/
int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
{
int err = 0;
u16 i;
if (vsi->type == ICE_VSI_VF)
goto setup_rings;
if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
vsi->max_frame = vsi->netdev->mtu +
ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
else
vsi->max_frame = ICE_RXBUF_2048;
vsi->rx_buf_len = ICE_RXBUF_2048;
setup_rings:
/* set up individual rings */
for (i = 0; i < vsi->num_rxq && !err; i++)
err = ice_setup_rx_ctx(vsi->rx_rings[i]);
if (err) {
dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n");
return -EIO;
}
return err;
}
/**
* ice_vsi_cfg_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
* @rings: Tx ring array to be configured
* @offset: offset within vsi->txq_map
*
* Return 0 on success and a negative value on error
* Configure the Tx VSI for operation.
*/
static int
ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
{
struct ice_aqc_add_tx_qgrp *qg_buf;
struct ice_aqc_add_txqs_perq *txq;
struct ice_pf *pf = vsi->back;
u8 num_q_grps, q_idx = 0;
enum ice_status status;
u16 buf_len, i, pf_q;
int err = 0, tc;
buf_len = sizeof(*qg_buf);
qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
if (!qg_buf)
return -ENOMEM;
qg_buf->num_txqs = 1;
num_q_grps = 1;
/* set up and configure the Tx queues for each enabled TC */
for (tc = 0; tc < ICE_MAX_TRAFFIC_CLASS; tc++) {
if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
break;
for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
struct ice_tlan_ctx tlan_ctx = { 0 };
pf_q = vsi->txq_map[q_idx + offset];
ice_setup_tx_ctx(rings[q_idx], &tlan_ctx, pf_q);
/* copy context contents into the qg_buf */
qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
ice_tlan_ctx_info);
/* init queue specific tail reg. It is referred as
* transmit comm scheduler queue doorbell.
*/
rings[q_idx]->tail =
pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
num_q_grps, qg_buf, buf_len,
NULL);
if (status) {
dev_err(&vsi->back->pdev->dev,
"Failed to set LAN Tx queue context, error: %d\n",
status);
err = -ENODEV;
goto err_cfg_txqs;
}
/* Add Tx Queue TEID into the VSI Tx ring from the
* response. This will complete configuring and
* enabling the queue.
*/
txq = &qg_buf->txqs[0];
if (pf_q == le16_to_cpu(txq->txq_id))
rings[q_idx]->txq_teid =
le32_to_cpu(txq->q_teid);
q_idx++;
}
}
err_cfg_txqs:
devm_kfree(&pf->pdev->dev, qg_buf);
return err;
}
/**
* ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Tx VSI for operation.
*/
int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
{
return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
}
/**
* ice_intrl_usec_to_reg - convert interrupt rate limit to register value
* @intrl: interrupt rate limit in usecs
* @gran: interrupt rate limit granularity in usecs
*
* This function converts a decimal interrupt rate limit in usecs to the format
* expected by firmware.
*/
static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
{
u32 val = intrl / gran;
if (val)
return val | GLINT_RATE_INTRL_ENA_M;
return 0;
}
/**
* ice_cfg_itr - configure the initial interrupt throttle values
* @hw: pointer to the HW structure
* @q_vector: interrupt vector that's being configured
* @vector: HW vector index to apply the interrupt throttling to
*
* Configure interrupt throttling values for the ring containers that are
* associated with the interrupt vector passed in.
*/
static void
ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector, u16 vector)
{
if (q_vector->num_ring_rx) {
struct ice_ring_container *rc = &q_vector->rx;
/* if this value is set then don't overwrite with default */
if (!rc->itr_setting)
rc->itr_setting = ICE_DFLT_RX_ITR;
rc->target_itr = ITR_TO_REG(rc->itr_setting);
rc->next_update = jiffies + 1;
rc->current_itr = rc->target_itr;
rc->latency_range = ICE_LOW_LATENCY;
wr32(hw, GLINT_ITR(rc->itr_idx, vector),
ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
}
if (q_vector->num_ring_tx) {
struct ice_ring_container *rc = &q_vector->tx;
/* if this value is set then don't overwrite with default */
if (!rc->itr_setting)
rc->itr_setting = ICE_DFLT_TX_ITR;
rc->target_itr = ITR_TO_REG(rc->itr_setting);
rc->next_update = jiffies + 1;
rc->current_itr = rc->target_itr;
rc->latency_range = ICE_LOW_LATENCY;
wr32(hw, GLINT_ITR(rc->itr_idx, vector),
ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
}
}
/**
* ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
* @vsi: the VSI being configured
*/
void ice_vsi_cfg_msix(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
u16 vector = vsi->hw_base_vector;
struct ice_hw *hw = &pf->hw;
u32 txq = 0, rxq = 0;
int i, q;
for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
ice_cfg_itr(hw, q_vector, vector);
wr32(hw, GLINT_RATE(vector),
ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
/* Both Transmit Queue Interrupt Cause Control register
* and Receive Queue Interrupt Cause control register
* expects MSIX_INDX field to be the vector index
* within the function space and not the absolute
* vector index across PF or across device.
* For SR-IOV VF VSIs queue vector index always starts
* with 1 since first vector index(0) is used for OICR
* in VF space. Since VMDq and other PF VSIs are within
* the PF function space, use the vector index that is
* tracked for this PF.
*/
for (q = 0; q < q_vector->num_ring_tx; q++) {
int itr_idx = q_vector->tx.itr_idx;
u32 val;
if (vsi->type == ICE_VSI_VF)
val = QINT_TQCTL_CAUSE_ENA_M |
(itr_idx << QINT_TQCTL_ITR_INDX_S) |
((i + 1) << QINT_TQCTL_MSIX_INDX_S);
else
val = QINT_TQCTL_CAUSE_ENA_M |
(itr_idx << QINT_TQCTL_ITR_INDX_S) |
(vector << QINT_TQCTL_MSIX_INDX_S);
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
txq++;
}
for (q = 0; q < q_vector->num_ring_rx; q++) {
int itr_idx = q_vector->rx.itr_idx;
u32 val;
if (vsi->type == ICE_VSI_VF)
val = QINT_RQCTL_CAUSE_ENA_M |
(itr_idx << QINT_RQCTL_ITR_INDX_S) |
((i + 1) << QINT_RQCTL_MSIX_INDX_S);
else
val = QINT_RQCTL_CAUSE_ENA_M |
(itr_idx << QINT_RQCTL_ITR_INDX_S) |
(vector << QINT_RQCTL_MSIX_INDX_S);
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
rxq++;
}
}
ice_flush(hw);
}
/**
* ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
* @vsi: the VSI being changed
*/
int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
{
struct device *dev = &vsi->back->pdev->dev;
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx *ctxt;
enum ice_status status;
int ret = 0;
ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
/* Here we are configuring the VSI to let the driver add VLAN tags by
* setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
* insertion happens in the Tx hot path, in ice_tx_map.
*/
ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
if (status) {
dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
ret = -EIO;
goto out;
}
vsi->info.vlan_flags = ctxt->info.vlan_flags;
out:
devm_kfree(dev, ctxt);
return ret;
}
/**
* ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
* @vsi: the VSI being changed
* @ena: boolean value indicating if this is a enable or disable request
*/
int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
{
struct device *dev = &vsi->back->pdev->dev;
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx *ctxt;
enum ice_status status;
int ret = 0;
ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
/* Here we are configuring what the VSI should do with the VLAN tag in
* the Rx packet. We can either leave the tag in the packet or put it in
* the Rx descriptor.
*/
if (ena)
/* Strip VLAN tag from Rx packet and put it in the desc */
ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
else
/* Disable stripping. Leave tag in packet */
ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
/* Allow all packets untagged/tagged */
ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
if (status) {
dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
ena, status, hw->adminq.sq_last_status);
ret = -EIO;
goto out;
}
vsi->info.vlan_flags = ctxt->info.vlan_flags;
out:
devm_kfree(dev, ctxt);
return ret;
}
/**
* ice_vsi_start_rx_rings - start VSI's Rx rings
* @vsi: the VSI whose rings are to be started
*
* Returns 0 on success and a negative value on error
*/
int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
{
return ice_vsi_ctrl_rx_rings(vsi, true);
}
/**
* ice_vsi_stop_rx_rings - stop VSI's Rx rings
* @vsi: the VSI
*
* Returns 0 on success and a negative value on error
*/
int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
{
return ice_vsi_ctrl_rx_rings(vsi, false);
}
/**
* ice_vsi_stop_tx_rings - Disable Tx rings
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative id of VF/VM
* @rings: Tx ring array to be stopped
* @offset: offset within vsi->txq_map
*/
static int
ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num, struct ice_ring **rings, int offset)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
enum ice_status status;
u32 *q_teids, val;
u16 *q_ids, i;
int err = 0;
if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
return -EINVAL;
q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
GFP_KERNEL);
if (!q_teids)
return -ENOMEM;
q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
GFP_KERNEL);
if (!q_ids) {
err = -ENOMEM;
goto err_alloc_q_ids;
}
/* set up the Tx queue list to be disabled */
ice_for_each_txq(vsi, i) {
u16 v_idx;
if (!rings || !rings[i] || !rings[i]->q_vector) {
err = -EINVAL;
goto err_out;
}
q_ids[i] = vsi->txq_map[i + offset];
q_teids[i] = rings[i]->txq_teid;
/* clear cause_ena bit for disabled queues */
val = rd32(hw, QINT_TQCTL(rings[i]->reg_idx));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(rings[i]->reg_idx), val);
/* software is expected to wait for 100 ns */
ndelay(100);
/* trigger a software interrupt for the vector associated to
* the queue to schedule NAPI handler
*/
v_idx = rings[i]->q_vector->v_idx;
wr32(hw, GLINT_DYN_CTL(vsi->hw_base_vector + v_idx),
GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
}
status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
rst_src, rel_vmvf_num, NULL);
/* if the disable queue command was exercised during an active reset
* flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as
* the reset operation disables queues at the hardware level anyway.
*/
if (status == ICE_ERR_RESET_ONGOING) {
dev_info(&pf->pdev->dev,
"Reset in progress. LAN Tx queues already disabled\n");
} else if (status) {
dev_err(&pf->pdev->dev,
"Failed to disable LAN Tx queues, error: %d\n",
status);
err = -ENODEV;
}
err_out:
devm_kfree(&pf->pdev->dev, q_ids);
err_alloc_q_ids:
devm_kfree(&pf->pdev->dev, q_teids);
return err;
}
/**
* ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative id of VF/VM
*/
int ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi,
enum ice_disq_rst_src rst_src, u16 rel_vmvf_num)
{
return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings,
0);
}
/**
* ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
* @vsi: VSI to enable or disable VLAN pruning on
* @ena: set to true to enable VLAN pruning and false to disable it
*
* returns 0 if VSI is updated, negative otherwise
*/
int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena)
{
struct ice_vsi_ctx *ctxt;
struct device *dev;
int status;
if (!vsi)
return -EINVAL;
dev = &vsi->back->pdev->dev;
ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
ctxt->info = vsi->info;
if (ena) {
ctxt->info.sec_flags |=
ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
} else {
ctxt->info.sec_flags &=
~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
}
ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
ICE_AQ_VSI_PROP_SW_VALID);
status = ice_update_vsi(&vsi->back->hw, vsi->idx, ctxt, NULL);
if (status) {
netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
vsi->back->hw.adminq.sq_last_status);
goto err_out;
}
vsi->info.sec_flags = ctxt->info.sec_flags;
vsi->info.sw_flags2 = ctxt->info.sw_flags2;
devm_kfree(dev, ctxt);
return 0;
err_out:
devm_kfree(dev, ctxt);
return -EIO;
}
/**
* ice_vsi_setup - Set up a VSI by a given type
* @pf: board private structure
* @pi: pointer to the port_info instance
* @type: VSI type
* @vf_id: defines VF id to which this VSI connects. This field is meant to be
* used only for ICE_VSI_VF VSI type. For other VSI types, should
* fill-in ICE_INVAL_VFID as input.
*
* This allocates the sw VSI structure and its queue resources.
*
* Returns pointer to the successfully allocated and configured VSI sw struct on
* success, NULL on failure.
*/
struct ice_vsi *
ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
enum ice_vsi_type type, u16 vf_id)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct device *dev = &pf->pdev->dev;
struct ice_vsi *vsi;
int ret, i;
vsi = ice_vsi_alloc(pf, type);
if (!vsi) {
dev_err(dev, "could not allocate VSI\n");
return NULL;
}
vsi->port_info = pi;
vsi->vsw = pf->first_sw;
if (vsi->type == ICE_VSI_VF)
vsi->vf_id = vf_id;
if (ice_vsi_get_qs(vsi)) {
dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
vsi->idx);
goto unroll_get_qs;
}
/* set RSS capabilities */
ice_vsi_set_rss_params(vsi);
/* set tc configuration */
ice_vsi_set_tc_cfg(vsi);
/* create the VSI */
ret = ice_vsi_init(vsi);
if (ret)
goto unroll_get_qs;
switch (vsi->type) {
case ICE_VSI_PF:
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto unroll_vsi_init;
ret = ice_vsi_setup_vector_base(vsi);
if (ret)
goto unroll_alloc_q_vector;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto unroll_vector_base;
ice_vsi_map_rings_to_vectors(vsi);
/* Do not exit if configuring RSS had an issue, at least
* receive traffic on first queue. Hence no need to capture
* return value
*/
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
ice_vsi_cfg_rss_lut_key(vsi);
break;
case ICE_VSI_VF:
/* VF driver will take care of creating netdev for this type and
* map queues to vectors through Virtchnl, PF driver only
* creates a VSI and corresponding structures for bookkeeping
* purpose
*/
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto unroll_vsi_init;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto unroll_alloc_q_vector;
/* Setup Vector base only during VF init phase or when VF asks
* for more vectors than assigned number. In all other cases,
* assign hw_base_vector to the value given earlier.
*/
if (test_bit(ICE_VF_STATE_CFG_INTR, pf->vf[vf_id].vf_states)) {
ret = ice_vsi_setup_vector_base(vsi);
if (ret)
goto unroll_vector_base;
} else {
vsi->hw_base_vector = pf->vf[vf_id].first_vector_idx;
}
pf->q_left_tx -= vsi->alloc_txq;
pf->q_left_rx -= vsi->alloc_rxq;
break;
default:
/* clean up the resources and exit */
goto unroll_vsi_init;
}
/* configure VSI nodes based on number of queues and TC's */
for (i = 0; i < vsi->tc_cfg.numtc; i++)
max_txqs[i] = pf->num_lan_tx;
ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
max_txqs);
if (ret) {
dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n");
goto unroll_vector_base;
}
return vsi;
unroll_vector_base:
/* reclaim SW interrupts back to the common pool */
ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx);
pf->num_avail_sw_msix += vsi->num_q_vectors;
/* reclaim HW interrupt back to the common pool */
ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx);
pf->num_avail_hw_msix += vsi->num_q_vectors;
unroll_alloc_q_vector:
ice_vsi_free_q_vectors(vsi);
unroll_vsi_init:
ice_vsi_delete(vsi);
unroll_get_qs:
ice_vsi_put_qs(vsi);
pf->q_left_tx += vsi->alloc_txq;
pf->q_left_rx += vsi->alloc_rxq;
ice_vsi_clear(vsi);
return NULL;
}
/**
* ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
* @vsi: the VSI being cleaned up
*/
static void ice_vsi_release_msix(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
u16 vector = vsi->hw_base_vector;
struct ice_hw *hw = &pf->hw;
u32 txq = 0;
u32 rxq = 0;
int i, q;
for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
wr32(hw, GLINT_ITR(ICE_IDX_ITR0, vector), 0);
wr32(hw, GLINT_ITR(ICE_IDX_ITR1, vector), 0);
for (q = 0; q < q_vector->num_ring_tx; q++) {
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
txq++;
}
for (q = 0; q < q_vector->num_ring_rx; q++) {
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
rxq++;
}
}
ice_flush(hw);
}
/**
* ice_vsi_free_irq - Free the IRQ association with the OS
* @vsi: the VSI being configured
*/
void ice_vsi_free_irq(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int base = vsi->sw_base_vector;
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
int i;
if (!vsi->q_vectors || !vsi->irqs_ready)
return;
ice_vsi_release_msix(vsi);
if (vsi->type == ICE_VSI_VF)
return;
vsi->irqs_ready = false;
for (i = 0; i < vsi->num_q_vectors; i++) {
u16 vector = i + base;
int irq_num;
irq_num = pf->msix_entries[vector].vector;
/* free only the irqs that were actually requested */
if (!vsi->q_vectors[i] ||
!(vsi->q_vectors[i]->num_ring_tx ||
vsi->q_vectors[i]->num_ring_rx))
continue;
/* clear the affinity notifier in the IRQ descriptor */
irq_set_affinity_notifier(irq_num, NULL);
/* clear the affinity_mask in the IRQ descriptor */
irq_set_affinity_hint(irq_num, NULL);
synchronize_irq(irq_num);
devm_free_irq(&pf->pdev->dev, irq_num,
vsi->q_vectors[i]);
}
}
}
/**
* ice_vsi_free_tx_rings - Free Tx resources for VSI queues
* @vsi: the VSI having resources freed
*/
void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
{
int i;
if (!vsi->tx_rings)
return;
ice_for_each_txq(vsi, i)
if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
ice_free_tx_ring(vsi->tx_rings[i]);
}
/**
* ice_vsi_free_rx_rings - Free Rx resources for VSI queues
* @vsi: the VSI having resources freed
*/
void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
{
int i;
if (!vsi->rx_rings)
return;
ice_for_each_rxq(vsi, i)
if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
ice_free_rx_ring(vsi->rx_rings[i]);
}
/**
* ice_vsi_close - Shut down a VSI
* @vsi: the VSI being shut down
*/
void ice_vsi_close(struct ice_vsi *vsi)
{
if (!test_and_set_bit(__ICE_DOWN, vsi->state))
ice_down(vsi);
ice_vsi_free_irq(vsi);
ice_vsi_free_tx_rings(vsi);
ice_vsi_free_rx_rings(vsi);
}
/**
* ice_free_res - free a block of resources
* @res: pointer to the resource
* @index: starting index previously returned by ice_get_res
* @id: identifier to track owner
*
* Returns number of resources freed
*/
int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
{
int count = 0;
int i;
if (!res || index >= res->num_entries)
return -EINVAL;
id |= ICE_RES_VALID_BIT;
for (i = index; i < res->num_entries && res->list[i] == id; i++) {
res->list[i] = 0;
count++;
}
return count;
}
/**
* ice_search_res - Search the tracker for a block of resources
* @res: pointer to the resource
* @needed: size of the block needed
* @id: identifier to track owner
*
* Returns the base item index of the block, or -ENOMEM for error
*/
static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
{
int start = res->search_hint;
int end = start;
if ((start + needed) > res->num_entries)
return -ENOMEM;
id |= ICE_RES_VALID_BIT;
do {
/* skip already allocated entries */
if (res->list[end++] & ICE_RES_VALID_BIT) {
start = end;
if ((start + needed) > res->num_entries)
break;
}
if (end == (start + needed)) {
int i = start;
/* there was enough, so assign it to the requestor */
while (i != end)
res->list[i++] = id;
if (end == res->num_entries)
end = 0;
res->search_hint = end;
return start;
}
} while (1);
return -ENOMEM;
}
/**
* ice_get_res - get a block of resources
* @pf: board private structure
* @res: pointer to the resource
* @needed: size of the block needed
* @id: identifier to track owner
*
* Returns the base item index of the block, or -ENOMEM for error
* The search_hint trick and lack of advanced fit-finding only works
* because we're highly likely to have all the same sized requests.
* Linear search time and any fragmentation should be minimal.
*/
int
ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
{
int ret;
if (!res || !pf)
return -EINVAL;
if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
dev_err(&pf->pdev->dev,
"param err: needed=%d, num_entries = %d id=0x%04x\n",
needed, res->num_entries, id);
return -EINVAL;
}
/* search based on search_hint */
ret = ice_search_res(res, needed, id);
if (ret < 0) {
/* previous search failed. Reset search hint and try again */
res->search_hint = 0;
ret = ice_search_res(res, needed, id);
}
return ret;
}
/**
* ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
* @vsi: the VSI being un-configured
*/
void ice_vsi_dis_irq(struct ice_vsi *vsi)
{
int base = vsi->sw_base_vector;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
int i;
/* disable interrupt causation from each queue */
if (vsi->tx_rings) {
ice_for_each_txq(vsi, i) {
if (vsi->tx_rings[i]) {
u16 reg;
reg = vsi->tx_rings[i]->reg_idx;
val = rd32(hw, QINT_TQCTL(reg));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(reg), val);
}
}
}
if (vsi->rx_rings) {
ice_for_each_rxq(vsi, i) {
if (vsi->rx_rings[i]) {
u16 reg;
reg = vsi->rx_rings[i]->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
}
}
}
/* disable each interrupt */
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
for (i = vsi->hw_base_vector;
i < (vsi->num_q_vectors + vsi->hw_base_vector); i++)
wr32(hw, GLINT_DYN_CTL(i), 0);
ice_flush(hw);
for (i = 0; i < vsi->num_q_vectors; i++)
synchronize_irq(pf->msix_entries[i + base].vector);
}
}
/**
* ice_vsi_release - Delete a VSI and free its resources
* @vsi: the VSI being removed
*
* Returns 0 on success or < 0 on error
*/
int ice_vsi_release(struct ice_vsi *vsi)
{
struct ice_pf *pf;
struct ice_vf *vf;
if (!vsi->back)
return -ENODEV;
pf = vsi->back;
vf = &pf->vf[vsi->vf_id];
/* do not unregister and free netdevs while driver is in the reset
* recovery pending state. Since reset/rebuild happens through PF
* service task workqueue, its not a good idea to unregister netdev
* that is associated to the PF that is running the work queue items
* currently. This is done to avoid check_flush_dependency() warning
* on this wq
*/
if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) {
ice_napi_del(vsi);
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
ice_rss_clean(vsi);
/* Disable VSI and free resources */
ice_vsi_dis_irq(vsi);
ice_vsi_close(vsi);
/* reclaim interrupt vectors back to PF */
if (vsi->type != ICE_VSI_VF) {
/* reclaim SW interrupts back to the common pool */
ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector,
vsi->idx);
pf->num_avail_sw_msix += vsi->num_q_vectors;
/* reclaim HW interrupts back to the common pool */
ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector,
vsi->idx);
pf->num_avail_hw_msix += vsi->num_q_vectors;
} else if (test_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states)) {
/* Reclaim VF resources back only while freeing all VFs or
* vector reassignment is requested
*/
ice_free_res(vsi->back->hw_irq_tracker, vf->first_vector_idx,
vsi->idx);
pf->num_avail_hw_msix += pf->num_vf_msix;
}
ice_remove_vsi_fltr(&pf->hw, vsi->idx);
ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
ice_vsi_delete(vsi);
ice_vsi_free_q_vectors(vsi);
ice_vsi_clear_rings(vsi);
ice_vsi_put_qs(vsi);
pf->q_left_tx += vsi->alloc_txq;
pf->q_left_rx += vsi->alloc_rxq;
/* retain SW VSI data structure since it is needed to unregister and
* free VSI netdev when PF is not in reset recovery pending state,\
* for ex: during rmmod.
*/
if (!ice_is_reset_in_progress(pf->state))
ice_vsi_clear(vsi);
return 0;
}
/**
* ice_vsi_rebuild - Rebuild VSI after reset
* @vsi: VSI to be rebuild
*
* Returns 0 on success and negative value on failure
*/
int ice_vsi_rebuild(struct ice_vsi *vsi)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct ice_pf *pf;
int ret, i;
if (!vsi)
return -EINVAL;
pf = vsi->back;
ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
ice_vsi_free_q_vectors(vsi);
ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx);
ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx);
vsi->sw_base_vector = 0;
vsi->hw_base_vector = 0;
ice_vsi_clear_rings(vsi);
ice_vsi_free_arrays(vsi, false);
ice_dev_onetime_setup(&vsi->back->hw);
ice_vsi_set_num_qs(vsi);
ice_vsi_set_tc_cfg(vsi);
/* Initialize VSI struct elements and create VSI in FW */
ret = ice_vsi_init(vsi);
if (ret < 0)
goto err_vsi;
ret = ice_vsi_alloc_arrays(vsi, false);
if (ret < 0)
goto err_vsi;
switch (vsi->type) {
case ICE_VSI_PF:
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto err_rings;
ret = ice_vsi_setup_vector_base(vsi);
if (ret)
goto err_vectors;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto err_vectors;
ice_vsi_map_rings_to_vectors(vsi);
/* Do not exit if configuring RSS had an issue, at least
* receive traffic on first queue. Hence no need to capture
* return value
*/
if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags))
ice_vsi_cfg_rss_lut_key(vsi);
break;
case ICE_VSI_VF:
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto err_rings;
ret = ice_vsi_setup_vector_base(vsi);
if (ret)
goto err_vectors;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto err_vectors;
vsi->back->q_left_tx -= vsi->alloc_txq;
vsi->back->q_left_rx -= vsi->alloc_rxq;
break;
default:
break;
}
/* configure VSI nodes based on number of queues and TC's */
for (i = 0; i < vsi->tc_cfg.numtc; i++)
max_txqs[i] = pf->num_lan_tx;
ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
max_txqs);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"Failed VSI lan queue config\n");
goto err_vectors;
}
return 0;
err_vectors:
ice_vsi_free_q_vectors(vsi);
err_rings:
if (vsi->netdev) {
vsi->current_netdev_flags = 0;
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
err_vsi:
ice_vsi_clear(vsi);
set_bit(__ICE_RESET_FAILED, vsi->back->state);
return ret;
}
/**
* ice_is_reset_in_progress - check for a reset in progress
* @state: pf state field
*/
bool ice_is_reset_in_progress(unsigned long *state)
{
return test_bit(__ICE_RESET_OICR_RECV, state) ||
test_bit(__ICE_PFR_REQ, state) ||
test_bit(__ICE_CORER_REQ, state) ||
test_bit(__ICE_GLOBR_REQ, state);
}