/*
* This file is part of the APDS990x sensor driver.
* Chip is combined proximity and ambient light sensor.
*
* Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
*
* Contact: Samu Onkalo <samu.p.onkalo@nokia.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/platform_data/apds990x.h>
/* Register map */
#define APDS990X_ENABLE 0x00 /* Enable of states and interrupts */
#define APDS990X_ATIME 0x01 /* ALS ADC time */
#define APDS990X_PTIME 0x02 /* Proximity ADC time */
#define APDS990X_WTIME 0x03 /* Wait time */
#define APDS990X_AILTL 0x04 /* ALS interrupt low threshold low byte */
#define APDS990X_AILTH 0x05 /* ALS interrupt low threshold hi byte */
#define APDS990X_AIHTL 0x06 /* ALS interrupt hi threshold low byte */
#define APDS990X_AIHTH 0x07 /* ALS interrupt hi threshold hi byte */
#define APDS990X_PILTL 0x08 /* Proximity interrupt low threshold low byte */
#define APDS990X_PILTH 0x09 /* Proximity interrupt low threshold hi byte */
#define APDS990X_PIHTL 0x0a /* Proximity interrupt hi threshold low byte */
#define APDS990X_PIHTH 0x0b /* Proximity interrupt hi threshold hi byte */
#define APDS990X_PERS 0x0c /* Interrupt persistence filters */
#define APDS990X_CONFIG 0x0d /* Configuration */
#define APDS990X_PPCOUNT 0x0e /* Proximity pulse count */
#define APDS990X_CONTROL 0x0f /* Gain control register */
#define APDS990X_REV 0x11 /* Revision Number */
#define APDS990X_ID 0x12 /* Device ID */
#define APDS990X_STATUS 0x13 /* Device status */
#define APDS990X_CDATAL 0x14 /* Clear ADC low data register */
#define APDS990X_CDATAH 0x15 /* Clear ADC high data register */
#define APDS990X_IRDATAL 0x16 /* IR ADC low data register */
#define APDS990X_IRDATAH 0x17 /* IR ADC high data register */
#define APDS990X_PDATAL 0x18 /* Proximity ADC low data register */
#define APDS990X_PDATAH 0x19 /* Proximity ADC high data register */
/* Control */
#define APDS990X_MAX_AGAIN 3
/* Enable register */
#define APDS990X_EN_PIEN (0x1 << 5)
#define APDS990X_EN_AIEN (0x1 << 4)
#define APDS990X_EN_WEN (0x1 << 3)
#define APDS990X_EN_PEN (0x1 << 2)
#define APDS990X_EN_AEN (0x1 << 1)
#define APDS990X_EN_PON (0x1 << 0)
#define APDS990X_EN_DISABLE_ALL 0
/* Status register */
#define APDS990X_ST_PINT (0x1 << 5)
#define APDS990X_ST_AINT (0x1 << 4)
/* I2C access types */
#define APDS990x_CMD_TYPE_MASK (0x03 << 5)
#define APDS990x_CMD_TYPE_RB (0x00 << 5) /* Repeated byte */
#define APDS990x_CMD_TYPE_INC (0x01 << 5) /* Auto increment */
#define APDS990x_CMD_TYPE_SPE (0x03 << 5) /* Special function */
#define APDS990x_ADDR_SHIFT 0
#define APDS990x_CMD 0x80
/* Interrupt ack commands */
#define APDS990X_INT_ACK_ALS 0x6
#define APDS990X_INT_ACK_PS 0x5
#define APDS990X_INT_ACK_BOTH 0x7
/* ptime */
#define APDS990X_PTIME_DEFAULT 0xff /* Recommended conversion time 2.7ms*/
/* wtime */
#define APDS990X_WTIME_DEFAULT 0xee /* ~50ms wait time */
#define APDS990X_TIME_TO_ADC 1024 /* One timetick as ADC count value */
/* Persistence */
#define APDS990X_APERS_SHIFT 0
#define APDS990X_PPERS_SHIFT 4
/* Supported ID:s */
#define APDS990X_ID_0 0x0
#define APDS990X_ID_4 0x4
#define APDS990X_ID_29 0x29
/* pgain and pdiode settings */
#define APDS_PGAIN_1X 0x0
#define APDS_PDIODE_IR 0x2
#define APDS990X_LUX_OUTPUT_SCALE 10
/* Reverse chip factors for threshold calculation */
struct reverse_factors {
u32 afactor;
int cf1;
int irf1;
int cf2;
int irf2;
};
struct apds990x_chip {
struct apds990x_platform_data *pdata;
struct i2c_client *client;
struct mutex mutex; /* avoid parallel access */
struct regulator_bulk_data regs[2];
wait_queue_head_t wait;
int prox_en;
bool prox_continuous_mode;
bool lux_wait_fresh_res;
/* Chip parameters */
struct apds990x_chip_factors cf;
struct reverse_factors rcf;
u16 atime; /* als integration time */
u16 arate; /* als reporting rate */
u16 a_max_result; /* Max possible ADC value with current atime */
u8 again_meas; /* Gain used in last measurement */
u8 again_next; /* Next calculated gain */
u8 pgain;
u8 pdiode;
u8 pdrive;
u8 lux_persistence;
u8 prox_persistence;
u32 lux_raw;
u32 lux;
u16 lux_clear;
u16 lux_ir;
u16 lux_calib;
u32 lux_thres_hi;
u32 lux_thres_lo;
u32 prox_thres;
u16 prox_data;
u16 prox_calib;
char chipname[10];
u8 revision;
};
#define APDS_CALIB_SCALER 8192
#define APDS_LUX_NEUTRAL_CALIB_VALUE (1 * APDS_CALIB_SCALER)
#define APDS_PROX_NEUTRAL_CALIB_VALUE (1 * APDS_CALIB_SCALER)
#define APDS_PROX_DEF_THRES 600
#define APDS_PROX_HYSTERESIS 50
#define APDS_LUX_DEF_THRES_HI 101
#define APDS_LUX_DEF_THRES_LO 100
#define APDS_DEFAULT_PROX_PERS 1
#define APDS_TIMEOUT 2000
#define APDS_STARTUP_DELAY 25000 /* us */
#define APDS_RANGE 65535
#define APDS_PROX_RANGE 1023
#define APDS_LUX_GAIN_LO_LIMIT 100
#define APDS_LUX_GAIN_LO_LIMIT_STRICT 25
#define TIMESTEP 87 /* 2.7ms is about 87 / 32 */
#define TIME_STEP_SCALER 32
#define APDS_LUX_AVERAGING_TIME 50 /* tolerates 50/60Hz ripple */
#define APDS_LUX_DEFAULT_RATE 200
static const u8 again[] = {1, 8, 16, 120}; /* ALS gain steps */
static const u8 ir_currents[] = {100, 50, 25, 12}; /* IRled currents in mA */
/* Following two tables must match i.e 10Hz rate means 1 as persistence value */
static const u16 arates_hz[] = {10, 5, 2, 1};
static const u8 apersis[] = {1, 2, 4, 5};
/* Regulators */
static const char reg_vcc[] = "Vdd";
static const char reg_vled[] = "Vled";
static int apds990x_read_byte(struct apds990x_chip *chip, u8 reg, u8 *data)
{
struct i2c_client *client = chip->client;
s32 ret;
reg &= ~APDS990x_CMD_TYPE_MASK;
reg |= APDS990x_CMD | APDS990x_CMD_TYPE_RB;
ret = i2c_smbus_read_byte_data(client, reg);
*data = ret;
return (int)ret;
}
static int apds990x_read_word(struct apds990x_chip *chip, u8 reg, u16 *data)
{
struct i2c_client *client = chip->client;
s32 ret;
reg &= ~APDS990x_CMD_TYPE_MASK;
reg |= APDS990x_CMD | APDS990x_CMD_TYPE_INC;
ret = i2c_smbus_read_word_data(client, reg);
*data = ret;
return (int)ret;
}
static int apds990x_write_byte(struct apds990x_chip *chip, u8 reg, u8 data)
{
struct i2c_client *client = chip->client;
s32 ret;
reg &= ~APDS990x_CMD_TYPE_MASK;
reg |= APDS990x_CMD | APDS990x_CMD_TYPE_RB;
ret = i2c_smbus_write_byte_data(client, reg, data);
return (int)ret;
}
static int apds990x_write_word(struct apds990x_chip *chip, u8 reg, u16 data)
{
struct i2c_client *client = chip->client;
s32 ret;
reg &= ~APDS990x_CMD_TYPE_MASK;
reg |= APDS990x_CMD | APDS990x_CMD_TYPE_INC;
ret = i2c_smbus_write_word_data(client, reg, data);
return (int)ret;
}
static int apds990x_mode_on(struct apds990x_chip *chip)
{
/* ALS is mandatory, proximity optional */
u8 reg = APDS990X_EN_AIEN | APDS990X_EN_PON | APDS990X_EN_AEN |
APDS990X_EN_WEN;
if (chip->prox_en)
reg |= APDS990X_EN_PIEN | APDS990X_EN_PEN;
return apds990x_write_byte(chip, APDS990X_ENABLE, reg);
}
static u16 apds990x_lux_to_threshold(struct apds990x_chip *chip, u32 lux)
{
u32 thres;
u32 cpl;
u32 ir;
if (lux == 0)
return 0;
else if (lux == APDS_RANGE)
return APDS_RANGE;
/*
* Reported LUX value is a combination of the IR and CLEAR channel
* values. However, interrupt threshold is only for clear channel.
* This function approximates needed HW threshold value for a given
* LUX value in the current lightning type.
* IR level compared to visible light varies heavily depending on the
* source of the light
*
* Calculate threshold value for the next measurement period.
* Math: threshold = lux * cpl where
* cpl = atime * again / (glass_attenuation * device_factor)
* (count-per-lux)
*
* First remove calibration. Division by four is to avoid overflow
*/
lux = lux * (APDS_CALIB_SCALER / 4) / (chip->lux_calib / 4);
/* Multiplication by 64 is to increase accuracy */
cpl = ((u32)chip->atime * (u32)again[chip->again_next] *
APDS_PARAM_SCALE * 64) / (chip->cf.ga * chip->cf.df);
thres = lux * cpl / 64;
/*
* Convert IR light from the latest result to match with
* new gain step. This helps to adapt with the current
* source of light.
*/
ir = (u32)chip->lux_ir * (u32)again[chip->again_next] /
(u32)again[chip->again_meas];
/*
* Compensate count with IR light impact
* IAC1 > IAC2 (see apds990x_get_lux for formulas)
*/
if (chip->lux_clear * APDS_PARAM_SCALE >=
chip->rcf.afactor * chip->lux_ir)
thres = (chip->rcf.cf1 * thres + chip->rcf.irf1 * ir) /
APDS_PARAM_SCALE;
else
thres = (chip->rcf.cf2 * thres + chip->rcf.irf2 * ir) /
APDS_PARAM_SCALE;
if (thres >= chip->a_max_result)
thres = chip->a_max_result - 1;
return thres;
}
static inline int apds990x_set_atime(struct apds990x_chip *chip, u32 time_ms)
{
u8 reg_value;
chip->atime = time_ms;
/* Formula is specified in the data sheet */
reg_value = 256 - ((time_ms * TIME_STEP_SCALER) / TIMESTEP);
/* Calculate max ADC value for given integration time */
chip->a_max_result = (u16)(256 - reg_value) * APDS990X_TIME_TO_ADC;
return apds990x_write_byte(chip, APDS990X_ATIME, reg_value);
}
/* Called always with mutex locked */
static int apds990x_refresh_pthres(struct apds990x_chip *chip, int data)
{
int ret, lo, hi;
/* If the chip is not in use, don't try to access it */
if (pm_runtime_suspended(&chip->client->dev))
return 0;
if (data < chip->prox_thres) {
lo = 0;
hi = chip->prox_thres;
} else {
lo = chip->prox_thres - APDS_PROX_HYSTERESIS;
if (chip->prox_continuous_mode)
hi = chip->prox_thres;
else
hi = APDS_RANGE;
}
ret = apds990x_write_word(chip, APDS990X_PILTL, lo);
ret |= apds990x_write_word(chip, APDS990X_PIHTL, hi);
return ret;
}
/* Called always with mutex locked */
static int apds990x_refresh_athres(struct apds990x_chip *chip)
{
int ret;
/* If the chip is not in use, don't try to access it */
if (pm_runtime_suspended(&chip->client->dev))
return 0;
ret = apds990x_write_word(chip, APDS990X_AILTL,
apds990x_lux_to_threshold(chip, chip->lux_thres_lo));
ret |= apds990x_write_word(chip, APDS990X_AIHTL,
apds990x_lux_to_threshold(chip, chip->lux_thres_hi));
return ret;
}
/* Called always with mutex locked */
static void apds990x_force_a_refresh(struct apds990x_chip *chip)
{
/* This will force ALS interrupt after the next measurement. */
apds990x_write_word(chip, APDS990X_AILTL, APDS_LUX_DEF_THRES_LO);
apds990x_write_word(chip, APDS990X_AIHTL, APDS_LUX_DEF_THRES_HI);
}
/* Called always with mutex locked */
static void apds990x_force_p_refresh(struct apds990x_chip *chip)
{
/* This will force proximity interrupt after the next measurement. */
apds990x_write_word(chip, APDS990X_PILTL, APDS_PROX_DEF_THRES - 1);
apds990x_write_word(chip, APDS990X_PIHTL, APDS_PROX_DEF_THRES);
}
/* Called always with mutex locked */
static int apds990x_calc_again(struct apds990x_chip *chip)
{
int curr_again = chip->again_meas;
int next_again = chip->again_meas;
int ret = 0;
/* Calculate suitable als gain */
if (chip->lux_clear == chip->a_max_result)
next_again -= 2; /* ALS saturated. Decrease gain by 2 steps */
else if (chip->lux_clear > chip->a_max_result / 2)
next_again--;
else if (chip->lux_clear < APDS_LUX_GAIN_LO_LIMIT_STRICT)
next_again += 2; /* Too dark. Increase gain by 2 steps */
else if (chip->lux_clear < APDS_LUX_GAIN_LO_LIMIT)
next_again++;
/* Limit gain to available range */
if (next_again < 0)
next_again = 0;
else if (next_again > APDS990X_MAX_AGAIN)
next_again = APDS990X_MAX_AGAIN;
/* Let's check can we trust the measured result */
if (chip->lux_clear == chip->a_max_result)
/* Result can be totally garbage due to saturation */
ret = -ERANGE;
else if (next_again != curr_again &&
chip->lux_clear < APDS_LUX_GAIN_LO_LIMIT_STRICT)
/*
* Gain is changed and measurement result is very small.
* Result can be totally garbage due to underflow
*/
ret = -ERANGE;
chip->again_next = next_again;
apds990x_write_byte(chip, APDS990X_CONTROL,
(chip->pdrive << 6) |
(chip->pdiode << 4) |
(chip->pgain << 2) |
(chip->again_next << 0));
/*
* Error means bad result -> re-measurement is needed. The forced
* refresh uses fastest possible persistence setting to get result
* as soon as possible.
*/
if (ret < 0)
apds990x_force_a_refresh(chip);
else
apds990x_refresh_athres(chip);
return ret;
}
/* Called always with mutex locked */
static int apds990x_get_lux(struct apds990x_chip *chip, int clear, int ir)
{
int iac, iac1, iac2; /* IR adjusted counts */
u32 lpc; /* Lux per count */
/* Formulas:
* iac1 = CF1 * CLEAR_CH - IRF1 * IR_CH
* iac2 = CF2 * CLEAR_CH - IRF2 * IR_CH
*/
iac1 = (chip->cf.cf1 * clear - chip->cf.irf1 * ir) / APDS_PARAM_SCALE;
iac2 = (chip->cf.cf2 * clear - chip->cf.irf2 * ir) / APDS_PARAM_SCALE;
iac = max(iac1, iac2);
iac = max(iac, 0);
lpc = APDS990X_LUX_OUTPUT_SCALE * (chip->cf.df * chip->cf.ga) /
(u32)(again[chip->again_meas] * (u32)chip->atime);
return (iac * lpc) / APDS_PARAM_SCALE;
}
static int apds990x_ack_int(struct apds990x_chip *chip, u8 mode)
{
struct i2c_client *client = chip->client;
s32 ret;
u8 reg = APDS990x_CMD | APDS990x_CMD_TYPE_SPE;
switch (mode & (APDS990X_ST_AINT | APDS990X_ST_PINT)) {
case APDS990X_ST_AINT:
reg |= APDS990X_INT_ACK_ALS;
break;
case APDS990X_ST_PINT:
reg |= APDS990X_INT_ACK_PS;
break;
default:
reg |= APDS990X_INT_ACK_BOTH;
break;
}
ret = i2c_smbus_read_byte_data(client, reg);
return (int)ret;
}
static irqreturn_t apds990x_irq(int irq, void *data)
{
struct apds990x_chip *chip = data;
u8 status;
apds990x_read_byte(chip, APDS990X_STATUS, &status);
apds990x_ack_int(chip, status);
mutex_lock(&chip->mutex);
if (!pm_runtime_suspended(&chip->client->dev)) {
if (status & APDS990X_ST_AINT) {
apds990x_read_word(chip, APDS990X_CDATAL,
&chip->lux_clear);
apds990x_read_word(chip, APDS990X_IRDATAL,
&chip->lux_ir);
/* Store used gain for calculations */
chip->again_meas = chip->again_next;
chip->lux_raw = apds990x_get_lux(chip,
chip->lux_clear,
chip->lux_ir);
if (apds990x_calc_again(chip) == 0) {
/* Result is valid */
chip->lux = chip->lux_raw;
chip->lux_wait_fresh_res = false;
wake_up(&chip->wait);
sysfs_notify(&chip->client->dev.kobj,
NULL, "lux0_input");
}
}
if ((status & APDS990X_ST_PINT) && chip->prox_en) {
u16 clr_ch;
apds990x_read_word(chip, APDS990X_CDATAL, &clr_ch);
/*
* If ALS channel is saturated at min gain,
* proximity gives false posivite values.
* Just ignore them.
*/
if (chip->again_meas == 0 &&
clr_ch == chip->a_max_result)
chip->prox_data = 0;
else
apds990x_read_word(chip,
APDS990X_PDATAL,
&chip->prox_data);
apds990x_refresh_pthres(chip, chip->prox_data);
if (chip->prox_data < chip->prox_thres)
chip->prox_data = 0;
else if (!chip->prox_continuous_mode)
chip->prox_data = APDS_PROX_RANGE;
sysfs_notify(&chip->client->dev.kobj,
NULL, "prox0_raw");
}
}
mutex_unlock(&chip->mutex);
return IRQ_HANDLED;
}
static int apds990x_configure(struct apds990x_chip *chip)
{
/* It is recommended to use disabled mode during these operations */
apds990x_write_byte(chip, APDS990X_ENABLE, APDS990X_EN_DISABLE_ALL);
/* conversion and wait times for different state machince states */
apds990x_write_byte(chip, APDS990X_PTIME, APDS990X_PTIME_DEFAULT);
apds990x_write_byte(chip, APDS990X_WTIME, APDS990X_WTIME_DEFAULT);
apds990x_set_atime(chip, APDS_LUX_AVERAGING_TIME);
apds990x_write_byte(chip, APDS990X_CONFIG, 0);
/* Persistence levels */
apds990x_write_byte(chip, APDS990X_PERS,
(chip->lux_persistence << APDS990X_APERS_SHIFT) |
(chip->prox_persistence << APDS990X_PPERS_SHIFT));
apds990x_write_byte(chip, APDS990X_PPCOUNT, chip->pdata->ppcount);
/* Start with relatively small gain */
chip->again_meas = 1;
chip->again_next = 1;
apds990x_write_byte(chip, APDS990X_CONTROL,
(chip->pdrive << 6) |
(chip->pdiode << 4) |
(chip->pgain << 2) |
(chip->again_next << 0));
return 0;
}
static int apds990x_detect(struct apds990x_chip *chip)
{
struct i2c_client *client = chip->client;
int ret;
u8 id;
ret = apds990x_read_byte(chip, APDS990X_ID, &id);
if (ret < 0) {
dev_err(&client->dev, "ID read failed\n");
return ret;
}
ret = apds990x_read_byte(chip, APDS990X_REV, &chip->revision);
if (ret < 0) {
dev_err(&client->dev, "REV read failed\n");
return ret;
}
switch (id) {
case APDS990X_ID_0:
case APDS990X_ID_4:
case APDS990X_ID_29:
snprintf(chip->chipname, sizeof(chip->chipname), "APDS-990x");
break;
default:
ret = -ENODEV;
break;
}
return ret;
}
#ifdef CONFIG_PM
static int apds990x_chip_on(struct apds990x_chip *chip)
{
int err = regulator_bulk_enable(ARRAY_SIZE(chip->regs),
chip->regs);
if (err < 0)
return err;
usleep_range(APDS_STARTUP_DELAY, 2 * APDS_STARTUP_DELAY);
/* Refresh all configs in case of regulators were off */
chip->prox_data = 0;
apds990x_configure(chip);
apds990x_mode_on(chip);
return 0;
}
#endif
static int apds990x_chip_off(struct apds990x_chip *chip)
{
apds990x_write_byte(chip, APDS990X_ENABLE, APDS990X_EN_DISABLE_ALL);
regulator_bulk_disable(ARRAY_SIZE(chip->regs), chip->regs);
return 0;
}
static ssize_t apds990x_lux_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
ssize_t ret;
u32 result;
long timeout;
if (pm_runtime_suspended(dev))
return -EIO;
timeout = wait_event_interruptible_timeout(chip->wait,
!chip->lux_wait_fresh_res,
msecs_to_jiffies(APDS_TIMEOUT));
if (!timeout)
return -EIO;
mutex_lock(&chip->mutex);
result = (chip->lux * chip->lux_calib) / APDS_CALIB_SCALER;
if (result > (APDS_RANGE * APDS990X_LUX_OUTPUT_SCALE))
result = APDS_RANGE * APDS990X_LUX_OUTPUT_SCALE;
ret = sprintf(buf, "%d.%d\n",
result / APDS990X_LUX_OUTPUT_SCALE,
result % APDS990X_LUX_OUTPUT_SCALE);
mutex_unlock(&chip->mutex);
return ret;
}
static DEVICE_ATTR(lux0_input, S_IRUGO, apds990x_lux_show, NULL);
static ssize_t apds990x_lux_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", APDS_RANGE);
}
static DEVICE_ATTR(lux0_sensor_range, S_IRUGO, apds990x_lux_range_show, NULL);
static ssize_t apds990x_lux_calib_format_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", APDS_CALIB_SCALER);
}
static DEVICE_ATTR(lux0_calibscale_default, S_IRUGO,
apds990x_lux_calib_format_show, NULL);
static ssize_t apds990x_lux_calib_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", chip->lux_calib);
}
static ssize_t apds990x_lux_calib_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
unsigned long value;
int ret;
ret = kstrtoul(buf, 0, &value);
if (ret)
return ret;
chip->lux_calib = value;
return len;
}
static DEVICE_ATTR(lux0_calibscale, S_IRUGO | S_IWUSR, apds990x_lux_calib_show,
apds990x_lux_calib_store);
static ssize_t apds990x_rate_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i;
int pos = 0;
for (i = 0; i < ARRAY_SIZE(arates_hz); i++)
pos += sprintf(buf + pos, "%d ", arates_hz[i]);
sprintf(buf + pos - 1, "\n");
return pos;
}
static ssize_t apds990x_rate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", chip->arate);
}
static int apds990x_set_arate(struct apds990x_chip *chip, int rate)
{
int i;
for (i = 0; i < ARRAY_SIZE(arates_hz); i++)
if (rate >= arates_hz[i])
break;
if (i == ARRAY_SIZE(arates_hz))
return -EINVAL;
/* Pick up corresponding persistence value */
chip->lux_persistence = apersis[i];
chip->arate = arates_hz[i];
/* If the chip is not in use, don't try to access it */
if (pm_runtime_suspended(&chip->client->dev))
return 0;
/* Persistence levels */
return apds990x_write_byte(chip, APDS990X_PERS,
(chip->lux_persistence << APDS990X_APERS_SHIFT) |
(chip->prox_persistence << APDS990X_PPERS_SHIFT));
}
static ssize_t apds990x_rate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
unsigned long value;
int ret;
ret = kstrtoul(buf, 0, &value);
if (ret)
return ret;
mutex_lock(&chip->mutex);
ret = apds990x_set_arate(chip, value);
mutex_unlock(&chip->mutex);
if (ret < 0)
return ret;
return len;
}
static DEVICE_ATTR(lux0_rate_avail, S_IRUGO, apds990x_rate_avail, NULL);
static DEVICE_ATTR(lux0_rate, S_IRUGO | S_IWUSR, apds990x_rate_show,
apds990x_rate_store);
static ssize_t apds990x_prox_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t ret;
struct apds990x_chip *chip = dev_get_drvdata(dev);
if (pm_runtime_suspended(dev) || !chip->prox_en)
return -EIO;
mutex_lock(&chip->mutex);
ret = sprintf(buf, "%d\n", chip->prox_data);
mutex_unlock(&chip->mutex);
return ret;
}
static DEVICE_ATTR(prox0_raw, S_IRUGO, apds990x_prox_show, NULL);
static ssize_t apds990x_prox_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", APDS_PROX_RANGE);
}
static DEVICE_ATTR(prox0_sensor_range, S_IRUGO, apds990x_prox_range_show, NULL);
static ssize_t apds990x_prox_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", chip->prox_en);
}
static ssize_t apds990x_prox_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
unsigned long value;
int ret;
ret = kstrtoul(buf, 0, &value);
if (ret)
return ret;
mutex_lock(&chip->mutex);
if (!chip->prox_en)
chip->prox_data = 0;
if (value)
chip->prox_en++;
else if (chip->prox_en > 0)
chip->prox_en--;
if (!pm_runtime_suspended(dev))
apds990x_mode_on(chip);
mutex_unlock(&chip->mutex);
return len;
}
static DEVICE_ATTR(prox0_raw_en, S_IRUGO | S_IWUSR, apds990x_prox_enable_show,
apds990x_prox_enable_store);
static const char *reporting_modes[] = {"trigger", "periodic"};
static ssize_t apds990x_prox_reporting_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
return sprintf(buf, "%s\n",
reporting_modes[!!chip->prox_continuous_mode]);
}
static ssize_t apds990x_prox_reporting_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
int ret;
ret = sysfs_match_string(reporting_modes, buf);
if (ret < 0)
return ret;
chip->prox_continuous_mode = ret;
return len;
}
static DEVICE_ATTR(prox0_reporting_mode, S_IRUGO | S_IWUSR,
apds990x_prox_reporting_mode_show,
apds990x_prox_reporting_mode_store);
static ssize_t apds990x_prox_reporting_avail_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%s %s\n", reporting_modes[0], reporting_modes[1]);
}
static DEVICE_ATTR(prox0_reporting_mode_avail, S_IRUGO | S_IWUSR,
apds990x_prox_reporting_avail_show, NULL);
static ssize_t apds990x_lux_thresh_above_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", chip->lux_thres_hi);
}
static ssize_t apds990x_lux_thresh_below_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", chip->lux_thres_lo);
}
static ssize_t apds990x_set_lux_thresh(struct apds990x_chip *chip, u32 *target,
const char *buf)
{
unsigned long thresh;
int ret;
ret = kstrtoul(buf, 0, &thresh);
if (ret)
return ret;
if (thresh > APDS_RANGE)
return -EINVAL;
mutex_lock(&chip->mutex);
*target = thresh;
/*
* Don't update values in HW if we are still waiting for
* first interrupt to come after device handle open call.
*/
if (!chip->lux_wait_fresh_res)
apds990x_refresh_athres(chip);
mutex_unlock(&chip->mutex);
return ret;
}
static ssize_t apds990x_lux_thresh_above_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
int ret = apds990x_set_lux_thresh(chip, &chip->lux_thres_hi, buf);
if (ret < 0)
return ret;
return len;
}
static ssize_t apds990x_lux_thresh_below_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
int ret = apds990x_set_lux_thresh(chip, &chip->lux_thres_lo, buf);
if (ret < 0)
return ret;
return len;
}
static DEVICE_ATTR(lux0_thresh_above_value, S_IRUGO | S_IWUSR,
apds990x_lux_thresh_above_show,
apds990x_lux_thresh_above_store);
static DEVICE_ATTR(lux0_thresh_below_value, S_IRUGO | S_IWUSR,
apds990x_lux_thresh_below_show,
apds990x_lux_thresh_below_store);
static ssize_t apds990x_prox_threshold_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", chip->prox_thres);
}
static ssize_t apds990x_prox_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
unsigned long value;
int ret;
ret = kstrtoul(buf, 0, &value);
if (ret)
return ret;
if ((value > APDS_RANGE) || (value == 0) ||
(value < APDS_PROX_HYSTERESIS))
return -EINVAL;
mutex_lock(&chip->mutex);
chip->prox_thres = value;
apds990x_force_p_refresh(chip);
mutex_unlock(&chip->mutex);
return len;
}
static DEVICE_ATTR(prox0_thresh_above_value, S_IRUGO | S_IWUSR,
apds990x_prox_threshold_show,
apds990x_prox_threshold_store);
static ssize_t apds990x_power_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", !pm_runtime_suspended(dev));
return 0;
}
static ssize_t apds990x_power_state_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
unsigned long value;
int ret;
ret = kstrtoul(buf, 0, &value);
if (ret)
return ret;
if (value) {
pm_runtime_get_sync(dev);
mutex_lock(&chip->mutex);
chip->lux_wait_fresh_res = true;
apds990x_force_a_refresh(chip);
apds990x_force_p_refresh(chip);
mutex_unlock(&chip->mutex);
} else {
if (!pm_runtime_suspended(dev))
pm_runtime_put(dev);
}
return len;
}
static DEVICE_ATTR(power_state, S_IRUGO | S_IWUSR,
apds990x_power_state_show,
apds990x_power_state_store);
static ssize_t apds990x_chip_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct apds990x_chip *chip = dev_get_drvdata(dev);
return sprintf(buf, "%s %d\n", chip->chipname, chip->revision);
}
static DEVICE_ATTR(chip_id, S_IRUGO, apds990x_chip_id_show, NULL);
static struct attribute *sysfs_attrs_ctrl[] = {
&dev_attr_lux0_calibscale.attr,
&dev_attr_lux0_calibscale_default.attr,
&dev_attr_lux0_input.attr,
&dev_attr_lux0_sensor_range.attr,
&dev_attr_lux0_rate.attr,
&dev_attr_lux0_rate_avail.attr,
&dev_attr_lux0_thresh_above_value.attr,
&dev_attr_lux0_thresh_below_value.attr,
&dev_attr_prox0_raw_en.attr,
&dev_attr_prox0_raw.attr,
&dev_attr_prox0_sensor_range.attr,
&dev_attr_prox0_thresh_above_value.attr,
&dev_attr_prox0_reporting_mode.attr,
&dev_attr_prox0_reporting_mode_avail.attr,
&dev_attr_chip_id.attr,
&dev_attr_power_state.attr,
NULL
};
static struct attribute_group apds990x_attribute_group[] = {
{.attrs = sysfs_attrs_ctrl },
};
static int apds990x_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct apds990x_chip *chip;
int err;
chip = kzalloc(sizeof *chip, GFP_KERNEL);
if (!chip)
return -ENOMEM;
i2c_set_clientdata(client, chip);
chip->client = client;
init_waitqueue_head(&chip->wait);
mutex_init(&chip->mutex);
chip->pdata = client->dev.platform_data;
if (chip->pdata == NULL) {
dev_err(&client->dev, "platform data is mandatory\n");
err = -EINVAL;
goto fail1;
}
if (chip->pdata->cf.ga == 0) {
/* set uncovered sensor default parameters */
chip->cf.ga = 1966; /* 0.48 * APDS_PARAM_SCALE */
chip->cf.cf1 = 4096; /* 1.00 * APDS_PARAM_SCALE */
chip->cf.irf1 = 9134; /* 2.23 * APDS_PARAM_SCALE */
chip->cf.cf2 = 2867; /* 0.70 * APDS_PARAM_SCALE */
chip->cf.irf2 = 5816; /* 1.42 * APDS_PARAM_SCALE */
chip->cf.df = 52;
} else {
chip->cf = chip->pdata->cf;
}
/* precalculate inverse chip factors for threshold control */
chip->rcf.afactor =
(chip->cf.irf1 - chip->cf.irf2) * APDS_PARAM_SCALE /
(chip->cf.cf1 - chip->cf.cf2);
chip->rcf.cf1 = APDS_PARAM_SCALE * APDS_PARAM_SCALE /
chip->cf.cf1;
chip->rcf.irf1 = chip->cf.irf1 * APDS_PARAM_SCALE /
chip->cf.cf1;
chip->rcf.cf2 = APDS_PARAM_SCALE * APDS_PARAM_SCALE /
chip->cf.cf2;
chip->rcf.irf2 = chip->cf.irf2 * APDS_PARAM_SCALE /
chip->cf.cf2;
/* Set something to start with */
chip->lux_thres_hi = APDS_LUX_DEF_THRES_HI;
chip->lux_thres_lo = APDS_LUX_DEF_THRES_LO;
chip->lux_calib = APDS_LUX_NEUTRAL_CALIB_VALUE;
chip->prox_thres = APDS_PROX_DEF_THRES;
chip->pdrive = chip->pdata->pdrive;
chip->pdiode = APDS_PDIODE_IR;
chip->pgain = APDS_PGAIN_1X;
chip->prox_calib = APDS_PROX_NEUTRAL_CALIB_VALUE;
chip->prox_persistence = APDS_DEFAULT_PROX_PERS;
chip->prox_continuous_mode = false;
chip->regs[0].supply = reg_vcc;
chip->regs[1].supply = reg_vled;
err = regulator_bulk_get(&client->dev,
ARRAY_SIZE(chip->regs), chip->regs);
if (err < 0) {
dev_err(&client->dev, "Cannot get regulators\n");
goto fail1;
}
err = regulator_bulk_enable(ARRAY_SIZE(chip->regs), chip->regs);
if (err < 0) {
dev_err(&client->dev, "Cannot enable regulators\n");
goto fail2;
}
usleep_range(APDS_STARTUP_DELAY, 2 * APDS_STARTUP_DELAY);
err = apds990x_detect(chip);
if (err < 0) {
dev_err(&client->dev, "APDS990X not found\n");
goto fail3;
}
pm_runtime_set_active(&client->dev);
apds990x_configure(chip);
apds990x_set_arate(chip, APDS_LUX_DEFAULT_RATE);
apds990x_mode_on(chip);
pm_runtime_enable(&client->dev);
if (chip->pdata->setup_resources) {
err = chip->pdata->setup_resources();
if (err) {
err = -EINVAL;
goto fail3;
}
}
err = sysfs_create_group(&chip->client->dev.kobj,
apds990x_attribute_group);
if (err < 0) {
dev_err(&chip->client->dev, "Sysfs registration failed\n");
goto fail4;
}
err = request_threaded_irq(client->irq, NULL,
apds990x_irq,
IRQF_TRIGGER_FALLING | IRQF_TRIGGER_LOW |
IRQF_ONESHOT,
"apds990x", chip);
if (err) {
dev_err(&client->dev, "could not get IRQ %d\n",
client->irq);
goto fail5;
}
return err;
fail5:
sysfs_remove_group(&chip->client->dev.kobj,
&apds990x_attribute_group[0]);
fail4:
if (chip->pdata && chip->pdata->release_resources)
chip->pdata->release_resources();
fail3:
regulator_bulk_disable(ARRAY_SIZE(chip->regs), chip->regs);
fail2:
regulator_bulk_free(ARRAY_SIZE(chip->regs), chip->regs);
fail1:
kfree(chip);
return err;
}
static int apds990x_remove(struct i2c_client *client)
{
struct apds990x_chip *chip = i2c_get_clientdata(client);
free_irq(client->irq, chip);
sysfs_remove_group(&chip->client->dev.kobj,
apds990x_attribute_group);
if (chip->pdata && chip->pdata->release_resources)
chip->pdata->release_resources();
if (!pm_runtime_suspended(&client->dev))
apds990x_chip_off(chip);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
regulator_bulk_free(ARRAY_SIZE(chip->regs), chip->regs);
kfree(chip);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int apds990x_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct apds990x_chip *chip = i2c_get_clientdata(client);
apds990x_chip_off(chip);
return 0;
}
static int apds990x_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct apds990x_chip *chip = i2c_get_clientdata(client);
/*
* If we were enabled at suspend time, it is expected
* everything works nice and smoothly. Chip_on is enough
*/
apds990x_chip_on(chip);
return 0;
}
#endif
#ifdef CONFIG_PM
static int apds990x_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct apds990x_chip *chip = i2c_get_clientdata(client);
apds990x_chip_off(chip);
return 0;
}
static int apds990x_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct apds990x_chip *chip = i2c_get_clientdata(client);
apds990x_chip_on(chip);
return 0;
}
#endif
static const struct i2c_device_id apds990x_id[] = {
{"apds990x", 0 },
{}
};
MODULE_DEVICE_TABLE(i2c, apds990x_id);
static const struct dev_pm_ops apds990x_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(apds990x_suspend, apds990x_resume)
SET_RUNTIME_PM_OPS(apds990x_runtime_suspend,
apds990x_runtime_resume,
NULL)
};
static struct i2c_driver apds990x_driver = {
.driver = {
.name = "apds990x",
.pm = &apds990x_pm_ops,
},
.probe = apds990x_probe,
.remove = apds990x_remove,
.id_table = apds990x_id,
};
module_i2c_driver(apds990x_driver);
MODULE_DESCRIPTION("APDS990X combined ALS and proximity sensor");
MODULE_AUTHOR("Samu Onkalo, Nokia Corporation");
MODULE_LICENSE("GPL v2");