summaryrefslogblamecommitdiff
path: root/drivers/gpu/drm/radeon/kv_dpm.c
blob: ef6c901690da10e3d81547caeff9e08263cae64c (plain) (tree)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509



























                                                                             
                        
                           












                                                                        
                                                            







                                                                        
                                                                 






























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                
                                         
































































































































































































































































                                                                                              
                                                                








                                                   
                                    

                                                                




                                                                              

                                      

                                                               






































































































































































                                                                                                                 























                                                                      















































                                                                              
























                                                                              



                                               
                                                                 











































































                                                                                                                        
















                                                                                    






















































































































































































































































































































































































































































































































































































































































































                                                                                                                
                               





















                                            





















                                                                                          




















































                                                                                     
/*
 * Copyright 2013 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include "drmP.h"
#include "radeon.h"
#include "cikd.h"
#include "r600_dpm.h"
#include "kv_dpm.h"
#include "radeon_asic.h"
#include <linux/seq_file.h>

#define KV_MAX_DEEPSLEEP_DIVIDER_ID     5
#define KV_MINIMUM_ENGINE_CLOCK         800
#define SMC_RAM_END                     0x40000

static void kv_init_graphics_levels(struct radeon_device *rdev);
static int kv_calculate_ds_divider(struct radeon_device *rdev);
static int kv_calculate_nbps_level_settings(struct radeon_device *rdev);
static int kv_calculate_dpm_settings(struct radeon_device *rdev);
static void kv_enable_new_levels(struct radeon_device *rdev);
static void kv_program_nbps_index_settings(struct radeon_device *rdev,
					   struct radeon_ps *new_rps);
static int kv_set_enabled_levels(struct radeon_device *rdev);
static int kv_force_dpm_highest(struct radeon_device *rdev);
static int kv_force_dpm_lowest(struct radeon_device *rdev);
static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
					struct radeon_ps *new_rps,
					struct radeon_ps *old_rps);
static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
					    int min_temp, int max_temp);
static int kv_init_fps_limits(struct radeon_device *rdev);

void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate);
static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate);
static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate);
static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate);

extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
extern void cik_update_cg(struct radeon_device *rdev,
			  u32 block, bool enable);

static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
{
	{  0,       4,        1    },
	{  1,       4,        1    },
	{  2,       5,        1    },
	{  3,       4,        2    },
	{  4,       1,        1    },
	{  5,       5,        2    },
	{  6,       6,        1    },
	{  7,       9,        2    },
	{ 0xffffffff }
};

static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
{
	{  0,       4,        1    },
	{ 0xffffffff }
};

static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
{
	{  0,       4,        1    },
	{ 0xffffffff }
};

static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
{
	{  0,       4,        1    },
	{ 0xffffffff }
};

static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
{
	{  0,       4,        1    },
	{ 0xffffffff }
};

static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
{
	{  0,       4,        1    },
	{  1,       4,        1    },
	{  2,       5,        1    },
	{  3,       4,        1    },
	{  4,       1,        1    },
	{  5,       5,        1    },
	{  6,       6,        1    },
	{  7,       9,        1    },
	{  8,       4,        1    },
	{  9,       2,        1    },
	{  10,      3,        1    },
	{  11,      6,        1    },
	{  12,      8,        2    },
	{  13,      1,        1    },
	{  14,      2,        1    },
	{  15,      3,        1    },
	{  16,      1,        1    },
	{  17,      4,        1    },
	{  18,      3,        1    },
	{  19,      1,        1    },
	{  20,      8,        1    },
	{  21,      5,        1    },
	{  22,      1,        1    },
	{  23,      1,        1    },
	{  24,      4,        1    },
	{  27,      6,        1    },
	{  28,      1,        1    },
	{ 0xffffffff }
};

static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
{
	{ 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};

static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
{
	{ 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};

static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
{
	{ 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};

static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
{
	{ 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};

static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
{
	{ 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};

static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
{
	{ 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};

static const struct kv_pt_config_reg didt_config_kv[] =
{
	{ 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
	{ 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
	{ 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
	{ 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
	{ 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
	{ 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
	{ 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
	{ 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
	{ 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
	{ 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
	{ 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
	{ 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
	{ 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
	{ 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
	{ 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
	{ 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
	{ 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
	{ 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
	{ 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
	{ 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
	{ 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
	{ 0xFFFFFFFF }
};

static struct kv_ps *kv_get_ps(struct radeon_ps *rps)
{
	struct kv_ps *ps = rps->ps_priv;

	return ps;
}

static struct kv_power_info *kv_get_pi(struct radeon_device *rdev)
{
	struct kv_power_info *pi = rdev->pm.dpm.priv;

	return pi;
}

#if 0
static void kv_program_local_cac_table(struct radeon_device *rdev,
				       const struct kv_lcac_config_values *local_cac_table,
				       const struct kv_lcac_config_reg *local_cac_reg)
{
	u32 i, count, data;
	const struct kv_lcac_config_values *values = local_cac_table;

	while (values->block_id != 0xffffffff) {
		count = values->signal_id;
		for (i = 0; i < count; i++) {
			data = ((values->block_id << local_cac_reg->block_shift) &
				local_cac_reg->block_mask);
			data |= ((i << local_cac_reg->signal_shift) &
				 local_cac_reg->signal_mask);
			data |= ((values->t << local_cac_reg->t_shift) &
				 local_cac_reg->t_mask);
			data |= ((1 << local_cac_reg->enable_shift) &
				 local_cac_reg->enable_mask);
			WREG32_SMC(local_cac_reg->cntl, data);
		}
		values++;
	}
}
#endif

static int kv_program_pt_config_registers(struct radeon_device *rdev,
					  const struct kv_pt_config_reg *cac_config_regs)
{
	const struct kv_pt_config_reg *config_regs = cac_config_regs;
	u32 data;
	u32 cache = 0;

	if (config_regs == NULL)
		return -EINVAL;

	while (config_regs->offset != 0xFFFFFFFF) {
		if (config_regs->type == KV_CONFIGREG_CACHE) {
			cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
		} else {
			switch (config_regs->type) {
			case KV_CONFIGREG_SMC_IND:
				data = RREG32_SMC(config_regs->offset);
				break;
			case KV_CONFIGREG_DIDT_IND:
				data = RREG32_DIDT(config_regs->offset);
				break;
			default:
				data = RREG32(config_regs->offset << 2);
				break;
			}

			data &= ~config_regs->mask;
			data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
			data |= cache;
			cache = 0;

			switch (config_regs->type) {
			case KV_CONFIGREG_SMC_IND:
				WREG32_SMC(config_regs->offset, data);
				break;
			case KV_CONFIGREG_DIDT_IND:
				WREG32_DIDT(config_regs->offset, data);
				break;
			default:
				WREG32(config_regs->offset << 2, data);
				break;
			}
		}
		config_regs++;
	}

	return 0;
}

static void kv_do_enable_didt(struct radeon_device *rdev, bool enable)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 data;

	if (pi->caps_sq_ramping) {
		data = RREG32_DIDT(DIDT_SQ_CTRL0);
		if (enable)
			data |= DIDT_CTRL_EN;
		else
			data &= ~DIDT_CTRL_EN;
		WREG32_DIDT(DIDT_SQ_CTRL0, data);
	}

	if (pi->caps_db_ramping) {
		data = RREG32_DIDT(DIDT_DB_CTRL0);
		if (enable)
			data |= DIDT_CTRL_EN;
		else
			data &= ~DIDT_CTRL_EN;
		WREG32_DIDT(DIDT_DB_CTRL0, data);
	}

	if (pi->caps_td_ramping) {
		data = RREG32_DIDT(DIDT_TD_CTRL0);
		if (enable)
			data |= DIDT_CTRL_EN;
		else
			data &= ~DIDT_CTRL_EN;
		WREG32_DIDT(DIDT_TD_CTRL0, data);
	}

	if (pi->caps_tcp_ramping) {
		data = RREG32_DIDT(DIDT_TCP_CTRL0);
		if (enable)
			data |= DIDT_CTRL_EN;
		else
			data &= ~DIDT_CTRL_EN;
		WREG32_DIDT(DIDT_TCP_CTRL0, data);
	}
}

static int kv_enable_didt(struct radeon_device *rdev, bool enable)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret;

	if (pi->caps_sq_ramping ||
	    pi->caps_db_ramping ||
	    pi->caps_td_ramping ||
	    pi->caps_tcp_ramping) {
		cik_enter_rlc_safe_mode(rdev);

		if (enable) {
			ret = kv_program_pt_config_registers(rdev, didt_config_kv);
			if (ret) {
				cik_exit_rlc_safe_mode(rdev);
				return ret;
			}
		}

		kv_do_enable_didt(rdev, enable);

		cik_exit_rlc_safe_mode(rdev);
	}

	return 0;
}

#if 0
static void kv_initialize_hardware_cac_manager(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	if (pi->caps_cac) {
		WREG32_SMC(LCAC_SX0_OVR_SEL, 0);
		WREG32_SMC(LCAC_SX0_OVR_VAL, 0);
		kv_program_local_cac_table(rdev, sx_local_cac_cfg_kv, sx0_cac_config_reg);

		WREG32_SMC(LCAC_MC0_OVR_SEL, 0);
		WREG32_SMC(LCAC_MC0_OVR_VAL, 0);
		kv_program_local_cac_table(rdev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);

		WREG32_SMC(LCAC_MC1_OVR_SEL, 0);
		WREG32_SMC(LCAC_MC1_OVR_VAL, 0);
		kv_program_local_cac_table(rdev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);

		WREG32_SMC(LCAC_MC2_OVR_SEL, 0);
		WREG32_SMC(LCAC_MC2_OVR_VAL, 0);
		kv_program_local_cac_table(rdev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);

		WREG32_SMC(LCAC_MC3_OVR_SEL, 0);
		WREG32_SMC(LCAC_MC3_OVR_VAL, 0);
		kv_program_local_cac_table(rdev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);

		WREG32_SMC(LCAC_CPL_OVR_SEL, 0);
		WREG32_SMC(LCAC_CPL_OVR_VAL, 0);
		kv_program_local_cac_table(rdev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
	}
}
#endif

static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret = 0;

	if (pi->caps_cac) {
		if (enable) {
			ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac);
			if (ret)
				pi->cac_enabled = false;
			else
				pi->cac_enabled = true;
		} else if (pi->cac_enabled) {
			kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac);
			pi->cac_enabled = false;
		}
	}

	return ret;
}

static int kv_process_firmware_header(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 tmp;
	int ret;

	ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
				     offsetof(SMU7_Firmware_Header, DpmTable),
				     &tmp, pi->sram_end);

	if (ret == 0)
		pi->dpm_table_start = tmp;

	ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
				     offsetof(SMU7_Firmware_Header, SoftRegisters),
				     &tmp, pi->sram_end);

	if (ret == 0)
		pi->soft_regs_start = tmp;

	return ret;
}

static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret;

	pi->graphics_voltage_change_enable = 1;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
				   &pi->graphics_voltage_change_enable,
				   sizeof(u8), pi->sram_end);

	return ret;
}

static int kv_set_dpm_interval(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret;

	pi->graphics_interval = 1;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
				   &pi->graphics_interval,
				   sizeof(u8), pi->sram_end);

	return ret;
}

static int kv_set_dpm_boot_state(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
				   &pi->graphics_boot_level,
				   sizeof(u8), pi->sram_end);

	return ret;
}

static void kv_program_vc(struct radeon_device *rdev)
{
	WREG32_SMC(CG_FTV_0, 0x3FFFC000);
}

static void kv_clear_vc(struct radeon_device *rdev)
{
	WREG32_SMC(CG_FTV_0, 0);
}

static int kv_set_divider_value(struct radeon_device *rdev,
				u32 index, u32 sclk)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct atom_clock_dividers dividers;
	int ret;

	ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
					     sclk, false, &dividers);
	if (ret)
		return ret;

	pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
	pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);

	return 0;
}

static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev,
					    u16 voltage)
{
	return 6200 - (voltage * 25);
}

static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev,
					    u32 vid_2bit)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 vid_8bit = sumo_convert_vid2_to_vid7(rdev,
						 &pi->sys_info.vid_mapping_table,
						 vid_2bit);

	return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit);
}


static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
	pi->graphics_level[index].MinVddNb =
		cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid));

	return 0;
}

static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	pi->graphics_level[index].AT = cpu_to_be16((u16)at);

	return 0;
}

static void kv_dpm_power_level_enable(struct radeon_device *rdev,
				      u32 index, bool enable)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
}

static void kv_start_dpm(struct radeon_device *rdev)
{
	u32 tmp = RREG32_SMC(GENERAL_PWRMGT);

	tmp |= GLOBAL_PWRMGT_EN;
	WREG32_SMC(GENERAL_PWRMGT, tmp);

	kv_smc_dpm_enable(rdev, true);
}

static void kv_stop_dpm(struct radeon_device *rdev)
{
	kv_smc_dpm_enable(rdev, false);
}

static void kv_start_am(struct radeon_device *rdev)
{
	u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);

	sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
	sclk_pwrmgt_cntl |= DYNAMIC_PM_EN;

	WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
}

static void kv_reset_am(struct radeon_device *rdev)
{
	u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);

	sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT);

	WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
}

static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze)
{
	return kv_notify_message_to_smu(rdev, freeze ?
					PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
}

static int kv_force_lowest_valid(struct radeon_device *rdev)
{
	return kv_force_dpm_lowest(rdev);
}

static int kv_unforce_levels(struct radeon_device *rdev)
{
	return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel);
}

static int kv_update_sclk_t(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 low_sclk_interrupt_t = 0;
	int ret = 0;

	if (pi->caps_sclk_throttle_low_notification) {
		low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);

		ret = kv_copy_bytes_to_smc(rdev,
					   pi->dpm_table_start +
					   offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
					   (u8 *)&low_sclk_interrupt_t,
					   sizeof(u32), pi->sram_end);
	}
	return ret;
}

static int kv_program_bootup_state(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 i;
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;

	if (table && table->count) {
		for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
			if ((table->entries[i].clk == pi->boot_pl.sclk) ||
			    (i == 0))
				break;
		}

		pi->graphics_boot_level = (u8)i;
		kv_dpm_power_level_enable(rdev, i, true);
	} else {
		struct sumo_sclk_voltage_mapping_table *table =
			&pi->sys_info.sclk_voltage_mapping_table;

		if (table->num_max_dpm_entries == 0)
			return -EINVAL;

		for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
			if ((table->entries[i].sclk_frequency == pi->boot_pl.sclk) ||
			    (i == 0))
				break;
		}

		pi->graphics_boot_level = (u8)i;
		kv_dpm_power_level_enable(rdev, i, true);
	}
	return 0;
}

static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret;

	pi->graphics_therm_throttle_enable = 1;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
				   &pi->graphics_therm_throttle_enable,
				   sizeof(u8), pi->sram_end);

	return ret;
}

static int kv_upload_dpm_settings(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
				   (u8 *)&pi->graphics_level,
				   sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
				   pi->sram_end);

	if (ret)
		return ret;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
				   &pi->graphics_dpm_level_count,
				   sizeof(u8), pi->sram_end);

	return ret;
}

static u32 kv_get_clock_difference(u32 a, u32 b)
{
	return (a >= b) ? a - b : b - a;
}

static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 value;

	if (pi->caps_enable_dfs_bypass) {
		if (kv_get_clock_difference(clk, 40000) < 200)
			value = 3;
		else if (kv_get_clock_difference(clk, 30000) < 200)
			value = 2;
		else if (kv_get_clock_difference(clk, 20000) < 200)
			value = 7;
		else if (kv_get_clock_difference(clk, 15000) < 200)
			value = 6;
		else if (kv_get_clock_difference(clk, 10000) < 200)
			value = 8;
		else
			value = 0;
	} else {
		value = 0;
	}

	return value;
}

static int kv_populate_uvd_table(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_uvd_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
	struct atom_clock_dividers dividers;
	int ret;
	u32 i;

	if (table == NULL || table->count == 0)
		return 0;

	pi->uvd_level_count = 0;
	for (i = 0; i < table->count; i++) {
		if (pi->high_voltage_t &&
		    (pi->high_voltage_t < table->entries[i].v))
			break;

		pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
		pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
		pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);

		pi->uvd_level[i].VClkBypassCntl =
			(u8)kv_get_clk_bypass(rdev, table->entries[i].vclk);
		pi->uvd_level[i].DClkBypassCntl =
			(u8)kv_get_clk_bypass(rdev, table->entries[i].dclk);

		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
						     table->entries[i].vclk, false, &dividers);
		if (ret)
			return ret;
		pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;

		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
						     table->entries[i].dclk, false, &dividers);
		if (ret)
			return ret;
		pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;

		pi->uvd_level_count++;
	}

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
				   (u8 *)&pi->uvd_level_count,
				   sizeof(u8), pi->sram_end);
	if (ret)
		return ret;

	pi->uvd_interval = 1;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, UVDInterval),
				   &pi->uvd_interval,
				   sizeof(u8), pi->sram_end);
	if (ret)
		return ret;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, UvdLevel),
				   (u8 *)&pi->uvd_level,
				   sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
				   pi->sram_end);

	return ret;

}

static int kv_populate_vce_table(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret;
	u32 i;
	struct radeon_vce_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
	struct atom_clock_dividers dividers;

	if (table == NULL || table->count == 0)
		return 0;

	pi->vce_level_count = 0;
	for (i = 0; i < table->count; i++) {
		if (pi->high_voltage_t &&
		    pi->high_voltage_t < table->entries[i].v)
			break;

		pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
		pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);

		pi->vce_level[i].ClkBypassCntl =
			(u8)kv_get_clk_bypass(rdev, table->entries[i].evclk);

		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
						     table->entries[i].evclk, false, &dividers);
		if (ret)
			return ret;
		pi->vce_level[i].Divider = (u8)dividers.post_div;

		pi->vce_level_count++;
	}

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
				   (u8 *)&pi->vce_level_count,
				   sizeof(u8),
				   pi->sram_end);
	if (ret)
		return ret;

	pi->vce_interval = 1;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, VCEInterval),
				   (u8 *)&pi->vce_interval,
				   sizeof(u8),
				   pi->sram_end);
	if (ret)
		return ret;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, VceLevel),
				   (u8 *)&pi->vce_level,
				   sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
				   pi->sram_end);

	return ret;
}

static int kv_populate_samu_table(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
	struct atom_clock_dividers dividers;
	int ret;
	u32 i;

	if (table == NULL || table->count == 0)
		return 0;

	pi->samu_level_count = 0;
	for (i = 0; i < table->count; i++) {
		if (pi->high_voltage_t &&
		    pi->high_voltage_t < table->entries[i].v)
			break;

		pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
		pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);

		pi->samu_level[i].ClkBypassCntl =
			(u8)kv_get_clk_bypass(rdev, table->entries[i].clk);

		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
						     table->entries[i].clk, false, &dividers);
		if (ret)
			return ret;
		pi->samu_level[i].Divider = (u8)dividers.post_div;

		pi->samu_level_count++;
	}

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
				   (u8 *)&pi->samu_level_count,
				   sizeof(u8),
				   pi->sram_end);
	if (ret)
		return ret;

	pi->samu_interval = 1;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
				   (u8 *)&pi->samu_interval,
				   sizeof(u8),
				   pi->sram_end);
	if (ret)
		return ret;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, SamuLevel),
				   (u8 *)&pi->samu_level,
				   sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
				   pi->sram_end);
	if (ret)
		return ret;

	return ret;
}


static int kv_populate_acp_table(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
	struct atom_clock_dividers dividers;
	int ret;
	u32 i;

	if (table == NULL || table->count == 0)
		return 0;

	pi->acp_level_count = 0;
	for (i = 0; i < table->count; i++) {
		pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
		pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);

		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
						     table->entries[i].clk, false, &dividers);
		if (ret)
			return ret;
		pi->acp_level[i].Divider = (u8)dividers.post_div;

		pi->acp_level_count++;
	}

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
				   (u8 *)&pi->acp_level_count,
				   sizeof(u8),
				   pi->sram_end);
	if (ret)
		return ret;

	pi->acp_interval = 1;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, ACPInterval),
				   (u8 *)&pi->acp_interval,
				   sizeof(u8),
				   pi->sram_end);
	if (ret)
		return ret;

	ret = kv_copy_bytes_to_smc(rdev,
				   pi->dpm_table_start +
				   offsetof(SMU7_Fusion_DpmTable, AcpLevel),
				   (u8 *)&pi->acp_level,
				   sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
				   pi->sram_end);
	if (ret)
		return ret;

	return ret;
}

static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 i;
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;

	if (table && table->count) {
		for (i = 0; i < pi->graphics_dpm_level_count; i++) {
			if (pi->caps_enable_dfs_bypass) {
				if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
					pi->graphics_level[i].ClkBypassCntl = 3;
				else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
					pi->graphics_level[i].ClkBypassCntl = 2;
				else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
					pi->graphics_level[i].ClkBypassCntl = 7;
				else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
					pi->graphics_level[i].ClkBypassCntl = 6;
				else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
					pi->graphics_level[i].ClkBypassCntl = 8;
				else
					pi->graphics_level[i].ClkBypassCntl = 0;
			} else {
				pi->graphics_level[i].ClkBypassCntl = 0;
			}
		}
	} else {
		struct sumo_sclk_voltage_mapping_table *table =
			&pi->sys_info.sclk_voltage_mapping_table;
		for (i = 0; i < pi->graphics_dpm_level_count; i++) {
			if (pi->caps_enable_dfs_bypass) {
				if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
					pi->graphics_level[i].ClkBypassCntl = 3;
				else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
					pi->graphics_level[i].ClkBypassCntl = 2;
				else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
					pi->graphics_level[i].ClkBypassCntl = 7;
				else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
					pi->graphics_level[i].ClkBypassCntl = 6;
				else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
					pi->graphics_level[i].ClkBypassCntl = 8;
				else
					pi->graphics_level[i].ClkBypassCntl = 0;
			} else {
				pi->graphics_level[i].ClkBypassCntl = 0;
			}
		}
	}
}

static int kv_enable_ulv(struct radeon_device *rdev, bool enable)
{
	return kv_notify_message_to_smu(rdev, enable ?
					PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
}

static void kv_update_current_ps(struct radeon_device *rdev,
				 struct radeon_ps *rps)
{
	struct kv_ps *new_ps = kv_get_ps(rps);
	struct kv_power_info *pi = kv_get_pi(rdev);

	pi->current_rps = *rps;
	pi->current_ps = *new_ps;
	pi->current_rps.ps_priv = &pi->current_ps;
}

static void kv_update_requested_ps(struct radeon_device *rdev,
				   struct radeon_ps *rps)
{
	struct kv_ps *new_ps = kv_get_ps(rps);
	struct kv_power_info *pi = kv_get_pi(rdev);

	pi->requested_rps = *rps;
	pi->requested_ps = *new_ps;
	pi->requested_rps.ps_priv = &pi->requested_ps;
}

int kv_dpm_enable(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret;

	ret = kv_process_firmware_header(rdev);
	if (ret) {
		DRM_ERROR("kv_process_firmware_header failed\n");
		return ret;
	}
	kv_init_fps_limits(rdev);
	kv_init_graphics_levels(rdev);
	ret = kv_program_bootup_state(rdev);
	if (ret) {
		DRM_ERROR("kv_program_bootup_state failed\n");
		return ret;
	}
	kv_calculate_dfs_bypass_settings(rdev);
	ret = kv_upload_dpm_settings(rdev);
	if (ret) {
		DRM_ERROR("kv_upload_dpm_settings failed\n");
		return ret;
	}
	ret = kv_populate_uvd_table(rdev);
	if (ret) {
		DRM_ERROR("kv_populate_uvd_table failed\n");
		return ret;
	}
	ret = kv_populate_vce_table(rdev);
	if (ret) {
		DRM_ERROR("kv_populate_vce_table failed\n");
		return ret;
	}
	ret = kv_populate_samu_table(rdev);
	if (ret) {
		DRM_ERROR("kv_populate_samu_table failed\n");
		return ret;
	}
	ret = kv_populate_acp_table(rdev);
	if (ret) {
		DRM_ERROR("kv_populate_acp_table failed\n");
		return ret;
	}
	kv_program_vc(rdev);
#if 0
	kv_initialize_hardware_cac_manager(rdev);
#endif
	kv_start_am(rdev);
	if (pi->enable_auto_thermal_throttling) {
		ret = kv_enable_auto_thermal_throttling(rdev);
		if (ret) {
			DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
			return ret;
		}
	}
	ret = kv_enable_dpm_voltage_scaling(rdev);
	if (ret) {
		DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
		return ret;
	}
	ret = kv_set_dpm_interval(rdev);
	if (ret) {
		DRM_ERROR("kv_set_dpm_interval failed\n");
		return ret;
	}
	ret = kv_set_dpm_boot_state(rdev);
	if (ret) {
		DRM_ERROR("kv_set_dpm_boot_state failed\n");
		return ret;
	}
	ret = kv_enable_ulv(rdev, true);
	if (ret) {
		DRM_ERROR("kv_enable_ulv failed\n");
		return ret;
	}
	kv_start_dpm(rdev);
	ret = kv_enable_didt(rdev, true);
	if (ret) {
		DRM_ERROR("kv_enable_didt failed\n");
		return ret;
	}
	ret = kv_enable_smc_cac(rdev, true);
	if (ret) {
		DRM_ERROR("kv_enable_smc_cac failed\n");
		return ret;
	}

	if (rdev->irq.installed &&
	    r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
		ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
		if (ret) {
			DRM_ERROR("kv_set_thermal_temperature_range failed\n");
			return ret;
		}
		rdev->irq.dpm_thermal = true;
		radeon_irq_set(rdev);
	}

	/* powerdown unused blocks for now */
	kv_dpm_powergate_acp(rdev, true);
	kv_dpm_powergate_samu(rdev, true);
	kv_dpm_powergate_vce(rdev, true);
	kv_dpm_powergate_uvd(rdev, true);

	kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);

	return ret;
}

void kv_dpm_disable(struct radeon_device *rdev)
{
	kv_enable_smc_cac(rdev, false);
	kv_enable_didt(rdev, false);
	kv_clear_vc(rdev);
	kv_stop_dpm(rdev);
	kv_enable_ulv(rdev, false);
	kv_reset_am(rdev);

	kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
}

#if 0
static int kv_write_smc_soft_register(struct radeon_device *rdev,
				      u16 reg_offset, u32 value)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	return kv_copy_bytes_to_smc(rdev, pi->soft_regs_start + reg_offset,
				    (u8 *)&value, sizeof(u16), pi->sram_end);
}

static int kv_read_smc_soft_register(struct radeon_device *rdev,
				     u16 reg_offset, u32 *value)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	return kv_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset,
				      value, pi->sram_end);
}
#endif

static void kv_init_sclk_t(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	pi->low_sclk_interrupt_t = 0;
}

static int kv_init_fps_limits(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret = 0;

	if (pi->caps_fps) {
		u16 tmp;

		tmp = 45;
		pi->fps_high_t = cpu_to_be16(tmp);
		ret = kv_copy_bytes_to_smc(rdev,
					   pi->dpm_table_start +
					   offsetof(SMU7_Fusion_DpmTable, FpsHighT),
					   (u8 *)&pi->fps_high_t,
					   sizeof(u16), pi->sram_end);

		tmp = 30;
		pi->fps_low_t = cpu_to_be16(tmp);

		ret = kv_copy_bytes_to_smc(rdev,
					   pi->dpm_table_start +
					   offsetof(SMU7_Fusion_DpmTable, FpsLowT),
					   (u8 *)&pi->fps_low_t,
					   sizeof(u16), pi->sram_end);

	}
	return ret;
}

static void kv_init_powergate_state(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	pi->uvd_power_gated = false;
	pi->vce_power_gated = false;
	pi->samu_power_gated = false;
	pi->acp_power_gated = false;

}

static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
{
	return kv_notify_message_to_smu(rdev, enable ?
					PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
}

#if 0
static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable)
{
	return kv_notify_message_to_smu(rdev, enable ?
					PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
}
#endif

static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable)
{
	return kv_notify_message_to_smu(rdev, enable ?
					PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
}

static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable)
{
	return kv_notify_message_to_smu(rdev, enable ?
					PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
}

static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_uvd_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
	int ret;

	if (!gate) {
		if (!pi->caps_uvd_dpm || table->count || pi->caps_stable_p_state)
			pi->uvd_boot_level = table->count - 1;
		else
			pi->uvd_boot_level = 0;

		ret = kv_copy_bytes_to_smc(rdev,
					   pi->dpm_table_start +
					   offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
					   (uint8_t *)&pi->uvd_boot_level,
					   sizeof(u8), pi->sram_end);
		if (ret)
			return ret;

		if (!pi->caps_uvd_dpm ||
		    pi->caps_stable_p_state)
			kv_send_msg_to_smc_with_parameter(rdev,
							  PPSMC_MSG_UVDDPM_SetEnabledMask,
							  (1 << pi->uvd_boot_level));
	}

	return kv_enable_uvd_dpm(rdev, !gate);
}

#if 0
static u8 kv_get_vce_boot_level(struct radeon_device *rdev)
{
	u8 i;
	struct radeon_vce_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;

	for (i = 0; i < table->count; i++) {
		if (table->entries[i].evclk >= 0) /* XXX */
			break;
	}

	return i;
}

static int kv_update_vce_dpm(struct radeon_device *rdev,
			     struct radeon_ps *radeon_new_state,
			     struct radeon_ps *radeon_current_state)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_vce_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
	int ret;

	if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) {
		if (pi->caps_stable_p_state)
			pi->vce_boot_level = table->count - 1;
		else
			pi->vce_boot_level = kv_get_vce_boot_level(rdev);

		ret = kv_copy_bytes_to_smc(rdev,
					   pi->dpm_table_start +
					   offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
					   (u8 *)&pi->vce_boot_level,
					   sizeof(u8),
					   pi->sram_end);
		if (ret)
			return ret;

		if (pi->caps_stable_p_state)
			kv_send_msg_to_smc_with_parameter(rdev,
							  PPSMC_MSG_VCEDPM_SetEnabledMask,
							  (1 << pi->vce_boot_level));

		kv_enable_vce_dpm(rdev, true);
	} else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) {
		kv_enable_vce_dpm(rdev, false);
	}

	return 0;
}
#endif

static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
	int ret;

	if (!gate) {
		if (pi->caps_stable_p_state)
			pi->samu_boot_level = table->count - 1;
		else
			pi->samu_boot_level = 0;

		ret = kv_copy_bytes_to_smc(rdev,
					   pi->dpm_table_start +
					   offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
					   (u8 *)&pi->samu_boot_level,
					   sizeof(u8),
					   pi->sram_end);
		if (ret)
			return ret;

		if (pi->caps_stable_p_state)
			kv_send_msg_to_smc_with_parameter(rdev,
							  PPSMC_MSG_SAMUDPM_SetEnabledMask,
							  (1 << pi->samu_boot_level));
	}

	return kv_enable_samu_dpm(rdev, !gate);
}

static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
	int ret;

	if (!gate) {
		if (pi->caps_stable_p_state)
			pi->acp_boot_level = table->count - 1;
		else
			pi->acp_boot_level = 0;

		ret = kv_copy_bytes_to_smc(rdev,
					   pi->dpm_table_start +
					   offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
					   (u8 *)&pi->acp_boot_level,
					   sizeof(u8),
					   pi->sram_end);
		if (ret)
			return ret;

		if (pi->caps_stable_p_state)
			kv_send_msg_to_smc_with_parameter(rdev,
							  PPSMC_MSG_ACPDPM_SetEnabledMask,
							  (1 << pi->acp_boot_level));
	}

	return kv_enable_acp_dpm(rdev, !gate);
}

void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	if (pi->uvd_power_gated == gate)
		return;

	pi->uvd_power_gated = gate;

	if (gate) {
		uvd_v1_0_stop(rdev);
		cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, false);
		kv_update_uvd_dpm(rdev, gate);
		if (pi->caps_uvd_pg)
			kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF);
	} else {
		if (pi->caps_uvd_pg)
			kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON);
		uvd_v4_2_resume(rdev);
		uvd_v1_0_start(rdev);
		cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, true);
		kv_update_uvd_dpm(rdev, gate);
	}
}

static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	if (pi->vce_power_gated == gate)
		return;

	pi->vce_power_gated = gate;

	if (gate) {
		if (pi->caps_vce_pg)
			kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF);
	} else {
		if (pi->caps_vce_pg)
			kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON);
	}
}

static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	if (pi->samu_power_gated == gate)
		return;

	pi->samu_power_gated = gate;

	if (gate) {
		kv_update_samu_dpm(rdev, true);
		if (pi->caps_samu_pg)
			kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF);
	} else {
		if (pi->caps_samu_pg)
			kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON);
		kv_update_samu_dpm(rdev, false);
	}
}

static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	if (pi->acp_power_gated == gate)
		return;

	if (rdev->family == CHIP_KABINI)
		return;

	pi->acp_power_gated = gate;

	if (gate) {
		kv_update_acp_dpm(rdev, true);
		if (pi->caps_acp_pg)
			kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF);
	} else {
		if (pi->caps_acp_pg)
			kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON);
		kv_update_acp_dpm(rdev, false);
	}
}

static void kv_set_valid_clock_range(struct radeon_device *rdev,
				     struct radeon_ps *new_rps)
{
	struct kv_ps *new_ps = kv_get_ps(new_rps);
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 i;
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;

	if (table && table->count) {
		for (i = 0; i < pi->graphics_dpm_level_count; i++) {
			if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
			    (i == (pi->graphics_dpm_level_count - 1))) {
				pi->lowest_valid = i;
				break;
			}
		}

		for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
			if ((table->entries[i].clk <= new_ps->levels[new_ps->num_levels -1].sclk) ||
			    (i == 0)) {
				pi->highest_valid = i;
				break;
			}
		}

		if (pi->lowest_valid > pi->highest_valid) {
			if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
			    (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
				pi->highest_valid = pi->lowest_valid;
			else
				pi->lowest_valid =  pi->highest_valid;
		}
	} else {
		struct sumo_sclk_voltage_mapping_table *table =
			&pi->sys_info.sclk_voltage_mapping_table;

		for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
			if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
			    i == (int)(pi->graphics_dpm_level_count - 1)) {
				pi->lowest_valid = i;
				break;
			}
		}

		for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
			if (table->entries[i].sclk_frequency <=
			    new_ps->levels[new_ps->num_levels - 1].sclk ||
			    i == 0) {
				pi->highest_valid = i;
				break;
			}
		}

		if (pi->lowest_valid > pi->highest_valid) {
			if ((new_ps->levels[0].sclk -
			     table->entries[pi->highest_valid].sclk_frequency) >
			    (table->entries[pi->lowest_valid].sclk_frequency -
			     new_ps->levels[new_ps->num_levels -1].sclk))
				pi->highest_valid = pi->lowest_valid;
			else
				pi->lowest_valid =  pi->highest_valid;
		}
	}
}

static int kv_update_dfs_bypass_settings(struct radeon_device *rdev,
					 struct radeon_ps *new_rps)
{
	struct kv_ps *new_ps = kv_get_ps(new_rps);
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret = 0;
	u8 clk_bypass_cntl;

	if (pi->caps_enable_dfs_bypass) {
		clk_bypass_cntl = new_ps->need_dfs_bypass ?
			pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
		ret = kv_copy_bytes_to_smc(rdev,
					   (pi->dpm_table_start +
					    offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
					    (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
					    offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
					   &clk_bypass_cntl,
					   sizeof(u8), pi->sram_end);
	}

	return ret;
}

static int kv_enable_nb_dpm(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	int ret = 0;

	if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
		ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable);
		if (ret == 0)
			pi->nb_dpm_enabled = true;
	}

	return ret;
}

int kv_dpm_force_performance_level(struct radeon_device *rdev,
				   enum radeon_dpm_forced_level level)
{
	int ret;

	if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
		ret = kv_force_dpm_highest(rdev);
		if (ret)
			return ret;
	} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
		ret = kv_force_dpm_lowest(rdev);
		if (ret)
			return ret;
	} else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
		ret = kv_unforce_levels(rdev);
		if (ret)
			return ret;
	}

	rdev->pm.dpm.forced_level = level;

	return 0;
}

int kv_dpm_pre_set_power_state(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
	struct radeon_ps *new_ps = &requested_ps;

	kv_update_requested_ps(rdev, new_ps);

	kv_apply_state_adjust_rules(rdev,
				    &pi->requested_rps,
				    &pi->current_rps);

	return 0;
}

int kv_dpm_set_power_state(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_ps *new_ps = &pi->requested_rps;
	/*struct radeon_ps *old_ps = &pi->current_rps;*/
	int ret;

	if (rdev->family == CHIP_KABINI) {
		if (pi->enable_dpm) {
			kv_set_valid_clock_range(rdev, new_ps);
			kv_update_dfs_bypass_settings(rdev, new_ps);
			ret = kv_calculate_ds_divider(rdev);
			if (ret) {
				DRM_ERROR("kv_calculate_ds_divider failed\n");
				return ret;
			}
			kv_calculate_nbps_level_settings(rdev);
			kv_calculate_dpm_settings(rdev);
			kv_force_lowest_valid(rdev);
			kv_enable_new_levels(rdev);
			kv_upload_dpm_settings(rdev);
			kv_program_nbps_index_settings(rdev, new_ps);
			kv_unforce_levels(rdev);
			kv_set_enabled_levels(rdev);
			kv_force_lowest_valid(rdev);
			kv_unforce_levels(rdev);
#if 0
			ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
			if (ret) {
				DRM_ERROR("kv_update_vce_dpm failed\n");
				return ret;
			}
#endif
			kv_update_sclk_t(rdev);
		}
	} else {
		if (pi->enable_dpm) {
			kv_set_valid_clock_range(rdev, new_ps);
			kv_update_dfs_bypass_settings(rdev, new_ps);
			ret = kv_calculate_ds_divider(rdev);
			if (ret) {
				DRM_ERROR("kv_calculate_ds_divider failed\n");
				return ret;
			}
			kv_calculate_nbps_level_settings(rdev);
			kv_calculate_dpm_settings(rdev);
			kv_freeze_sclk_dpm(rdev, true);
			kv_upload_dpm_settings(rdev);
			kv_program_nbps_index_settings(rdev, new_ps);
			kv_freeze_sclk_dpm(rdev, false);
			kv_set_enabled_levels(rdev);
#if 0
			ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
			if (ret) {
				DRM_ERROR("kv_update_vce_dpm failed\n");
				return ret;
			}
#endif
			kv_update_sclk_t(rdev);
			kv_enable_nb_dpm(rdev);
		}
	}
	rdev->pm.dpm.forced_level = RADEON_DPM_FORCED_LEVEL_AUTO;
	return 0;
}

void kv_dpm_post_set_power_state(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_ps *new_ps = &pi->requested_rps;

	kv_update_current_ps(rdev, new_ps);
}

void kv_dpm_setup_asic(struct radeon_device *rdev)
{
	sumo_take_smu_control(rdev, true);
	kv_init_powergate_state(rdev);
	kv_init_sclk_t(rdev);
}

void kv_dpm_reset_asic(struct radeon_device *rdev)
{
	kv_force_lowest_valid(rdev);
	kv_init_graphics_levels(rdev);
	kv_program_bootup_state(rdev);
	kv_upload_dpm_settings(rdev);
	kv_force_lowest_valid(rdev);
	kv_unforce_levels(rdev);
}

//XXX use sumo_dpm_display_configuration_changed

static void kv_construct_max_power_limits_table(struct radeon_device *rdev,
						struct radeon_clock_and_voltage_limits *table)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
		int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
		table->sclk =
			pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
		table->vddc =
			kv_convert_2bit_index_to_voltage(rdev,
							 pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
	}

	table->mclk = pi->sys_info.nbp_memory_clock[0];
}

static void kv_patch_voltage_values(struct radeon_device *rdev)
{
	int i;
	struct radeon_uvd_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;

	if (table->count) {
		for (i = 0; i < table->count; i++)
			table->entries[i].v =
				kv_convert_8bit_index_to_voltage(rdev,
								 table->entries[i].v);
	}

}

static void kv_construct_boot_state(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
	pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
	pi->boot_pl.ds_divider_index = 0;
	pi->boot_pl.ss_divider_index = 0;
	pi->boot_pl.allow_gnb_slow = 1;
	pi->boot_pl.force_nbp_state = 0;
	pi->boot_pl.display_wm = 0;
	pi->boot_pl.vce_wm = 0;
}

static int kv_force_dpm_highest(struct radeon_device *rdev)
{
	int ret;
	u32 enable_mask, i;

	ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
	if (ret)
		return ret;

	for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i >= 0; i--) {
		if (enable_mask & (1 << i))
			break;
	}

	return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
}

static int kv_force_dpm_lowest(struct radeon_device *rdev)
{
	int ret;
	u32 enable_mask, i;

	ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
	if (ret)
		return ret;

	for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
		if (enable_mask & (1 << i))
			break;
	}

	return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
}

static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
					     u32 sclk, u32 min_sclk_in_sr)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 i;
	u32 temp;
	u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
		min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;

	if (sclk < min)
		return 0;

	if (!pi->caps_sclk_ds)
		return 0;

	for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i <= 0; i--) {
		temp = sclk / sumo_get_sleep_divider_from_id(i);
		if ((temp >= min) || (i == 0))
			break;
	}

	return (u8)i;
}

static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
	int i;

	if (table && table->count) {
		for (i = table->count - 1; i >= 0; i--) {
			if (pi->high_voltage_t &&
			    (kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <=
			     pi->high_voltage_t)) {
				*limit = i;
				return 0;
			}
		}
	} else {
		struct sumo_sclk_voltage_mapping_table *table =
			&pi->sys_info.sclk_voltage_mapping_table;

		for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
			if (pi->high_voltage_t &&
			    (kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <=
			     pi->high_voltage_t)) {
				*limit = i;
				return 0;
			}
		}
	}

	*limit = 0;
	return 0;
}

static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
					struct radeon_ps *new_rps,
					struct radeon_ps *old_rps)
{
	struct kv_ps *ps = kv_get_ps(new_rps);
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 min_sclk = 10000; /* ??? */
	u32 sclk, mclk = 0;
	int i, limit;
	bool force_high;
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
	u32 stable_p_state_sclk = 0;
	struct radeon_clock_and_voltage_limits *max_limits =
		&rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;

	mclk = max_limits->mclk;
	sclk = min_sclk;

	if (pi->caps_stable_p_state) {
		stable_p_state_sclk = (max_limits->sclk * 75) / 100;

		for (i = table->count - 1; i >= 0; i++) {
			if (stable_p_state_sclk >= table->entries[i].clk) {
				stable_p_state_sclk = table->entries[i].clk;
				break;
			}
		}

		if (i > 0)
			stable_p_state_sclk = table->entries[0].clk;

		sclk = stable_p_state_sclk;
	}

	ps->need_dfs_bypass = true;

	for (i = 0; i < ps->num_levels; i++) {
		if (ps->levels[i].sclk < sclk)
			ps->levels[i].sclk = sclk;
	}

	if (table && table->count) {
		for (i = 0; i < ps->num_levels; i++) {
			if (pi->high_voltage_t &&
			    (pi->high_voltage_t <
			     kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
				kv_get_high_voltage_limit(rdev, &limit);
				ps->levels[i].sclk = table->entries[limit].clk;
			}
		}
	} else {
		struct sumo_sclk_voltage_mapping_table *table =
			&pi->sys_info.sclk_voltage_mapping_table;

		for (i = 0; i < ps->num_levels; i++) {
			if (pi->high_voltage_t &&
			    (pi->high_voltage_t <
			     kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
				kv_get_high_voltage_limit(rdev, &limit);
				ps->levels[i].sclk = table->entries[limit].sclk_frequency;
			}
		}
	}

	if (pi->caps_stable_p_state) {
		for (i = 0; i < ps->num_levels; i++) {
			ps->levels[i].sclk = stable_p_state_sclk;
		}
	}

	pi->video_start = new_rps->dclk || new_rps->vclk;

	if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
	    ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
		pi->battery_state = true;
	else
		pi->battery_state = false;

	if (rdev->family == CHIP_KABINI) {
		ps->dpm0_pg_nb_ps_lo = 0x1;
		ps->dpm0_pg_nb_ps_hi = 0x0;
		ps->dpmx_nb_ps_lo = 0x1;
		ps->dpmx_nb_ps_hi = 0x0;
	} else {
		ps->dpm0_pg_nb_ps_lo = 0x1;
		ps->dpm0_pg_nb_ps_hi = 0x0;
		ps->dpmx_nb_ps_lo = 0x2;
		ps->dpmx_nb_ps_hi = 0x1;

		if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
			force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
				pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) ||
				pi->disable_nb_ps3_in_battery;
			ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
			ps->dpm0_pg_nb_ps_hi = 0x2;
			ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
			ps->dpmx_nb_ps_hi = 0x2;
		}
	}
}

static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev,
						    u32 index, bool enable)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
}

static int kv_calculate_ds_divider(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 sclk_in_sr = 10000; /* ??? */
	u32 i;

	if (pi->lowest_valid > pi->highest_valid)
		return -EINVAL;

	for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
		pi->graphics_level[i].DeepSleepDivId =
			kv_get_sleep_divider_id_from_clock(rdev,
							   be32_to_cpu(pi->graphics_level[i].SclkFrequency),
							   sclk_in_sr);
	}
	return 0;
}

static int kv_calculate_nbps_level_settings(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 i;
	bool force_high;
	struct radeon_clock_and_voltage_limits *max_limits =
		&rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
	u32 mclk = max_limits->mclk;

	if (pi->lowest_valid > pi->highest_valid)
		return -EINVAL;

	if (rdev->family == CHIP_KABINI) {
		for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
			pi->graphics_level[i].GnbSlow = 1;
			pi->graphics_level[i].ForceNbPs1 = 0;
			pi->graphics_level[i].UpH = 0;
		}

		if (!pi->sys_info.nb_dpm_enable)
			return 0;

		force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
			      (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);

		if (force_high) {
			for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
				pi->graphics_level[i].GnbSlow = 0;
		} else {
			if (pi->battery_state)
				pi->graphics_level[0].ForceNbPs1 = 1;

			pi->graphics_level[1].GnbSlow = 0;
			pi->graphics_level[2].GnbSlow = 0;
			pi->graphics_level[3].GnbSlow = 0;
			pi->graphics_level[4].GnbSlow = 0;
		}
	} else {
		for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
			pi->graphics_level[i].GnbSlow = 1;
			pi->graphics_level[i].ForceNbPs1 = 0;
			pi->graphics_level[i].UpH = 0;
		}

		if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
			pi->graphics_level[pi->lowest_valid].UpH = 0x28;
			pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
			if (pi->lowest_valid != pi->highest_valid)
				pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
		}
	}
	return 0;
}

static int kv_calculate_dpm_settings(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 i;

	if (pi->lowest_valid > pi->highest_valid)
		return -EINVAL;

	for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
		pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;

	return 0;
}

static void kv_init_graphics_levels(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 i;
	struct radeon_clock_voltage_dependency_table *table =
		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;

	if (table && table->count) {
		u32 vid_2bit;

		pi->graphics_dpm_level_count = 0;
		for (i = 0; i < table->count; i++) {
			if (pi->high_voltage_t &&
			    (pi->high_voltage_t <
			     kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v)))
				break;

			kv_set_divider_value(rdev, i, table->entries[i].clk);
			vid_2bit = sumo_convert_vid7_to_vid2(rdev,
							     &pi->sys_info.vid_mapping_table,
							     table->entries[i].v);
			kv_set_vid(rdev, i, vid_2bit);
			kv_set_at(rdev, i, pi->at[i]);
			kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
			pi->graphics_dpm_level_count++;
		}
	} else {
		struct sumo_sclk_voltage_mapping_table *table =
			&pi->sys_info.sclk_voltage_mapping_table;

		pi->graphics_dpm_level_count = 0;
		for (i = 0; i < table->num_max_dpm_entries; i++) {
			if (pi->high_voltage_t &&
			    pi->high_voltage_t <
			    kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit))
				break;

			kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency);
			kv_set_vid(rdev, i, table->entries[i].vid_2bit);
			kv_set_at(rdev, i, pi->at[i]);
			kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
			pi->graphics_dpm_level_count++;
		}
	}

	for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
		kv_dpm_power_level_enable(rdev, i, false);
}

static void kv_enable_new_levels(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 i;

	for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
		if (i >= pi->lowest_valid && i <= pi->highest_valid)
			kv_dpm_power_level_enable(rdev, i, true);
	}
}

static int kv_set_enabled_levels(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 i, new_mask = 0;

	for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
		new_mask |= (1 << i);

	return kv_send_msg_to_smc_with_parameter(rdev,
						 PPSMC_MSG_SCLKDPM_SetEnabledMask,
						 new_mask);
}

static void kv_program_nbps_index_settings(struct radeon_device *rdev,
					   struct radeon_ps *new_rps)
{
	struct kv_ps *new_ps = kv_get_ps(new_rps);
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 nbdpmconfig1;

	if (rdev->family == CHIP_KABINI)
		return;

	if (pi->sys_info.nb_dpm_enable) {
		nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1);
		nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK |
				  DpmXNbPsLo_MASK | DpmXNbPsHi_MASK);
		nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) |
				 Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) |
				 DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) |
				 DpmXNbPsHi(new_ps->dpmx_nb_ps_hi));
		WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1);
	}
}

static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
					    int min_temp, int max_temp)
{
	int low_temp = 0 * 1000;
	int high_temp = 255 * 1000;
	u32 tmp;

	if (low_temp < min_temp)
		low_temp = min_temp;
	if (high_temp > max_temp)
		high_temp = max_temp;
	if (high_temp < low_temp) {
		DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
		return -EINVAL;
	}

	tmp = RREG32_SMC(CG_THERMAL_INT_CTRL);
	tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK);
	tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) |
		DIG_THERM_INTL(49 + (low_temp / 1000)));
	WREG32_SMC(CG_THERMAL_INT_CTRL, tmp);

	rdev->pm.dpm.thermal.min_temp = low_temp;
	rdev->pm.dpm.thermal.max_temp = high_temp;

	return 0;
}

union igp_info {
	struct _ATOM_INTEGRATED_SYSTEM_INFO info;
	struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
	struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
	struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
	struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
	struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
};

static int kv_parse_sys_info_table(struct radeon_device *rdev)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct radeon_mode_info *mode_info = &rdev->mode_info;
	int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
	union igp_info *igp_info;
	u8 frev, crev;
	u16 data_offset;
	int i;

	if (atom_parse_data_header(mode_info->atom_context, index, NULL,
				   &frev, &crev, &data_offset)) {
		igp_info = (union igp_info *)(mode_info->atom_context->bios +
					      data_offset);

		if (crev != 8) {
			DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
			return -EINVAL;
		}
		pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
		pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
		pi->sys_info.bootup_nb_voltage_index =
			le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
		if (igp_info->info_8.ucHtcTmpLmt == 0)
			pi->sys_info.htc_tmp_lmt = 203;
		else
			pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
		if (igp_info->info_8.ucHtcHystLmt == 0)
			pi->sys_info.htc_hyst_lmt = 5;
		else
			pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
		if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
			DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
		}

		if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
			pi->sys_info.nb_dpm_enable = true;
		else
			pi->sys_info.nb_dpm_enable = false;

		for (i = 0; i < KV_NUM_NBPSTATES; i++) {
			pi->sys_info.nbp_memory_clock[i] =
				le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
			pi->sys_info.nbp_n_clock[i] =
				le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
		}
		if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
		    SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
			pi->caps_enable_dfs_bypass = true;

		sumo_construct_sclk_voltage_mapping_table(rdev,
							  &pi->sys_info.sclk_voltage_mapping_table,
							  igp_info->info_8.sAvail_SCLK);

		sumo_construct_vid_mapping_table(rdev,
						 &pi->sys_info.vid_mapping_table,
						 igp_info->info_8.sAvail_SCLK);

		kv_construct_max_power_limits_table(rdev,
						    &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
	}
	return 0;
}

union power_info {
	struct _ATOM_POWERPLAY_INFO info;
	struct _ATOM_POWERPLAY_INFO_V2 info_2;
	struct _ATOM_POWERPLAY_INFO_V3 info_3;
	struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
	struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
	struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};

union pplib_clock_info {
	struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
	struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
	struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
	struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
};

union pplib_power_state {
	struct _ATOM_PPLIB_STATE v1;
	struct _ATOM_PPLIB_STATE_V2 v2;
};

static void kv_patch_boot_state(struct radeon_device *rdev,
				struct kv_ps *ps)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	ps->num_levels = 1;
	ps->levels[0] = pi->boot_pl;
}

static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev,
					  struct radeon_ps *rps,
					  struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
					  u8 table_rev)
{
	struct kv_ps *ps = kv_get_ps(rps);

	rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
	rps->class = le16_to_cpu(non_clock_info->usClassification);
	rps->class2 = le16_to_cpu(non_clock_info->usClassification2);

	if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
		rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
		rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
	} else {
		rps->vclk = 0;
		rps->dclk = 0;
	}

	if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
		rdev->pm.dpm.boot_ps = rps;
		kv_patch_boot_state(rdev, ps);
	}
	if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
		rdev->pm.dpm.uvd_ps = rps;
}

static void kv_parse_pplib_clock_info(struct radeon_device *rdev,
				      struct radeon_ps *rps, int index,
					union pplib_clock_info *clock_info)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct kv_ps *ps = kv_get_ps(rps);
	struct kv_pl *pl = &ps->levels[index];
	u32 sclk;

	sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
	sclk |= clock_info->sumo.ucEngineClockHigh << 16;
	pl->sclk = sclk;
	pl->vddc_index = clock_info->sumo.vddcIndex;

	ps->num_levels = index + 1;

	if (pi->caps_sclk_ds) {
		pl->ds_divider_index = 5;
		pl->ss_divider_index = 5;
	}
}

static int kv_parse_power_table(struct radeon_device *rdev)
{
	struct radeon_mode_info *mode_info = &rdev->mode_info;
	struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
	union pplib_power_state *power_state;
	int i, j, k, non_clock_array_index, clock_array_index;
	union pplib_clock_info *clock_info;
	struct _StateArray *state_array;
	struct _ClockInfoArray *clock_info_array;
	struct _NonClockInfoArray *non_clock_info_array;
	union power_info *power_info;
	int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
        u16 data_offset;
	u8 frev, crev;
	u8 *power_state_offset;
	struct kv_ps *ps;

	if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
				   &frev, &crev, &data_offset))
		return -EINVAL;
	power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);

	state_array = (struct _StateArray *)
		(mode_info->atom_context->bios + data_offset +
		 le16_to_cpu(power_info->pplib.usStateArrayOffset));
	clock_info_array = (struct _ClockInfoArray *)
		(mode_info->atom_context->bios + data_offset +
		 le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
	non_clock_info_array = (struct _NonClockInfoArray *)
		(mode_info->atom_context->bios + data_offset +
		 le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));

	rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
				  state_array->ucNumEntries, GFP_KERNEL);
	if (!rdev->pm.dpm.ps)
		return -ENOMEM;
	power_state_offset = (u8 *)state_array->states;
	rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
	rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
	rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
	for (i = 0; i < state_array->ucNumEntries; i++) {
		power_state = (union pplib_power_state *)power_state_offset;
		non_clock_array_index = power_state->v2.nonClockInfoIndex;
		non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
			&non_clock_info_array->nonClockInfo[non_clock_array_index];
		if (!rdev->pm.power_state[i].clock_info)
			return -EINVAL;
		ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
		if (ps == NULL) {
			kfree(rdev->pm.dpm.ps);
			return -ENOMEM;
		}
		rdev->pm.dpm.ps[i].ps_priv = ps;
		k = 0;
		for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
			clock_array_index = power_state->v2.clockInfoIndex[j];
			if (clock_array_index >= clock_info_array->ucNumEntries)
				continue;
			if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
				break;
			clock_info = (union pplib_clock_info *)
				&clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
			kv_parse_pplib_clock_info(rdev,
						  &rdev->pm.dpm.ps[i], k,
						  clock_info);
			k++;
		}
		kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
					      non_clock_info,
					      non_clock_info_array->ucEntrySize);
		power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
	}
	rdev->pm.dpm.num_ps = state_array->ucNumEntries;
	return 0;
}

int kv_dpm_init(struct radeon_device *rdev)
{
	struct kv_power_info *pi;
	int ret, i;

	pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
	if (pi == NULL)
		return -ENOMEM;
	rdev->pm.dpm.priv = pi;

	ret = r600_parse_extended_power_table(rdev);
	if (ret)
		return ret;

	for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
		pi->at[i] = TRINITY_AT_DFLT;

        pi->sram_end = SMC_RAM_END;

	if (rdev->family == CHIP_KABINI)
		pi->high_voltage_t = 4001;

	pi->enable_nb_dpm = true;

	pi->caps_power_containment = true;
	pi->caps_cac = true;
	pi->enable_didt = false;
	if (pi->enable_didt) {
		pi->caps_sq_ramping = true;
		pi->caps_db_ramping = true;
		pi->caps_td_ramping = true;
		pi->caps_tcp_ramping = true;
	}

	pi->caps_sclk_ds = true;
	pi->enable_auto_thermal_throttling = true;
	pi->disable_nb_ps3_in_battery = false;
	pi->bapm_enable = true;
	pi->voltage_drop_t = 0;
	pi->caps_sclk_throttle_low_notification = false;
	pi->caps_fps = false; /* true? */
	pi->caps_uvd_pg = true;
	pi->caps_uvd_dpm = true;
	pi->caps_vce_pg = false;
	pi->caps_samu_pg = false;
	pi->caps_acp_pg = false;
	pi->caps_stable_p_state = false;

	ret = kv_parse_sys_info_table(rdev);
	if (ret)
		return ret;

	kv_patch_voltage_values(rdev);
	kv_construct_boot_state(rdev);

	ret = kv_parse_power_table(rdev);
	if (ret)
		return ret;

	pi->enable_dpm = true;

	return 0;
}

void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
						    struct seq_file *m)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	u32 current_index =
		(RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
		CURR_SCLK_INDEX_SHIFT;
	u32 sclk, tmp;
	u16 vddc;

	if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
		seq_printf(m, "invalid dpm profile %d\n", current_index);
	} else {
		sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
		tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
			SMU_VOLTAGE_CURRENT_LEVEL_SHIFT;
		vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp);
		seq_printf(m, "power level %d    sclk: %u vddc: %u\n",
			   current_index, sclk, vddc);
	}
}

void kv_dpm_print_power_state(struct radeon_device *rdev,
			      struct radeon_ps *rps)
{
	int i;
	struct kv_ps *ps = kv_get_ps(rps);

	r600_dpm_print_class_info(rps->class, rps->class2);
	r600_dpm_print_cap_info(rps->caps);
	printk("\tuvd    vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
	for (i = 0; i < ps->num_levels; i++) {
		struct kv_pl *pl = &ps->levels[i];
		printk("\t\tpower level %d    sclk: %u vddc: %u\n",
		       i, pl->sclk,
		       kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index));
	}
	r600_dpm_print_ps_status(rdev, rps);
}

void kv_dpm_fini(struct radeon_device *rdev)
{
	int i;

	for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
		kfree(rdev->pm.dpm.ps[i].ps_priv);
	}
	kfree(rdev->pm.dpm.ps);
	kfree(rdev->pm.dpm.priv);
	r600_free_extended_power_table(rdev);
}

void kv_dpm_display_configuration_changed(struct radeon_device *rdev)
{

}

u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low)
{
	struct kv_power_info *pi = kv_get_pi(rdev);
	struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);

	if (low)
		return requested_state->levels[0].sclk;
	else
		return requested_state->levels[requested_state->num_levels - 1].sclk;
}

u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low)
{
	struct kv_power_info *pi = kv_get_pi(rdev);

	return pi->sys_info.bootup_uma_clk;
}