/* mga_dma.c -- DMA support for mga g200/g400 -*- linux-c -*-
* Created: Mon Dec 13 01:50:01 1999 by jhartmann@precisioninsight.com
*
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file mga_dma.c
* DMA support for MGA G200 / G400.
*
* \author Rickard E. (Rik) Faith <faith@valinux.com>
* \author Jeff Hartmann <jhartmann@valinux.com>
* \author Keith Whitwell <keith@tungstengraphics.com>
* \author Gareth Hughes <gareth@valinux.com>
*/
#include <drm/drmP.h>
#include <drm/mga_drm.h>
#include "mga_drv.h"
#define MGA_DEFAULT_USEC_TIMEOUT 10000
#define MGA_FREELIST_DEBUG 0
#define MINIMAL_CLEANUP 0
#define FULL_CLEANUP 1
static int mga_do_cleanup_dma(struct drm_device *dev, int full_cleanup);
/* ================================================================
* Engine control
*/
int mga_do_wait_for_idle(drm_mga_private_t *dev_priv)
{
u32 status = 0;
int i;
DRM_DEBUG("\n");
for (i = 0; i < dev_priv->usec_timeout; i++) {
status = MGA_READ(MGA_STATUS) & MGA_ENGINE_IDLE_MASK;
if (status == MGA_ENDPRDMASTS) {
MGA_WRITE8(MGA_CRTC_INDEX, 0);
return 0;
}
DRM_UDELAY(1);
}
#if MGA_DMA_DEBUG
DRM_ERROR("failed!\n");
DRM_INFO(" status=0x%08x\n", status);
#endif
return -EBUSY;
}
static int mga_do_dma_reset(drm_mga_private_t *dev_priv)
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
drm_mga_primary_buffer_t *primary = &dev_priv->prim;
DRM_DEBUG("\n");
/* The primary DMA stream should look like new right about now.
*/
primary->tail = 0;
primary->space = primary->size;
primary->last_flush = 0;
sarea_priv->last_wrap = 0;
/* FIXME: Reset counters, buffer ages etc...
*/
/* FIXME: What else do we need to reinitialize? WARP stuff?
*/
return 0;
}
/* ================================================================
* Primary DMA stream
*/
void mga_do_dma_flush(drm_mga_private_t *dev_priv)
{
drm_mga_primary_buffer_t *primary = &dev_priv->prim;
u32 head, tail;
u32 status = 0;
int i;
DMA_LOCALS;
DRM_DEBUG("\n");
/* We need to wait so that we can do an safe flush */
for (i = 0; i < dev_priv->usec_timeout; i++) {
status = MGA_READ(MGA_STATUS) & MGA_ENGINE_IDLE_MASK;
if (status == MGA_ENDPRDMASTS)
break;
DRM_UDELAY(1);
}
if (primary->tail == primary->last_flush) {
DRM_DEBUG(" bailing out...\n");
return;
}
tail = primary->tail + dev_priv->primary->offset;
/* We need to pad the stream between flushes, as the card
* actually (partially?) reads the first of these commands.
* See page 4-16 in the G400 manual, middle of the page or so.
*/
BEGIN_DMA(1);
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000);
ADVANCE_DMA();
primary->last_flush = primary->tail;
head = MGA_READ(MGA_PRIMADDRESS);
if (head <= tail)
primary->space = primary->size - primary->tail;
else
primary->space = head - tail;
DRM_DEBUG(" head = 0x%06lx\n", (unsigned long)(head - dev_priv->primary->offset));
DRM_DEBUG(" tail = 0x%06lx\n", (unsigned long)(tail - dev_priv->primary->offset));
DRM_DEBUG(" space = 0x%06x\n", primary->space);
mga_flush_write_combine();
MGA_WRITE(MGA_PRIMEND, tail | dev_priv->dma_access);
DRM_DEBUG("done.\n");
}
void mga_do_dma_wrap_start(drm_mga_private_t *dev_priv)
{
drm_mga_primary_buffer_t *primary = &dev_priv->prim;
u32 head, tail;
DMA_LOCALS;
DRM_DEBUG("\n");
BEGIN_DMA_WRAP();
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000);
ADVANCE_DMA();
tail = primary->tail + dev_priv->primary->offset;
primary->tail = 0;
primary->last_flush = 0;
primary->last_wrap++;
head = MGA_READ(MGA_PRIMADDRESS);
if (head == dev_priv->primary->offset)
primary->space = primary->size;
else
primary->space = head - dev_priv->primary->offset;
DRM_DEBUG(" head = 0x%06lx\n", (unsigned long)(head - dev_priv->primary->offset));
DRM_DEBUG(" tail = 0x%06x\n", primary->tail);
DRM_DEBUG(" wrap = %d\n", primary->last_wrap);
DRM_DEBUG(" space = 0x%06x\n", primary->space);
mga_flush_write_combine();
MGA_WRITE(MGA_PRIMEND, tail | dev_priv->dma_access);
set_bit(0, &primary->wrapped);
DRM_DEBUG("done.\n");
}
void mga_do_dma_wrap_end(drm_mga_private_t *dev_priv)
{
drm_mga_primary_buffer_t *primary = &dev_priv->prim;
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
u32 head = dev_priv->primary->offset;
DRM_DEBUG("\n");
sarea_priv->last_wrap++;
DRM_DEBUG(" wrap = %d\n", sarea_priv->last_wrap);
mga_flush_write_combine();
MGA_WRITE(MGA_PRIMADDRESS, head | MGA_DMA_GENERAL);
clear_bit(0, &primary->wrapped);
DRM_DEBUG("done.\n");
}
/* ================================================================
* Freelist management
*/
#define MGA_BUFFER_USED (~0)
#define MGA_BUFFER_FREE 0
#if MGA_FREELIST_DEBUG
static void mga_freelist_print(struct drm_device *dev)
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_freelist_t *entry;
DRM_INFO("\n");
DRM_INFO("current dispatch: last=0x%x done=0x%x\n",
dev_priv->sarea_priv->last_dispatch,
(unsigned int)(MGA_READ(MGA_PRIMADDRESS) -
dev_priv->primary->offset));
DRM_INFO("current freelist:\n");
for (entry = dev_priv->head->next; entry; entry = entry->next) {
DRM_INFO(" %p idx=%2d age=0x%x 0x%06lx\n",
entry, entry->buf->idx, entry->age.head,
(unsigned long)(entry->age.head - dev_priv->primary->offset));
}
DRM_INFO("\n");
}
#endif
static int mga_freelist_init(struct drm_device *dev, drm_mga_private_t *dev_priv)
{
struct drm_device_dma *dma = dev->dma;
struct drm_buf *buf;
drm_mga_buf_priv_t *buf_priv;
drm_mga_freelist_t *entry;
int i;
DRM_DEBUG("count=%d\n", dma->buf_count);
dev_priv->head = kzalloc(sizeof(drm_mga_freelist_t), GFP_KERNEL);
if (dev_priv->head == NULL)
return -ENOMEM;
SET_AGE(&dev_priv->head->age, MGA_BUFFER_USED, 0);
for (i = 0; i < dma->buf_count; i++) {
buf = dma->buflist[i];
buf_priv = buf->dev_private;
entry = kzalloc(sizeof(drm_mga_freelist_t), GFP_KERNEL);
if (entry == NULL)
return -ENOMEM;
entry->next = dev_priv->head->next;
entry->prev = dev_priv->head;
SET_AGE(&entry->age, MGA_BUFFER_FREE, 0);
entry->buf = buf;
if (dev_priv->head->next != NULL)
dev_priv->head->next->prev = entry;
if (entry->next == NULL)
dev_priv->tail = entry;
buf_priv->list_entry = entry;
buf_priv->discard = 0;
buf_priv->dispatched = 0;
dev_priv->head->next = entry;
}
return 0;
}
static void mga_freelist_cleanup(struct drm_device *dev)
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_freelist_t *entry;
drm_mga_freelist_t *next;
DRM_DEBUG("\n");
entry = dev_priv->head;
while (entry) {
next = entry->next;
kfree(entry);
entry = next;
}
dev_priv->head = dev_priv->tail = NULL;
}
#if 0
/* FIXME: Still needed?
*/
static void mga_freelist_reset(struct drm_device *dev)
{
struct drm_device_dma *dma = dev->dma;
struct drm_buf *buf;
drm_mga_buf_priv_t *buf_priv;
int i;
for (i = 0; i < dma->buf_count; i++) {
buf = dma->buflist[i];
buf_priv = buf->dev_private;
SET_AGE(&buf_priv->list_entry->age, MGA_BUFFER_FREE, 0);
}
}
#endif
static struct drm_buf *mga_freelist_get(struct drm_device * dev)
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_freelist_t *next;
drm_mga_freelist_t *prev;
drm_mga_freelist_t *tail = dev_priv->tail;
u32 head, wrap;
DRM_DEBUG("\n");
head = MGA_READ(MGA_PRIMADDRESS);
wrap = dev_priv->sarea_priv->last_wrap;
DRM_DEBUG(" tail=0x%06lx %d\n",
tail->age.head ?
(unsigned long)(tail->age.head - dev_priv->primary->offset) : 0,
tail->age.wrap);
DRM_DEBUG(" head=0x%06lx %d\n",
(unsigned long)(head - dev_priv->primary->offset), wrap);
if (TEST_AGE(&tail->age, head, wrap)) {
prev = dev_priv->tail->prev;
next = dev_priv->tail;
prev->next = NULL;
next->prev = next->next = NULL;
dev_priv->tail = prev;
SET_AGE(&next->age, MGA_BUFFER_USED, 0);
return next->buf;
}
DRM_DEBUG("returning NULL!\n");
return NULL;
}
int mga_freelist_put(struct drm_device *dev, struct drm_buf *buf)
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_buf_priv_t *buf_priv = buf->dev_private;
drm_mga_freelist_t *head, *entry, *prev;
DRM_DEBUG("age=0x%06lx wrap=%d\n",
(unsigned long)(buf_priv->list_entry->age.head -
dev_priv->primary->offset),
buf_priv->list_entry->age.wrap);
entry = buf_priv->list_entry;
head = dev_priv->head;
if (buf_priv->list_entry->age.head == MGA_BUFFER_USED) {
SET_AGE(&entry->age, MGA_BUFFER_FREE, 0);
prev = dev_priv->tail;
prev->next = entry;
entry->prev = prev;
entry->next = NULL;
} else {
prev = head->next;
head->next = entry;
prev->prev = entry;
entry->prev = head;
entry->next = prev;
}
return 0;
}
/* ================================================================
* DMA initialization, cleanup
*/
int mga_driver_load(struct drm_device *dev, unsigned long flags)
{
drm_mga_private_t *dev_priv;
int ret;
dev_priv = kzalloc(sizeof(drm_mga_private_t), GFP_KERNEL);
if (!dev_priv)
return -ENOMEM;
dev->dev_private = (void *)dev_priv;
dev_priv->usec_timeout = MGA_DEFAULT_USEC_TIMEOUT;
dev_priv->chipset = flags;
pci_set_master(dev->pdev);
dev_priv->mmio_base = pci_resource_start(dev->pdev, 1);
dev_priv->mmio_size = pci_resource_len(dev->pdev, 1);
ret = drm_vblank_init(dev, 1);
if (ret) {
(void) mga_driver_unload(dev);
return ret;
}
return 0;
}
#if __OS_HAS_AGP
/**
* Bootstrap the driver for AGP DMA.
*
* \todo
* Investigate whether there is any benefit to storing the WARP microcode in
* AGP memory. If not, the microcode may as well always be put in PCI
* memory.
*
* \todo
* This routine needs to set dma_bs->agp_mode to the mode actually configured
* in the hardware. Looking just at the Linux AGP driver code, I don't see
* an easy way to determine this.
*
* \sa mga_do_dma_bootstrap, mga_do_pci_dma_bootstrap
*/
static int mga_do_agp_dma_bootstrap(struct drm_device *dev,
drm_mga_dma_bootstrap_t *dma_bs)
{
drm_mga_private_t *const dev_priv =
(drm_mga_private_t *) dev->dev_private;
unsigned int warp_size = MGA_WARP_UCODE_SIZE;
int err;
unsigned offset;
const unsigned secondary_size = dma_bs->secondary_bin_count
* dma_bs->secondary_bin_size;
const unsigned agp_size = (dma_bs->agp_size << 20);
struct drm_buf_desc req;
struct drm_agp_mode mode;
struct drm_agp_info info;
struct drm_agp_buffer agp_req;
struct drm_agp_binding bind_req;
/* Acquire AGP. */
err = drm_agp_acquire(dev);
if (err) {
DRM_ERROR("Unable to acquire AGP: %d\n", err);
return err;
}
err = drm_agp_info(dev, &info);
if (err) {
DRM_ERROR("Unable to get AGP info: %d\n", err);
return err;
}
mode.mode = (info.mode & ~0x07) | dma_bs->agp_mode;
err = drm_agp_enable(dev, mode);
if (err) {
DRM_ERROR("Unable to enable AGP (mode = 0x%lx)\n", mode.mode);
return err;
}
/* In addition to the usual AGP mode configuration, the G200 AGP cards
* need to have the AGP mode "manually" set.
*/
if (dev_priv->chipset == MGA_CARD_TYPE_G200) {
if (mode.mode & 0x02)
MGA_WRITE(MGA_AGP_PLL, MGA_AGP2XPLL_ENABLE);
else
MGA_WRITE(MGA_AGP_PLL, MGA_AGP2XPLL_DISABLE);
}
/* Allocate and bind AGP memory. */
agp_req.size = agp_size;
agp_req.type = 0;
err = drm_agp_alloc(dev, &agp_req);
if (err) {
dev_priv->agp_size = 0;
DRM_ERROR("Unable to allocate %uMB AGP memory\n",
dma_bs->agp_size);
return err;
}
dev_priv->agp_size = agp_size;
dev_priv->agp_handle = agp_req.handle;
bind_req.handle = agp_req.handle;
bind_req.offset = 0;
err = drm_agp_bind(dev, &bind_req);
if (err) {
DRM_ERROR("Unable to bind AGP memory: %d\n", err);
return err;
}
/* Make drm_addbufs happy by not trying to create a mapping for less
* than a page.
*/
if (warp_size < PAGE_SIZE)
warp_size = PAGE_SIZE;
offset = 0;
err = drm_addmap(dev, offset, warp_size,
_DRM_AGP, _DRM_READ_ONLY, &dev_priv->warp);
if (err) {
DRM_ERROR("Unable to map WARP microcode: %d\n", err);
return err;
}
offset += warp_size;
err = drm_addmap(dev, offset, dma_bs->primary_size,
_DRM_AGP, _DRM_READ_ONLY, &dev_priv->primary);
if (err) {
DRM_ERROR("Unable to map primary DMA region: %d\n", err);
return err;
}
offset += dma_bs->primary_size;
err = drm_addmap(dev, offset, secondary_size,
_DRM_AGP, 0, &dev->agp_buffer_map);
if (err) {
DRM_ERROR("Unable to map secondary DMA region: %d\n", err);
return err;
}
(void)memset(&req, 0, sizeof(req));
req.count = dma_bs->secondary_bin_count;
req.size = dma_bs->secondary_bin_size;
req.flags = _DRM_AGP_BUFFER;
req.agp_start = offset;
err = drm_addbufs_agp(dev, &req);
if (err) {
DRM_ERROR("Unable to add secondary DMA buffers: %d\n", err);
return err;
}
{
struct drm_map_list *_entry;
unsigned long agp_token = 0;
list_for_each_entry(_entry, &dev->maplist, head) {
if (_entry->map == dev->agp_buffer_map)
agp_token = _entry->user_token;
}
if (!agp_token)
return -EFAULT;
dev->agp_buffer_token = agp_token;
}
offset += secondary_size;
err = drm_addmap(dev, offset, agp_size - offset,
_DRM_AGP, 0, &dev_priv->agp_textures);
if (err) {
DRM_ERROR("Unable to map AGP texture region %d\n", err);
return err;
}
drm_core_ioremap(dev_priv->warp, dev);
drm_core_ioremap(dev_priv->primary, dev);
drm_core_ioremap(dev->agp_buffer_map, dev);
if (!dev_priv->warp->handle ||
!dev_priv->primary->handle || !dev->agp_buffer_map->handle) {
DRM_ERROR("failed to ioremap agp regions! (%p, %p, %p)\n",
dev_priv->warp->handle, dev_priv->primary->handle,
dev->agp_buffer_map->handle);
return -ENOMEM;
}
dev_priv->dma_access = MGA_PAGPXFER;
dev_priv->wagp_enable = MGA_WAGP_ENABLE;
DRM_INFO("Initialized card for AGP DMA.\n");
return 0;
}
#else
static int mga_do_agp_dma_bootstrap(struct drm_device *dev,
drm_mga_dma_bootstrap_t *dma_bs)
{
return -EINVAL;
}
#endif
/**
* Bootstrap the driver for PCI DMA.
*
* \todo
* The algorithm for decreasing the size of the primary DMA buffer could be
* better. The size should be rounded up to the nearest page size, then
* decrease the request size by a single page each pass through the loop.
*
* \todo
* Determine whether the maximum address passed to drm_pci_alloc is correct.
* The same goes for drm_addbufs_pci.
*
* \sa mga_do_dma_bootstrap, mga_do_agp_dma_bootstrap
*/
static int mga_do_pci_dma_bootstrap(struct drm_device *dev,
drm_mga_dma_bootstrap_t *dma_bs)
{
drm_mga_private_t *const dev_priv =
(drm_mga_private_t *) dev->dev_private;
unsigned int warp_size = MGA_WARP_UCODE_SIZE;
unsigned int primary_size;
unsigned int bin_count;
int err;
struct drm_buf_desc req;
if (dev->dma == NULL) {
DRM_ERROR("dev->dma is NULL\n");
return -EFAULT;
}
/* Make drm_addbufs happy by not trying to create a mapping for less
* than a page.
*/
if (warp_size < PAGE_SIZE)
warp_size = PAGE_SIZE;
/* The proper alignment is 0x100 for this mapping */
err = drm_addmap(dev, 0, warp_size, _DRM_CONSISTENT,
_DRM_READ_ONLY, &dev_priv->warp);
if (err != 0) {
DRM_ERROR("Unable to create mapping for WARP microcode: %d\n",
err);
return err;
}
/* Other than the bottom two bits being used to encode other
* information, there don't appear to be any restrictions on the
* alignment of the primary or secondary DMA buffers.
*/
for (primary_size = dma_bs->primary_size; primary_size != 0;
primary_size >>= 1) {
/* The proper alignment for this mapping is 0x04 */
err = drm_addmap(dev, 0, primary_size, _DRM_CONSISTENT,
_DRM_READ_ONLY, &dev_priv->primary);
if (!err)
break;
}
if (err != 0) {
DRM_ERROR("Unable to allocate primary DMA region: %d\n", err);
return -ENOMEM;
}
if (dev_priv->primary->size != dma_bs->primary_size) {
DRM_INFO("Primary DMA buffer size reduced from %u to %u.\n",
dma_bs->primary_size,
(unsigned)dev_priv->primary->size);
dma_bs->primary_size = dev_priv->primary->size;
}
for (bin_count = dma_bs->secondary_bin_count; bin_count > 0;
bin_count--) {
(void)memset(&req, 0, sizeof(req));
req.count = bin_count;
req.size = dma_bs->secondary_bin_size;
err = drm_addbufs_pci(dev, &req);
if (!err)
break;
}
if (bin_count == 0) {
DRM_ERROR("Unable to add secondary DMA buffers: %d\n", err);
return err;
}
if (bin_count != dma_bs->secondary_bin_count) {
DRM_INFO("Secondary PCI DMA buffer bin count reduced from %u "
"to %u.\n", dma_bs->secondary_bin_count, bin_count);
dma_bs->secondary_bin_count = bin_count;
}
dev_priv->dma_access = 0;
dev_priv->wagp_enable = 0;
dma_bs->agp_mode = 0;
DRM_INFO("Initialized card for PCI DMA.\n");
return 0;
}
static int mga_do_dma_bootstrap(struct drm_device *dev,
drm_mga_dma_bootstrap_t *dma_bs)
{
const int is_agp = (dma_bs->agp_mode != 0) && drm_pci_device_is_agp(dev);
int err;
drm_mga_private_t *const dev_priv =
(drm_mga_private_t *) dev->dev_private;
dev_priv->used_new_dma_init = 1;
/* The first steps are the same for both PCI and AGP based DMA. Map
* the cards MMIO registers and map a status page.
*/
err = drm_addmap(dev, dev_priv->mmio_base, dev_priv->mmio_size,
_DRM_REGISTERS, _DRM_READ_ONLY, &dev_priv->mmio);
if (err) {
DRM_ERROR("Unable to map MMIO region: %d\n", err);
return err;
}
err = drm_addmap(dev, 0, SAREA_MAX, _DRM_SHM,
_DRM_READ_ONLY | _DRM_LOCKED | _DRM_KERNEL,
&dev_priv->status);
if (err) {
DRM_ERROR("Unable to map status region: %d\n", err);
return err;
}
/* The DMA initialization procedure is slightly different for PCI and
* AGP cards. AGP cards just allocate a large block of AGP memory and
* carve off portions of it for internal uses. The remaining memory
* is returned to user-mode to be used for AGP textures.
*/
if (is_agp)
err = mga_do_agp_dma_bootstrap(dev, dma_bs);
/* If we attempted to initialize the card for AGP DMA but failed,
* clean-up any mess that may have been created.
*/
if (err)
mga_do_cleanup_dma(dev, MINIMAL_CLEANUP);
/* Not only do we want to try and initialized PCI cards for PCI DMA,
* but we also try to initialized AGP cards that could not be
* initialized for AGP DMA. This covers the case where we have an AGP
* card in a system with an unsupported AGP chipset. In that case the
* card will be detected as AGP, but we won't be able to allocate any
* AGP memory, etc.
*/
if (!is_agp || err)
err = mga_do_pci_dma_bootstrap(dev, dma_bs);
return err;
}
int mga_dma_bootstrap(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_mga_dma_bootstrap_t *bootstrap = data;
int err;
static const int modes[] = { 0, 1, 2, 2, 4, 4, 4, 4 };
const drm_mga_private_t *const dev_priv =
(drm_mga_private_t *) dev->dev_private;
err = mga_do_dma_bootstrap(dev, bootstrap);
if (err) {
mga_do_cleanup_dma(dev, FULL_CLEANUP);
return err;
}
if (dev_priv->agp_textures != NULL) {
bootstrap->texture_handle = dev_priv->agp_textures->offset;
bootstrap->texture_size = dev_priv->agp_textures->size;
} else {
bootstrap->texture_handle = 0;
bootstrap->texture_size = 0;
}
bootstrap->agp_mode = modes[bootstrap->agp_mode & 0x07];
return err;
}
static int mga_do_init_dma(struct drm_device *dev, drm_mga_init_t *init)
{
drm_mga_private_t *dev_priv;
int ret;
DRM_DEBUG("\n");
dev_priv = dev->dev_private;
if (init->sgram)
dev_priv->clear_cmd = MGA_DWGCTL_CLEAR | MGA_ATYPE_BLK;
else
dev_priv->clear_cmd = MGA_DWGCTL_CLEAR | MGA_ATYPE_RSTR;
dev_priv->maccess = init->maccess;
dev_priv->fb_cpp = init->fb_cpp;
dev_priv->front_offset = init->front_offset;
dev_priv->front_pitch = init->front_pitch;
dev_priv->back_offset = init->back_offset;
dev_priv->back_pitch = init->back_pitch;
dev_priv->depth_cpp = init->depth_cpp;
dev_priv->depth_offset = init->depth_offset;
dev_priv->depth_pitch = init->depth_pitch;
/* FIXME: Need to support AGP textures...
*/
dev_priv->texture_offset = init->texture_offset[0];
dev_priv->texture_size = init->texture_size[0];
dev_priv->sarea = drm_getsarea(dev);
if (!dev_priv->sarea) {
DRM_ERROR("failed to find sarea!\n");
return -EINVAL;
}
if (!dev_priv->used_new_dma_init) {
dev_priv->dma_access = MGA_PAGPXFER;
dev_priv->wagp_enable = MGA_WAGP_ENABLE;
dev_priv->status = drm_core_findmap(dev, init->status_offset);
if (!dev_priv->status) {
DRM_ERROR("failed to find status page!\n");
return -EINVAL;
}
dev_priv->mmio = drm_core_findmap(dev, init->mmio_offset);
if (!dev_priv->mmio) {
DRM_ERROR("failed to find mmio region!\n");
return -EINVAL;
}
dev_priv->warp = drm_core_findmap(dev, init->warp_offset);
if (!dev_priv->warp) {
DRM_ERROR("failed to find warp microcode region!\n");
return -EINVAL;
}
dev_priv->primary = drm_core_findmap(dev, init->primary_offset);
if (!dev_priv->primary) {
DRM_ERROR("failed to find primary dma region!\n");
return -EINVAL;
}
dev->agp_buffer_token = init->buffers_offset;
dev->agp_buffer_map =
drm_core_findmap(dev, init->buffers_offset);
if (!dev->agp_buffer_map) {
DRM_ERROR("failed to find dma buffer region!\n");
return -EINVAL;
}
drm_core_ioremap(dev_priv->warp, dev);
drm_core_ioremap(dev_priv->primary, dev);
drm_core_ioremap(dev->agp_buffer_map, dev);
}
dev_priv->sarea_priv =
(drm_mga_sarea_t *) ((u8 *) dev_priv->sarea->handle +
init->sarea_priv_offset);
if (!dev_priv->warp->handle ||
!dev_priv->primary->handle ||
((dev_priv->dma_access != 0) &&
((dev->agp_buffer_map == NULL) ||
(dev->agp_buffer_map->handle == NULL)))) {
DRM_ERROR("failed to ioremap agp regions!\n");
return -ENOMEM;
}
ret = mga_warp_install_microcode(dev_priv);
if (ret < 0) {
DRM_ERROR("failed to install WARP ucode!: %d\n", ret);
return ret;
}
ret = mga_warp_init(dev_priv);
if (ret < 0) {
DRM_ERROR("failed to init WARP engine!: %d\n", ret);
return ret;
}
dev_priv->prim.status = (u32 *) dev_priv->status->handle;
mga_do_wait_for_idle(dev_priv);
/* Init the primary DMA registers.
*/
MGA_WRITE(MGA_PRIMADDRESS, dev_priv->primary->offset | MGA_DMA_GENERAL);
#if 0
MGA_WRITE(MGA_PRIMPTR, virt_to_bus((void *)dev_priv->prim.status) | MGA_PRIMPTREN0 | /* Soft trap, SECEND, SETUPEND */
MGA_PRIMPTREN1); /* DWGSYNC */
#endif
dev_priv->prim.start = (u8 *) dev_priv->primary->handle;
dev_priv->prim.end = ((u8 *) dev_priv->primary->handle
+ dev_priv->primary->size);
dev_priv->prim.size = dev_priv->primary->size;
dev_priv->prim.tail = 0;
dev_priv->prim.space = dev_priv->prim.size;
dev_priv->prim.wrapped = 0;
dev_priv->prim.last_flush = 0;
dev_priv->prim.last_wrap = 0;
dev_priv->prim.high_mark = 256 * DMA_BLOCK_SIZE;
dev_priv->prim.status[0] = dev_priv->primary->offset;
dev_priv->prim.status[1] = 0;
dev_priv->sarea_priv->last_wrap = 0;
dev_priv->sarea_priv->last_frame.head = 0;
dev_priv->sarea_priv->last_frame.wrap = 0;
if (mga_freelist_init(dev, dev_priv) < 0) {
DRM_ERROR("could not initialize freelist\n");
return -ENOMEM;
}
return 0;
}
static int mga_do_cleanup_dma(struct drm_device *dev, int full_cleanup)
{
int err = 0;
DRM_DEBUG("\n");
/* Make sure interrupts are disabled here because the uninstall ioctl
* may not have been called from userspace and after dev_private
* is freed, it's too late.
*/
if (dev->irq_enabled)
drm_irq_uninstall(dev);
if (dev->dev_private) {
drm_mga_private_t *dev_priv = dev->dev_private;
if ((dev_priv->warp != NULL)
&& (dev_priv->warp->type != _DRM_CONSISTENT))
drm_core_ioremapfree(dev_priv->warp, dev);
if ((dev_priv->primary != NULL)
&& (dev_priv->primary->type != _DRM_CONSISTENT))
drm_core_ioremapfree(dev_priv->primary, dev);
if (dev->agp_buffer_map != NULL)
drm_core_ioremapfree(dev->agp_buffer_map, dev);
if (dev_priv->used_new_dma_init) {
#if __OS_HAS_AGP
if (dev_priv->agp_handle != 0) {
struct drm_agp_binding unbind_req;
struct drm_agp_buffer free_req;
unbind_req.handle = dev_priv->agp_handle;
drm_agp_unbind(dev, &unbind_req);
free_req.handle = dev_priv->agp_handle;
drm_agp_free(dev, &free_req);
dev_priv->agp_textures = NULL;
dev_priv->agp_size = 0;
dev_priv->agp_handle = 0;
}
if ((dev->agp != NULL) && dev->agp->acquired)
err = drm_agp_release(dev);
#endif
}
dev_priv->warp = NULL;
dev_priv->primary = NULL;
dev_priv->sarea = NULL;
dev_priv->sarea_priv = NULL;
dev->agp_buffer_map = NULL;
if (full_cleanup) {
dev_priv->mmio = NULL;
dev_priv->status = NULL;
dev_priv->used_new_dma_init = 0;
}
memset(&dev_priv->prim, 0, sizeof(dev_priv->prim));
dev_priv->warp_pipe = 0;
memset(dev_priv->warp_pipe_phys, 0,
sizeof(dev_priv->warp_pipe_phys));
if (dev_priv->head != NULL)
mga_freelist_cleanup(dev);
}
return err;
}
int mga_dma_init(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_mga_init_t *init = data;
int err;
LOCK_TEST_WITH_RETURN(dev, file_priv);
switch (init->func) {
case MGA_INIT_DMA:
err = mga_do_init_dma(dev, init);
if (err)
(void)mga_do_cleanup_dma(dev, FULL_CLEANUP);
return err;
case MGA_CLEANUP_DMA:
return mga_do_cleanup_dma(dev, FULL_CLEANUP);
}
return -EINVAL;
}
/* ================================================================
* Primary DMA stream management
*/
int mga_dma_flush(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private;
struct drm_lock *lock = data;
LOCK_TEST_WITH_RETURN(dev, file_priv);
DRM_DEBUG("%s%s%s\n",
(lock->flags & _DRM_LOCK_FLUSH) ? "flush, " : "",
(lock->flags & _DRM_LOCK_FLUSH_ALL) ? "flush all, " : "",
(lock->flags & _DRM_LOCK_QUIESCENT) ? "idle, " : "");
WRAP_WAIT_WITH_RETURN(dev_priv);
if (lock->flags & (_DRM_LOCK_FLUSH | _DRM_LOCK_FLUSH_ALL))
mga_do_dma_flush(dev_priv);
if (lock->flags & _DRM_LOCK_QUIESCENT) {
#if MGA_DMA_DEBUG
int ret = mga_do_wait_for_idle(dev_priv);
if (ret < 0)
DRM_INFO("-EBUSY\n");
return ret;
#else
return mga_do_wait_for_idle(dev_priv);
#endif
} else {
return 0;
}
}
int mga_dma_reset(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private;
LOCK_TEST_WITH_RETURN(dev, file_priv);
return mga_do_dma_reset(dev_priv);
}
/* ================================================================
* DMA buffer management
*/
static int mga_dma_get_buffers(struct drm_device *dev,
struct drm_file *file_priv, struct drm_dma *d)
{
struct drm_buf *buf;
int i;
for (i = d->granted_count; i < d->request_count; i++) {
buf = mga_freelist_get(dev);
if (!buf)
return -EAGAIN;
buf->file_priv = file_priv;
if (copy_to_user(&d->request_indices[i],
&buf->idx, sizeof(buf->idx)))
return -EFAULT;
if (copy_to_user(&d->request_sizes[i],
&buf->total, sizeof(buf->total)))
return -EFAULT;
d->granted_count++;
}
return 0;
}
int mga_dma_buffers(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_device_dma *dma = dev->dma;
drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private;
struct drm_dma *d = data;
int ret = 0;
LOCK_TEST_WITH_RETURN(dev, file_priv);
/* Please don't send us buffers.
*/
if (d->send_count != 0) {
DRM_ERROR("Process %d trying to send %d buffers via drmDMA\n",
DRM_CURRENTPID, d->send_count);
return -EINVAL;
}
/* We'll send you buffers.
*/
if (d->request_count < 0 || d->request_count > dma->buf_count) {
DRM_ERROR("Process %d trying to get %d buffers (of %d max)\n",
DRM_CURRENTPID, d->request_count, dma->buf_count);
return -EINVAL;
}
WRAP_TEST_WITH_RETURN(dev_priv);
d->granted_count = 0;
if (d->request_count)
ret = mga_dma_get_buffers(dev, file_priv, d);
return ret;
}
/**
* Called just before the module is unloaded.
*/
int mga_driver_unload(struct drm_device *dev)
{
kfree(dev->dev_private);
dev->dev_private = NULL;
return 0;
}
/**
* Called when the last opener of the device is closed.
*/
void mga_driver_lastclose(struct drm_device *dev)
{
mga_do_cleanup_dma(dev, FULL_CLEANUP);
}
int mga_driver_dma_quiescent(struct drm_device *dev)
{
drm_mga_private_t *dev_priv = dev->dev_private;
return mga_do_wait_for_idle(dev_priv);
}