/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <drm/drm_print.h>
#include "gem/i915_gem_context.h"
#include "i915_drv.h"
#include "gt/intel_gt.h"
#include "intel_engine.h"
#include "intel_engine_pm.h"
#include "intel_engine_pool.h"
#include "intel_engine_user.h"
#include "intel_context.h"
#include "intel_lrc.h"
#include "intel_reset.h"
/* Haswell does have the CXT_SIZE register however it does not appear to be
* valid. Now, docs explain in dwords what is in the context object. The full
* size is 70720 bytes, however, the power context and execlist context will
* never be saved (power context is stored elsewhere, and execlists don't work
* on HSW) - so the final size, including the extra state required for the
* Resource Streamer, is 66944 bytes, which rounds to 17 pages.
*/
#define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
#define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE)
#define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
#define MAX_MMIO_BASES 3
struct engine_info {
unsigned int hw_id;
u8 class;
u8 instance;
/* mmio bases table *must* be sorted in reverse gen order */
struct engine_mmio_base {
u32 gen : 8;
u32 base : 24;
} mmio_bases[MAX_MMIO_BASES];
};
static const struct engine_info intel_engines[] = {
[RCS0] = {
.hw_id = RCS0_HW,
.class = RENDER_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 1, .base = RENDER_RING_BASE }
},
},
[BCS0] = {
.hw_id = BCS0_HW,
.class = COPY_ENGINE_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 6, .base = BLT_RING_BASE }
},
},
[VCS0] = {
.hw_id = VCS0_HW,
.class = VIDEO_DECODE_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD_RING_BASE },
{ .gen = 6, .base = GEN6_BSD_RING_BASE },
{ .gen = 4, .base = BSD_RING_BASE }
},
},
[VCS1] = {
.hw_id = VCS1_HW,
.class = VIDEO_DECODE_CLASS,
.instance = 1,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
},
},
[VCS2] = {
.hw_id = VCS2_HW,
.class = VIDEO_DECODE_CLASS,
.instance = 2,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
},
},
[VCS3] = {
.hw_id = VCS3_HW,
.class = VIDEO_DECODE_CLASS,
.instance = 3,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
},
},
[VECS0] = {
.hw_id = VECS0_HW,
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
{ .gen = 7, .base = VEBOX_RING_BASE }
},
},
[VECS1] = {
.hw_id = VECS1_HW,
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 1,
.mmio_bases = {
{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
},
},
};
/**
* intel_engine_context_size() - return the size of the context for an engine
* @dev_priv: i915 device private
* @class: engine class
*
* Each engine class may require a different amount of space for a context
* image.
*
* Return: size (in bytes) of an engine class specific context image
*
* Note: this size includes the HWSP, which is part of the context image
* in LRC mode, but does not include the "shared data page" used with
* GuC submission. The caller should account for this if using the GuC.
*/
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
u32 cxt_size;
BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
switch (class) {
case RENDER_CLASS:
switch (INTEL_GEN(dev_priv)) {
default:
MISSING_CASE(INTEL_GEN(dev_priv));
return DEFAULT_LR_CONTEXT_RENDER_SIZE;
case 12:
case 11:
return GEN11_LR_CONTEXT_RENDER_SIZE;
case 10:
return GEN10_LR_CONTEXT_RENDER_SIZE;
case 9:
return GEN9_LR_CONTEXT_RENDER_SIZE;
case 8:
return GEN8_LR_CONTEXT_RENDER_SIZE;
case 7:
if (IS_HASWELL(dev_priv))
return HSW_CXT_TOTAL_SIZE;
cxt_size = I915_READ(GEN7_CXT_SIZE);
return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 6:
cxt_size = I915_READ(CXT_SIZE);
return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 5:
case 4:
/*
* There is a discrepancy here between the size reported
* by the register and the size of the context layout
* in the docs. Both are described as authorative!
*
* The discrepancy is on the order of a few cachelines,
* but the total is under one page (4k), which is our
* minimum allocation anyway so it should all come
* out in the wash.
*/
cxt_size = I915_READ(CXT_SIZE) + 1;
DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
INTEL_GEN(dev_priv),
cxt_size * 64,
cxt_size - 1);
return round_up(cxt_size * 64, PAGE_SIZE);
case 3:
case 2:
/* For the special day when i810 gets merged. */
case 1:
return 0;
}
break;
default:
MISSING_CASE(class);
/* fall through */
case VIDEO_DECODE_CLASS:
case VIDEO_ENHANCEMENT_CLASS:
case COPY_ENGINE_CLASS:
if (INTEL_GEN(dev_priv) < 8)
return 0;
return GEN8_LR_CONTEXT_OTHER_SIZE;
}
}
static u32 __engine_mmio_base(struct drm_i915_private *i915,
const struct engine_mmio_base *bases)
{
int i;
for (i = 0; i < MAX_MMIO_BASES; i++)
if (INTEL_GEN(i915) >= bases[i].gen)
break;
GEM_BUG_ON(i == MAX_MMIO_BASES);
GEM_BUG_ON(!bases[i].base);
return bases[i].base;
}
static void __sprint_engine_name(struct intel_engine_cs *engine)
{
/*
* Before we know what the uABI name for this engine will be,
* we still would like to keep track of this engine in the debug logs.
* We throw in a ' here as a reminder that this isn't its final name.
*/
GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
intel_engine_class_repr(engine->class),
engine->instance) >= sizeof(engine->name));
}
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
/*
* Though they added more rings on g4x/ilk, they did not add
* per-engine HWSTAM until gen6.
*/
if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
return;
if (INTEL_GEN(engine->i915) >= 3)
ENGINE_WRITE(engine, RING_HWSTAM, mask);
else
ENGINE_WRITE16(engine, RING_HWSTAM, mask);
}
static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
/* Mask off all writes into the unknown HWSP */
intel_engine_set_hwsp_writemask(engine, ~0u);
}
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
{
const struct engine_info *info = &intel_engines[id];
struct intel_engine_cs *engine;
BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
return -EINVAL;
engine = kzalloc(sizeof(*engine), GFP_KERNEL);
if (!engine)
return -ENOMEM;
BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
engine->id = id;
engine->legacy_idx = INVALID_ENGINE;
engine->mask = BIT(id);
engine->i915 = gt->i915;
engine->gt = gt;
engine->uncore = gt->uncore;
engine->hw_id = engine->guc_id = info->hw_id;
engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
engine->class = info->class;
engine->instance = info->instance;
__sprint_engine_name(engine);
engine->props.preempt_timeout_ms =
CONFIG_DRM_I915_PREEMPT_TIMEOUT;
engine->props.stop_timeout_ms =
CONFIG_DRM_I915_STOP_TIMEOUT;
/*
* To be overridden by the backend on setup. However to facilitate
* cleanup on error during setup, we always provide the destroy vfunc.
*/
engine->destroy = (typeof(engine->destroy))kfree;
engine->context_size = intel_engine_context_size(gt->i915,
engine->class);
if (WARN_ON(engine->context_size > BIT(20)))
engine->context_size = 0;
if (engine->context_size)
DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
/* Nothing to do here, execute in order of dependencies */
engine->schedule = NULL;
seqlock_init(&engine->stats.lock);
ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
/* Scrub mmio state on takeover */
intel_engine_sanitize_mmio(engine);
gt->engine_class[info->class][info->instance] = engine;
gt->engine[id] = engine;
intel_engine_add_user(engine);
gt->i915->engine[id] = engine;
return 0;
}
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
if (engine->class == VIDEO_DECODE_CLASS) {
/*
* HEVC support is present on first engine instance
* before Gen11 and on all instances afterwards.
*/
if (INTEL_GEN(i915) >= 11 ||
(INTEL_GEN(i915) >= 9 && engine->instance == 0))
engine->uabi_capabilities |=
I915_VIDEO_CLASS_CAPABILITY_HEVC;
/*
* SFC block is present only on even logical engine
* instances.
*/
if ((INTEL_GEN(i915) >= 11 &&
RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
(INTEL_GEN(i915) >= 9 && engine->instance == 0))
engine->uabi_capabilities |=
I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
if (INTEL_GEN(i915) >= 9)
engine->uabi_capabilities |=
I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
}
}
static void intel_setup_engine_capabilities(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt, id)
__setup_engine_capabilities(engine);
}
/**
* intel_engines_cleanup() - free the resources allocated for Command Streamers
* @gt: pointer to struct intel_gt
*/
void intel_engines_cleanup(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt, id) {
engine->destroy(engine);
gt->engine[id] = NULL;
gt->i915->engine[id] = NULL;
}
}
/**
* intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
* @gt: pointer to struct intel_gt
*
* Return: non-zero if the initialization failed.
*/
int intel_engines_init_mmio(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_device_info *device_info = mkwrite_device_info(i915);
const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
unsigned int mask = 0;
unsigned int i;
int err;
WARN_ON(engine_mask == 0);
WARN_ON(engine_mask &
GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
if (i915_inject_probe_failure(i915))
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
if (!HAS_ENGINE(i915, i))
continue;
err = intel_engine_setup(gt, i);
if (err)
goto cleanup;
mask |= BIT(i);
}
/*
* Catch failures to update intel_engines table when the new engines
* are added to the driver by a warning and disabling the forgotten
* engines.
*/
if (WARN_ON(mask != engine_mask))
device_info->engine_mask = mask;
RUNTIME_INFO(i915)->num_engines = hweight32(mask);
intel_gt_check_and_clear_faults(gt);
intel_setup_engine_capabilities(gt);
return 0;
cleanup:
intel_engines_cleanup(gt);
return err;
}
/**
* intel_engines_init() - init the Engine Command Streamers
* @gt: pointer to struct intel_gt
*
* Return: non-zero if the initialization failed.
*/
int intel_engines_init(struct intel_gt *gt)
{
int (*init)(struct intel_engine_cs *engine);
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err;
if (HAS_EXECLISTS(gt->i915))
init = intel_execlists_submission_init;
else
init = intel_ring_submission_init;
for_each_engine(engine, gt, id) {
err = init(engine);
if (err)
goto cleanup;
}
return 0;
cleanup:
intel_engines_cleanup(gt);
return err;
}
void intel_engine_init_execlists(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
execlists->port_mask = 1;
GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
memset(execlists->pending, 0, sizeof(execlists->pending));
execlists->active =
memset(execlists->inflight, 0, sizeof(execlists->inflight));
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
}
static void cleanup_status_page(struct intel_engine_cs *engine)
{
struct i915_vma *vma;
/* Prevent writes into HWSP after returning the page to the system */
intel_engine_set_hwsp_writemask(engine, ~0u);
vma = fetch_and_zero(&engine->status_page.vma);
if (!vma)
return;
if (!HWS_NEEDS_PHYSICAL(engine->i915))
i915_vma_unpin(vma);
i915_gem_object_unpin_map(vma->obj);
i915_gem_object_put(vma->obj);
}
static int pin_ggtt_status_page(struct intel_engine_cs *engine,
struct i915_vma *vma)
{
unsigned int flags;
flags = PIN_GLOBAL;
if (!HAS_LLC(engine->i915))
/*
* On g33, we cannot place HWS above 256MiB, so
* restrict its pinning to the low mappable arena.
* Though this restriction is not documented for
* gen4, gen5, or byt, they also behave similarly
* and hang if the HWS is placed at the top of the
* GTT. To generalise, it appears that all !llc
* platforms have issues with us placing the HWS
* above the mappable region (even though we never
* actually map it).
*/
flags |= PIN_MAPPABLE;
else
flags |= PIN_HIGH;
return i915_vma_pin(vma, 0, 0, flags);
}
static int init_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
void *vaddr;
int ret;
/*
* Though the HWS register does support 36bit addresses, historically
* we have had hangs and corruption reported due to wild writes if
* the HWS is placed above 4G. We only allow objects to be allocated
* in GFP_DMA32 for i965, and no earlier physical address users had
* access to more than 4G.
*/
obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
if (IS_ERR(obj)) {
DRM_ERROR("Failed to allocate status page\n");
return PTR_ERR(obj);
}
i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err;
}
engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
engine->status_page.vma = vma;
if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
ret = pin_ggtt_status_page(engine, vma);
if (ret)
goto err_unpin;
}
return 0;
err_unpin:
i915_gem_object_unpin_map(obj);
err:
i915_gem_object_put(obj);
return ret;
}
static int intel_engine_setup_common(struct intel_engine_cs *engine)
{
int err;
init_llist_head(&engine->barrier_tasks);
err = init_status_page(engine);
if (err)
return err;
intel_engine_init_active(engine, ENGINE_PHYSICAL);
intel_engine_init_breadcrumbs(engine);
intel_engine_init_execlists(engine);
intel_engine_init_hangcheck(engine);
intel_engine_init_cmd_parser(engine);
intel_engine_init__pm(engine);
intel_engine_pool_init(&engine->pool);
/* Use the whole device by default */
engine->sseu =
intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
intel_engine_init_workarounds(engine);
intel_engine_init_whitelist(engine);
intel_engine_init_ctx_wa(engine);
return 0;
}
/**
* intel_engines_setup- setup engine state not requiring hw access
* @gt: pointer to struct intel_gt
*
* Initializes engine structure members shared between legacy and execlists
* submission modes which do not require hardware access.
*
* Typically done early in the submission mode specific engine setup stage.
*/
int intel_engines_setup(struct intel_gt *gt)
{
int (*setup)(struct intel_engine_cs *engine);
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err;
if (HAS_EXECLISTS(gt->i915))
setup = intel_execlists_submission_setup;
else
setup = intel_ring_submission_setup;
for_each_engine(engine, gt, id) {
err = intel_engine_setup_common(engine);
if (err)
goto cleanup;
err = setup(engine);
if (err)
goto cleanup;
/* We expect the backend to take control over its state */
GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);
GEM_BUG_ON(!engine->cops);
}
return 0;
cleanup:
intel_engines_cleanup(gt);
return err;
}
struct measure_breadcrumb {
struct i915_request rq;
struct intel_timeline timeline;
struct intel_ring ring;
u32 cs[1024];
};
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
{
struct measure_breadcrumb *frame;
int dw = -ENOMEM;
GEM_BUG_ON(!engine->gt->scratch);
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame)
return -ENOMEM;
if (intel_timeline_init(&frame->timeline,
engine->gt,
engine->status_page.vma))
goto out_frame;
mutex_lock(&frame->timeline.mutex);
frame->ring.vaddr = frame->cs;
frame->ring.size = sizeof(frame->cs);
frame->ring.effective_size = frame->ring.size;
intel_ring_update_space(&frame->ring);
frame->rq.i915 = engine->i915;
frame->rq.engine = engine;
frame->rq.ring = &frame->ring;
rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
dw = intel_timeline_pin(&frame->timeline);
if (dw < 0)
goto out_timeline;
spin_lock_irq(&engine->active.lock);
dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
spin_unlock_irq(&engine->active.lock);
GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
intel_timeline_unpin(&frame->timeline);
out_timeline:
mutex_unlock(&frame->timeline.mutex);
intel_timeline_fini(&frame->timeline);
out_frame:
kfree(frame);
return dw;
}
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
INIT_LIST_HEAD(&engine->active.requests);
spin_lock_init(&engine->active.lock);
lockdep_set_subclass(&engine->active.lock, subclass);
/*
* Due to an interesting quirk in lockdep's internal debug tracking,
* after setting a subclass we must ensure the lock is used. Otherwise,
* nr_unused_locks is incremented once too often.
*/
#ifdef CONFIG_DEBUG_LOCK_ALLOC
local_irq_disable();
lock_map_acquire(&engine->active.lock.dep_map);
lock_map_release(&engine->active.lock.dep_map);
local_irq_enable();
#endif
}
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
static struct lock_class_key kernel;
struct intel_context *ce;
int err;
ce = intel_context_create(engine->i915->kernel_context, engine);
if (IS_ERR(ce))
return ce;
ce->ring = __intel_context_ring_size(SZ_4K);
err = intel_context_pin(ce);
if (err) {
intel_context_put(ce);
return ERR_PTR(err);
}
/*
* Give our perma-pinned kernel timelines a separate lockdep class,
* so that we can use them from within the normal user timelines
* should we need to inject GPU operations during their request
* construction.
*/
lockdep_set_class(&ce->timeline->mutex, &kernel);
return ce;
}
/**
* intel_engines_init_common - initialize cengine state which might require hw access
* @engine: Engine to initialize.
*
* Initializes @engine@ structure members shared between legacy and execlists
* submission modes which do require hardware access.
*
* Typcally done at later stages of submission mode specific engine setup.
*
* Returns zero on success or an error code on failure.
*/
int intel_engine_init_common(struct intel_engine_cs *engine)
{
struct intel_context *ce;
int ret;
engine->set_default_submission(engine);
/*
* We may need to do things with the shrinker which
* require us to immediately switch back to the default
* context. This can cause a problem as pinning the
* default context also requires GTT space which may not
* be available. To avoid this we always pin the default
* context.
*/
ce = create_kernel_context(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
engine->kernel_context = ce;
ret = measure_breadcrumb_dw(engine);
if (ret < 0)
goto err_unpin;
engine->emit_fini_breadcrumb_dw = ret;
return 0;
err_unpin:
intel_context_unpin(ce);
intel_context_put(ce);
return ret;
}
/**
* intel_engines_cleanup_common - cleans up the engine state created by
* the common initiailizers.
* @engine: Engine to cleanup.
*
* This cleans up everything created by the common helpers.
*/
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
GEM_BUG_ON(!list_empty(&engine->active.requests));
cleanup_status_page(engine);
intel_engine_pool_fini(&engine->pool);
intel_engine_fini_breadcrumbs(engine);
intel_engine_cleanup_cmd_parser(engine);
if (engine->default_state)
i915_gem_object_put(engine->default_state);
if (engine->kernel_context) {
intel_context_unpin(engine->kernel_context);
intel_context_put(engine->kernel_context);
}
GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
intel_wa_list_free(&engine->ctx_wa_list);
intel_wa_list_free(&engine->wa_list);
intel_wa_list_free(&engine->whitelist);
}
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
u64 acthd;
if (INTEL_GEN(i915) >= 8)
acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
else if (INTEL_GEN(i915) >= 4)
acthd = ENGINE_READ(engine, RING_ACTHD);
else
acthd = ENGINE_READ(engine, ACTHD);
return acthd;
}
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
{
u64 bbaddr;
if (INTEL_GEN(engine->i915) >= 8)
bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
else
bbaddr = ENGINE_READ(engine, RING_BBADDR);
return bbaddr;
}
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
return 0;
/*
* If we are doing a normal GPU reset, we can take our time and allow
* the engine to quiesce. We've stopped submission to the engine, and
* if we wait long enough an innocent context should complete and
* leave the engine idle. So they should not be caught unaware by
* the forthcoming GPU reset (which usually follows the stop_cs)!
*/
return READ_ONCE(engine->props.stop_timeout_ms);
}
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
struct intel_uncore *uncore = engine->uncore;
const u32 base = engine->mmio_base;
const i915_reg_t mode = RING_MI_MODE(base);
int err;
if (INTEL_GEN(engine->i915) < 3)
return -ENODEV;
GEM_TRACE("%s\n", engine->name);
intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
err = 0;
if (__intel_wait_for_register_fw(uncore,
mode, MODE_IDLE, MODE_IDLE,
1000, stop_timeout(engine),
NULL)) {
GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
err = -ETIMEDOUT;
}
/* A final mmio read to let GPU writes be hopefully flushed to memory */
intel_uncore_posting_read_fw(uncore, mode);
return err;
}
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
GEM_TRACE("%s\n", engine->name);
ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
}
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
switch (type) {
case I915_CACHE_NONE: return " uncached";
case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
case I915_CACHE_L3_LLC: return " L3+LLC";
case I915_CACHE_WT: return " WT";
default: return "";
}
}
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
i915_reg_t reg)
{
struct drm_i915_private *i915 = engine->i915;
struct intel_uncore *uncore = engine->uncore;
u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
enum forcewake_domains fw_domains;
if (INTEL_GEN(i915) >= 11) {
mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
} else {
mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
}
fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
FW_REG_READ);
fw_domains |= intel_uncore_forcewake_for_reg(uncore,
GEN8_MCR_SELECTOR,
FW_REG_READ | FW_REG_WRITE);
spin_lock_irq(&uncore->lock);
intel_uncore_forcewake_get__locked(uncore, fw_domains);
old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
mcr &= ~mcr_mask;
mcr |= mcr_ss;
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
val = intel_uncore_read_fw(uncore, reg);
mcr &= ~mcr_mask;
mcr |= old_mcr & mcr_mask;
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
intel_uncore_forcewake_put__locked(uncore, fw_domains);
spin_unlock_irq(&uncore->lock);
return val;
}
/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
struct intel_instdone *instdone)
{
struct drm_i915_private *i915 = engine->i915;
const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
struct intel_uncore *uncore = engine->uncore;
u32 mmio_base = engine->mmio_base;
int slice;
int subslice;
memset(instdone, 0, sizeof(*instdone));
switch (INTEL_GEN(i915)) {
default:
instdone->instdone =
intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
if (engine->id != RCS0)
break;
instdone->slice_common =
intel_uncore_read(uncore, GEN7_SC_INSTDONE);
for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
instdone->sampler[slice][subslice] =
read_subslice_reg(engine, slice, subslice,
GEN7_SAMPLER_INSTDONE);
instdone->row[slice][subslice] =
read_subslice_reg(engine, slice, subslice,
GEN7_ROW_INSTDONE);
}
break;
case 7:
instdone->instdone =
intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
if (engine->id != RCS0)
break;
instdone->slice_common =
intel_uncore_read(uncore, GEN7_SC_INSTDONE);
instdone->sampler[0][0] =
intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
instdone->row[0][0] =
intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
break;
case 6:
case 5:
case 4:
instdone->instdone =
intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
if (engine->id == RCS0)
/* HACK: Using the wrong struct member */
instdone->slice_common =
intel_uncore_read(uncore, GEN4_INSTDONE1);
break;
case 3:
case 2:
instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
break;
}
}
static bool ring_is_idle(struct intel_engine_cs *engine)
{
bool idle = true;
if (I915_SELFTEST_ONLY(!engine->mmio_base))
return true;
if (!intel_engine_pm_get_if_awake(engine))
return true;
/* First check that no commands are left in the ring */
if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
(ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
idle = false;
/* No bit for gen2, so assume the CS parser is idle */
if (INTEL_GEN(engine->i915) > 2 &&
!(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
idle = false;
intel_engine_pm_put(engine);
return idle;
}
void intel_engine_flush_submission(struct intel_engine_cs *engine)
{
struct tasklet_struct *t = &engine->execlists.tasklet;
if (__tasklet_is_scheduled(t)) {
local_bh_disable();
if (tasklet_trylock(t)) {
/* Must wait for any GPU reset in progress. */
if (__tasklet_is_enabled(t))
t->func(t->data);
tasklet_unlock(t);
}
local_bh_enable();
}
/* Otherwise flush the tasklet if it was running on another cpu */
tasklet_unlock_wait(t);
}
/**
* intel_engine_is_idle() - Report if the engine has finished process all work
* @engine: the intel_engine_cs
*
* Return true if there are no requests pending, nothing left to be submitted
* to hardware, and that the engine is idle.
*/
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
/* More white lies, if wedged, hw state is inconsistent */
if (intel_gt_is_wedged(engine->gt))
return true;
if (!intel_engine_pm_is_awake(engine))
return true;
/* Waiting to drain ELSP? */
if (execlists_active(&engine->execlists)) {
synchronize_hardirq(engine->i915->drm.pdev->irq);
intel_engine_flush_submission(engine);
if (execlists_active(&engine->execlists))
return false;
}
/* ELSP is empty, but there are ready requests? E.g. after reset */
if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
return false;
/* Ring stopped? */
return ring_is_idle(engine);
}
bool intel_engines_are_idle(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* If the driver is wedged, HW state may be very inconsistent and
* report that it is still busy, even though we have stopped using it.
*/
if (intel_gt_is_wedged(gt))
return true;
/* Already parked (and passed an idleness test); must still be idle */
if (!READ_ONCE(gt->awake))
return true;
for_each_engine(engine, gt, id) {
if (!intel_engine_is_idle(engine))
return false;
}
return true;
}
void intel_engines_reset_default_submission(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt, id)
engine->set_default_submission(engine);
}
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
switch (INTEL_GEN(engine->i915)) {
case 2:
return false; /* uses physical not virtual addresses */
case 3:
/* maybe only uses physical not virtual addresses */
return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
case 4:
return !IS_I965G(engine->i915); /* who knows! */
case 6:
return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
default:
return true;
}
}
static int print_sched_attr(struct drm_i915_private *i915,
const struct i915_sched_attr *attr,
char *buf, int x, int len)
{
if (attr->priority == I915_PRIORITY_INVALID)
return x;
x += snprintf(buf + x, len - x,
" prio=%d", attr->priority);
return x;
}
static void print_request(struct drm_printer *m,
struct i915_request *rq,
const char *prefix)
{
const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
char buf[80] = "";
int x = 0;
x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
prefix,
rq->fence.context, rq->fence.seqno,
i915_request_completed(rq) ? "!" :
i915_request_started(rq) ? "*" :
"",
test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&rq->fence.flags) ? "+" :
test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&rq->fence.flags) ? "-" :
"",
buf,
jiffies_to_msecs(jiffies - rq->emitted_jiffies),
name);
}
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
const size_t rowsize = 8 * sizeof(u32);
const void *prev = NULL;
bool skip = false;
size_t pos;
for (pos = 0; pos < len; pos += rowsize) {
char line[128];
if (prev && !memcmp(prev, buf + pos, rowsize)) {
if (!skip) {
drm_printf(m, "*\n");
skip = true;
}
continue;
}
WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
rowsize, sizeof(u32),
line, sizeof(line),
false) >= sizeof(line));
drm_printf(m, "[%04zx] %s\n", pos, line);
prev = buf + pos;
skip = false;
}
}
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
struct intel_timeline *tl;
/*
* Even though we are holding the engine->active.lock here, there
* is no control over the submission queue per-se and we are
* inspecting the active state at a random point in time, with an
* unknown queue. Play safe and make sure the timeline remains valid.
* (Only being used for pretty printing, one extra kref shouldn't
* cause a camel stampede!)
*/
rcu_read_lock();
tl = rcu_dereference(rq->timeline);
if (!kref_get_unless_zero(&tl->kref))
tl = NULL;
rcu_read_unlock();
return tl;
}
static const char *repr_timer(const struct timer_list *t)
{
if (!READ_ONCE(t->expires))
return "inactive";
if (timer_pending(t))
return "active";
return "expired";
}
static void intel_engine_print_registers(struct intel_engine_cs *engine,
struct drm_printer *m)
{
struct drm_i915_private *dev_priv = engine->i915;
struct intel_engine_execlists * const execlists = &engine->execlists;
u64 addr;
if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
drm_printf(m, "\tRING_START: 0x%08x\n",
ENGINE_READ(engine, RING_START));
drm_printf(m, "\tRING_HEAD: 0x%08x\n",
ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
drm_printf(m, "\tRING_TAIL: 0x%08x\n",
ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
ENGINE_READ(engine, RING_CTL),
ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
if (INTEL_GEN(engine->i915) > 2) {
drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
ENGINE_READ(engine, RING_MI_MODE),
ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
}
if (INTEL_GEN(dev_priv) >= 6) {
drm_printf(m, "\tRING_IMR: %08x\n",
ENGINE_READ(engine, RING_IMR));
}
addr = intel_engine_get_active_head(engine);
drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
addr = intel_engine_get_last_batch_head(engine);
drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
if (INTEL_GEN(dev_priv) >= 8)
addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
else if (INTEL_GEN(dev_priv) >= 4)
addr = ENGINE_READ(engine, RING_DMA_FADD);
else
addr = ENGINE_READ(engine, DMA_FADD_I8XX);
drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
if (INTEL_GEN(dev_priv) >= 4) {
drm_printf(m, "\tIPEIR: 0x%08x\n",
ENGINE_READ(engine, RING_IPEIR));
drm_printf(m, "\tIPEHR: 0x%08x\n",
ENGINE_READ(engine, RING_IPEHR));
} else {
drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
}
if (HAS_EXECLISTS(dev_priv)) {
struct i915_request * const *port, *rq;
const u32 *hws =
&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
const u8 num_entries = execlists->csb_size;
unsigned int idx;
u8 read, write;
drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
yesno(test_bit(TASKLET_STATE_SCHED,
&engine->execlists.tasklet.state)),
enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
repr_timer(&engine->execlists.preempt),
repr_timer(&engine->execlists.timer));
read = execlists->csb_head;
write = READ_ONCE(*execlists->csb_write);
drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
read, write, num_entries);
if (read >= num_entries)
read = 0;
if (write >= num_entries)
write = 0;
if (read > write)
write += num_entries;
while (read < write) {
idx = ++read % num_entries;
drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
idx, hws[idx * 2], hws[idx * 2 + 1]);
}
execlists_active_lock_bh(execlists);
for (port = execlists->active; (rq = *port); port++) {
char hdr[80];
int len;
len = snprintf(hdr, sizeof(hdr),
"\t\tActive[%d]: ",
(int)(port - execlists->active));
if (!i915_request_signaled(rq)) {
struct intel_timeline *tl = get_timeline(rq);
len += snprintf(hdr + len, sizeof(hdr) - len,
"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
i915_ggtt_offset(rq->ring->vma),
tl ? tl->hwsp_offset : 0,
hwsp_seqno(rq));
if (tl)
intel_timeline_put(tl);
}
snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
print_request(m, rq, hdr);
}
for (port = execlists->pending; (rq = *port); port++) {
struct intel_timeline *tl = get_timeline(rq);
char hdr[80];
snprintf(hdr, sizeof(hdr),
"\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
(int)(port - execlists->pending),
i915_ggtt_offset(rq->ring->vma),
tl ? tl->hwsp_offset : 0,
hwsp_seqno(rq));
print_request(m, rq, hdr);
if (tl)
intel_timeline_put(tl);
}
execlists_active_unlock_bh(execlists);
} else if (INTEL_GEN(dev_priv) > 6) {
drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
ENGINE_READ(engine, RING_PP_DIR_BASE));
drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
ENGINE_READ(engine, RING_PP_DIR_DCLV));
}
}
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
void *ring;
int size;
drm_printf(m,
"[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
rq->head, rq->postfix, rq->tail,
rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
size = rq->tail - rq->head;
if (rq->tail < rq->head)
size += rq->ring->size;
ring = kmalloc(size, GFP_ATOMIC);
if (ring) {
const void *vaddr = rq->ring->vaddr;
unsigned int head = rq->head;
unsigned int len = 0;
if (rq->tail < head) {
len = rq->ring->size - head;
memcpy(ring, vaddr + head, len);
head = 0;
}
memcpy(ring + len, vaddr + head, size - len);
hexdump(m, ring, size);
kfree(ring);
}
}
void intel_engine_dump(struct intel_engine_cs *engine,
struct drm_printer *m,
const char *header, ...)
{
struct i915_gpu_error * const error = &engine->i915->gpu_error;
struct i915_request *rq;
intel_wakeref_t wakeref;
unsigned long flags;
if (header) {
va_list ap;
va_start(ap, header);
drm_vprintf(m, header, &ap);
va_end(ap);
}
if (intel_gt_is_wedged(engine->gt))
drm_printf(m, "*** WEDGED ***\n");
drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
drm_printf(m, "\tHangcheck: %d ms ago\n",
jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
drm_printf(m, "\tReset count: %d (global %d)\n",
i915_reset_engine_count(error, engine),
i915_reset_count(error));
drm_printf(m, "\tRequests:\n");
spin_lock_irqsave(&engine->active.lock, flags);
rq = intel_engine_find_active_request(engine);
if (rq) {
struct intel_timeline *tl = get_timeline(rq);
print_request(m, rq, "\t\tactive ");
drm_printf(m, "\t\tring->start: 0x%08x\n",
i915_ggtt_offset(rq->ring->vma));
drm_printf(m, "\t\tring->head: 0x%08x\n",
rq->ring->head);
drm_printf(m, "\t\tring->tail: 0x%08x\n",
rq->ring->tail);
drm_printf(m, "\t\tring->emit: 0x%08x\n",
rq->ring->emit);
drm_printf(m, "\t\tring->space: 0x%08x\n",
rq->ring->space);
if (tl) {
drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
tl->hwsp_offset);
intel_timeline_put(tl);
}
print_request_ring(m, rq);
if (rq->hw_context->lrc_reg_state) {
drm_printf(m, "Logical Ring Context:\n");
hexdump(m, rq->hw_context->lrc_reg_state, PAGE_SIZE);
}
}
spin_unlock_irqrestore(&engine->active.lock, flags);
drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
if (wakeref) {
intel_engine_print_registers(engine, m);
intel_runtime_pm_put(engine->uncore->rpm, wakeref);
} else {
drm_printf(m, "\tDevice is asleep; skipping register dump\n");
}
intel_execlists_show_requests(engine, m, print_request, 8);
drm_printf(m, "HWSP:\n");
hexdump(m, engine->status_page.addr, PAGE_SIZE);
drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
intel_engine_print_breadcrumbs(engine, m);
}
/**
* intel_enable_engine_stats() - Enable engine busy tracking on engine
* @engine: engine to enable stats collection
*
* Start collecting the engine busyness data for @engine.
*
* Returns 0 on success or a negative error code.
*/
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
struct intel_engine_execlists *execlists = &engine->execlists;
unsigned long flags;
int err = 0;
if (!intel_engine_supports_stats(engine))
return -ENODEV;
execlists_active_lock_bh(execlists);
write_seqlock_irqsave(&engine->stats.lock, flags);
if (unlikely(engine->stats.enabled == ~0)) {
err = -EBUSY;
goto unlock;
}
if (engine->stats.enabled++ == 0) {
struct i915_request * const *port;
struct i915_request *rq;
engine->stats.enabled_at = ktime_get();
/* XXX submission method oblivious? */
for (port = execlists->active; (rq = *port); port++)
engine->stats.active++;
for (port = execlists->pending; (rq = *port); port++) {
/* Exclude any contexts already counted in active */
if (!intel_context_inflight_count(rq->hw_context))
engine->stats.active++;
}
if (engine->stats.active)
engine->stats.start = engine->stats.enabled_at;
}
unlock:
write_sequnlock_irqrestore(&engine->stats.lock, flags);
execlists_active_unlock_bh(execlists);
return err;
}
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
ktime_t total = engine->stats.total;
/*
* If the engine is executing something at the moment
* add it to the total.
*/
if (engine->stats.active)
total = ktime_add(total,
ktime_sub(ktime_get(), engine->stats.start));
return total;
}
/**
* intel_engine_get_busy_time() - Return current accumulated engine busyness
* @engine: engine to report on
*
* Returns accumulated time @engine was busy since engine stats were enabled.
*/
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
unsigned int seq;
ktime_t total;
do {
seq = read_seqbegin(&engine->stats.lock);
total = __intel_engine_get_busy_time(engine);
} while (read_seqretry(&engine->stats.lock, seq));
return total;
}
/**
* intel_disable_engine_stats() - Disable engine busy tracking on engine
* @engine: engine to disable stats collection
*
* Stops collecting the engine busyness data for @engine.
*/
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
unsigned long flags;
if (!intel_engine_supports_stats(engine))
return;
write_seqlock_irqsave(&engine->stats.lock, flags);
WARN_ON_ONCE(engine->stats.enabled == 0);
if (--engine->stats.enabled == 0) {
engine->stats.total = __intel_engine_get_busy_time(engine);
engine->stats.active = 0;
}
write_sequnlock_irqrestore(&engine->stats.lock, flags);
}
static bool match_ring(struct i915_request *rq)
{
u32 ring = ENGINE_READ(rq->engine, RING_START);
return ring == i915_ggtt_offset(rq->ring->vma);
}
struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
struct i915_request *request, *active = NULL;
/*
* We are called by the error capture, reset and to dump engine
* state at random points in time. In particular, note that neither is
* crucially ordered with an interrupt. After a hang, the GPU is dead
* and we assume that no more writes can happen (we waited long enough
* for all writes that were in transaction to be flushed) - adding an
* extra delay for a recent interrupt is pointless. Hence, we do
* not need an engine->irq_seqno_barrier() before the seqno reads.
* At all other times, we must assume the GPU is still running, but
* we only care about the snapshot of this moment.
*/
lockdep_assert_held(&engine->active.lock);
list_for_each_entry(request, &engine->active.requests, sched.link) {
if (i915_request_completed(request))
continue;
if (!i915_request_started(request))
continue;
/* More than one preemptible request may match! */
if (!match_ring(request))
continue;
active = request;
break;
}
return active;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "mock_engine.c"
#include "selftest_engine.c"
#include "selftest_engine_cs.c"
#endif