/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "hwmgr.h"
#include "amd_powerplay.h"
#include "vega12_smumgr.h"
#include "hardwaremanager.h"
#include "ppatomfwctrl.h"
#include "atomfirmware.h"
#include "cgs_common.h"
#include "vega12_inc.h"
#include "pppcielanes.h"
#include "vega12_hwmgr.h"
#include "vega12_processpptables.h"
#include "vega12_pptable.h"
#include "vega12_thermal.h"
#include "vega12_ppsmc.h"
#include "pp_debug.h"
#include "amd_pcie_helpers.h"
#include "ppinterrupt.h"
#include "pp_overdriver.h"
#include "pp_thermal.h"
static int vega12_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask);
static int vega12_get_clock_ranges(struct pp_hwmgr *hwmgr,
uint32_t *clock,
PPCLK_e clock_select,
bool max);
static void vega12_set_default_registry_data(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
data->gfxclk_average_alpha = PPVEGA12_VEGA12GFXCLKAVERAGEALPHA_DFLT;
data->socclk_average_alpha = PPVEGA12_VEGA12SOCCLKAVERAGEALPHA_DFLT;
data->uclk_average_alpha = PPVEGA12_VEGA12UCLKCLKAVERAGEALPHA_DFLT;
data->gfx_activity_average_alpha = PPVEGA12_VEGA12GFXACTIVITYAVERAGEALPHA_DFLT;
data->lowest_uclk_reserved_for_ulv = PPVEGA12_VEGA12LOWESTUCLKRESERVEDFORULV_DFLT;
data->display_voltage_mode = PPVEGA12_VEGA12DISPLAYVOLTAGEMODE_DFLT;
data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->registry_data.disallowed_features = 0x0;
data->registry_data.od_state_in_dc_support = 0;
data->registry_data.skip_baco_hardware = 0;
data->registry_data.log_avfs_param = 0;
data->registry_data.sclk_throttle_low_notification = 1;
data->registry_data.force_dpm_high = 0;
data->registry_data.stable_pstate_sclk_dpm_percentage = 75;
data->registry_data.didt_support = 0;
if (data->registry_data.didt_support) {
data->registry_data.didt_mode = 6;
data->registry_data.sq_ramping_support = 1;
data->registry_data.db_ramping_support = 0;
data->registry_data.td_ramping_support = 0;
data->registry_data.tcp_ramping_support = 0;
data->registry_data.dbr_ramping_support = 0;
data->registry_data.edc_didt_support = 1;
data->registry_data.gc_didt_support = 0;
data->registry_data.psm_didt_support = 0;
}
data->registry_data.pcie_lane_override = 0xff;
data->registry_data.pcie_speed_override = 0xff;
data->registry_data.pcie_clock_override = 0xffffffff;
data->registry_data.regulator_hot_gpio_support = 1;
data->registry_data.ac_dc_switch_gpio_support = 0;
data->registry_data.quick_transition_support = 0;
data->registry_data.zrpm_start_temp = 0xffff;
data->registry_data.zrpm_stop_temp = 0xffff;
data->registry_data.odn_feature_enable = 1;
data->registry_data.disable_water_mark = 0;
data->registry_data.disable_pp_tuning = 0;
data->registry_data.disable_xlpp_tuning = 0;
data->registry_data.disable_workload_policy = 0;
data->registry_data.perf_ui_tuning_profile_turbo = 0x19190F0F;
data->registry_data.perf_ui_tuning_profile_powerSave = 0x19191919;
data->registry_data.perf_ui_tuning_profile_xl = 0x00000F0A;
data->registry_data.force_workload_policy_mask = 0;
data->registry_data.disable_3d_fs_detection = 0;
data->registry_data.fps_support = 1;
data->registry_data.disable_auto_wattman = 1;
data->registry_data.auto_wattman_debug = 0;
data->registry_data.auto_wattman_sample_period = 100;
data->registry_data.auto_wattman_threshold = 50;
}
static int vega12_set_features_platform_caps(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
struct amdgpu_device *adev = hwmgr->adev;
if (data->vddci_control == VEGA12_VOLTAGE_CONTROL_NONE)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TablelessHardwareInterface);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableSMU7ThermalManagement);
if (adev->pg_flags & AMD_PG_SUPPORT_UVD) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDPowerGating);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDynamicPowerGating);
}
if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEPowerGating);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UnTabledHardwareInterface);
if (data->registry_data.odn_feature_enable)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODNinACSupport);
else {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6inACSupport);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6PlusinACSupport);
}
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ActivityReporting);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_FanSpeedInTableIsRPM);
if (data->registry_data.od_state_in_dc_support) {
if (data->registry_data.odn_feature_enable)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODNinDCSupport);
else {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6inDCSupport);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6PlusinDCSupport);
}
}
if (data->registry_data.thermal_support
&& data->registry_data.fuzzy_fan_control_support
&& hwmgr->thermal_controller.advanceFanControlParameters.usTMax)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODFuzzyFanControlSupport);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicPowerManagement);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMC);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalPolicyDelay);
if (data->registry_data.force_dpm_high)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ExclusiveModeAlwaysHigh);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicUVDState);
if (data->registry_data.sclk_throttle_low_notification)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification);
/* power tune caps */
/* assume disabled */
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtSupport);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SQRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TDRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TCPRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtEDCEnable);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_GCEDC);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PSM);
if (data->registry_data.didt_support) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
if (data->registry_data.sq_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
if (data->registry_data.db_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
if (data->registry_data.td_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
if (data->registry_data.tcp_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
if (data->registry_data.dbr_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
if (data->registry_data.edc_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
if (data->registry_data.gc_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
if (data->registry_data.psm_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
}
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
if (data->registry_data.ac_dc_switch_gpio_support) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
}
if (data->registry_data.quick_transition_support) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_Falcon_QuickTransition);
}
if (data->lowest_uclk_reserved_for_ulv != PPVEGA12_VEGA12LOWESTUCLKRESERVEDFORULV_DFLT) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_LowestUclkReservedForUlv);
if (data->lowest_uclk_reserved_for_ulv == 1)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_LowestUclkReservedForUlv);
}
if (data->registry_data.custom_fan_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_CustomFanControlSupport);
return 0;
}
static void vega12_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
int i;
data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
FEATURE_DPM_PREFETCHER_BIT;
data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
FEATURE_DPM_GFXCLK_BIT;
data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
FEATURE_DPM_UCLK_BIT;
data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
FEATURE_DPM_SOCCLK_BIT;
data->smu_features[GNLD_DPM_UVD].smu_feature_id =
FEATURE_DPM_UVD_BIT;
data->smu_features[GNLD_DPM_VCE].smu_feature_id =
FEATURE_DPM_VCE_BIT;
data->smu_features[GNLD_ULV].smu_feature_id =
FEATURE_ULV_BIT;
data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
FEATURE_DPM_MP0CLK_BIT;
data->smu_features[GNLD_DPM_LINK].smu_feature_id =
FEATURE_DPM_LINK_BIT;
data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
FEATURE_DPM_DCEFCLK_BIT;
data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
FEATURE_DS_GFXCLK_BIT;
data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
FEATURE_DS_SOCCLK_BIT;
data->smu_features[GNLD_DS_LCLK].smu_feature_id =
FEATURE_DS_LCLK_BIT;
data->smu_features[GNLD_PPT].smu_feature_id =
FEATURE_PPT_BIT;
data->smu_features[GNLD_TDC].smu_feature_id =
FEATURE_TDC_BIT;
data->smu_features[GNLD_THERMAL].smu_feature_id =
FEATURE_THERMAL_BIT;
data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
FEATURE_GFX_PER_CU_CG_BIT;
data->smu_features[GNLD_RM].smu_feature_id =
FEATURE_RM_BIT;
data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
FEATURE_DS_DCEFCLK_BIT;
data->smu_features[GNLD_ACDC].smu_feature_id =
FEATURE_ACDC_BIT;
data->smu_features[GNLD_VR0HOT].smu_feature_id =
FEATURE_VR0HOT_BIT;
data->smu_features[GNLD_VR1HOT].smu_feature_id =
FEATURE_VR1HOT_BIT;
data->smu_features[GNLD_FW_CTF].smu_feature_id =
FEATURE_FW_CTF_BIT;
data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
FEATURE_LED_DISPLAY_BIT;
data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
FEATURE_FAN_CONTROL_BIT;
data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
data->smu_features[GNLD_GFXOFF].smu_feature_id = FEATURE_GFXOFF_BIT;
data->smu_features[GNLD_CG].smu_feature_id = FEATURE_CG_BIT;
data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
data->smu_features[i].smu_feature_bitmap =
(uint64_t)(1ULL << data->smu_features[i].smu_feature_id);
data->smu_features[i].allowed =
((data->registry_data.disallowed_features >> i) & 1) ?
false : true;
}
}
static int vega12_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int vega12_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
kfree(hwmgr->backend);
hwmgr->backend = NULL;
return 0;
}
static int vega12_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct vega12_hwmgr *data;
struct amdgpu_device *adev = hwmgr->adev;
data = kzalloc(sizeof(struct vega12_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
vega12_set_default_registry_data(hwmgr);
data->disable_dpm_mask = 0xff;
data->workload_mask = 0xff;
/* need to set voltage control types before EVV patching */
data->vddc_control = VEGA12_VOLTAGE_CONTROL_NONE;
data->mvdd_control = VEGA12_VOLTAGE_CONTROL_NONE;
data->vddci_control = VEGA12_VOLTAGE_CONTROL_NONE;
data->water_marks_bitmap = 0;
data->avfs_exist = false;
vega12_set_features_platform_caps(hwmgr);
vega12_init_dpm_defaults(hwmgr);
/* Parse pptable data read from VBIOS */
vega12_set_private_data_based_on_pptable(hwmgr);
data->is_tlu_enabled = false;
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
VEGA12_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
hwmgr->platform_descriptor.clockStep.engineClock = 500;
hwmgr->platform_descriptor.clockStep.memoryClock = 500;
data->total_active_cus = adev->gfx.cu_info.number;
/* Setup default Overdrive Fan control settings */
data->odn_fan_table.target_fan_speed =
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
data->odn_fan_table.target_temperature =
hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature;
data->odn_fan_table.min_performance_clock =
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit;
data->odn_fan_table.min_fan_limit =
hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit *
hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
return result;
}
static int vega12_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
data->low_sclk_interrupt_threshold = 0;
return 0;
}
static int vega12_setup_asic_task(struct pp_hwmgr *hwmgr)
{
PP_ASSERT_WITH_CODE(!vega12_init_sclk_threshold(hwmgr),
"Failed to init sclk threshold!",
return -EINVAL);
return 0;
}
/*
* @fn vega12_init_dpm_state
* @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
*
* @param dpm_state - the address of the DPM Table to initiailize.
* @return None.
*/
static void vega12_init_dpm_state(struct vega12_dpm_state *dpm_state)
{
dpm_state->soft_min_level = 0x0;
dpm_state->soft_max_level = 0xffff;
dpm_state->hard_min_level = 0x0;
dpm_state->hard_max_level = 0xffff;
}
static int vega12_get_number_of_dpm_level(struct pp_hwmgr *hwmgr,
PPCLK_e clk_id, uint32_t *num_of_levels)
{
int ret = 0;
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetDpmFreqByIndex,
(clk_id << 16 | 0xFF));
PP_ASSERT_WITH_CODE(!ret,
"[GetNumOfDpmLevel] failed to get dpm levels!",
return ret);
vega12_read_arg_from_smc(hwmgr, num_of_levels);
PP_ASSERT_WITH_CODE(*num_of_levels > 0,
"[GetNumOfDpmLevel] number of clk levels is invalid!",
return -EINVAL);
return ret;
}
static int vega12_get_dpm_frequency_by_index(struct pp_hwmgr *hwmgr,
PPCLK_e clkID, uint32_t index, uint32_t *clock)
{
int result;
/*
*SMU expects the Clock ID to be in the top 16 bits.
*Lower 16 bits specify the level
*/
PP_ASSERT_WITH_CODE(smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetDpmFreqByIndex, (clkID << 16 | index)) == 0,
"[GetDpmFrequencyByIndex] Failed to get dpm frequency from SMU!",
return -EINVAL);
result = vega12_read_arg_from_smc(hwmgr, clock);
PP_ASSERT_WITH_CODE(*clock != 0,
"[GetDPMFrequencyByIndex] Failed to get dpm frequency by index.!",
return -EINVAL);
return result;
}
static int vega12_setup_single_dpm_table(struct pp_hwmgr *hwmgr,
struct vega12_single_dpm_table *dpm_table, PPCLK_e clk_id)
{
int ret = 0;
uint32_t i, num_of_levels, clk;
ret = vega12_get_number_of_dpm_level(hwmgr, clk_id, &num_of_levels);
PP_ASSERT_WITH_CODE(!ret,
"[SetupSingleDpmTable] failed to get clk levels!",
return ret);
dpm_table->count = num_of_levels;
for (i = 0; i < num_of_levels; i++) {
ret = vega12_get_dpm_frequency_by_index(hwmgr, clk_id, i, &clk);
PP_ASSERT_WITH_CODE(!ret,
"[SetupSingleDpmTable] failed to get clk of specific level!",
return ret);
dpm_table->dpm_levels[i].value = clk;
dpm_table->dpm_levels[i].enabled = true;
}
return ret;
}
/*
* This function is to initialize all DPM state tables
* for SMU based on the dependency table.
* Dynamic state patching function will then trim these
* state tables to the allowed range based
* on the power policy or external client requests,
* such as UVD request, etc.
*/
static int vega12_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_single_dpm_table *dpm_table;
int ret = 0;
memset(&data->dpm_table, 0, sizeof(data->dpm_table));
/* socclk */
dpm_table = &(data->dpm_table.soc_table);
if (data->smu_features[GNLD_DPM_SOCCLK].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_SOCCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get socclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.soc_clock / 100;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* gfxclk */
dpm_table = &(data->dpm_table.gfx_table);
if (data->smu_features[GNLD_DPM_GFXCLK].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_GFXCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get gfxclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.gfx_clock / 100;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* memclk */
dpm_table = &(data->dpm_table.mem_table);
if (data->smu_features[GNLD_DPM_UCLK].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_UCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get memclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.mem_clock / 100;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* eclk */
dpm_table = &(data->dpm_table.eclk_table);
if (data->smu_features[GNLD_DPM_VCE].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_ECLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get eclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.eclock / 100;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* vclk */
dpm_table = &(data->dpm_table.vclk_table);
if (data->smu_features[GNLD_DPM_UVD].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_VCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get vclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.vclock / 100;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* dclk */
dpm_table = &(data->dpm_table.dclk_table);
if (data->smu_features[GNLD_DPM_UVD].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get dclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.dclock / 100;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* dcefclk */
dpm_table = &(data->dpm_table.dcef_table);
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCEFCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get dcefclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.dcef_clock / 100;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* pixclk */
dpm_table = &(data->dpm_table.pixel_table);
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PIXCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get pixclk dpm levels!",
return ret);
} else
dpm_table->count = 0;
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* dispclk */
dpm_table = &(data->dpm_table.display_table);
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DISPCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get dispclk dpm levels!",
return ret);
} else
dpm_table->count = 0;
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* phyclk */
dpm_table = &(data->dpm_table.phy_table);
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PHYCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get phyclk dpm levels!",
return ret);
} else
dpm_table->count = 0;
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* save a copy of the default DPM table */
memcpy(&(data->golden_dpm_table), &(data->dpm_table),
sizeof(struct vega12_dpm_table));
return 0;
}
#if 0
static int vega12_save_default_power_profile(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
uint32_t min_level;
hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE;
hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE;
/* Optimize compute power profile: Use only highest
* 2 power levels (if more than 2 are available)
*/
if (dpm_table->count > 2)
min_level = dpm_table->count - 2;
else if (dpm_table->count == 2)
min_level = 1;
else
min_level = 0;
hwmgr->default_compute_power_profile.min_sclk =
dpm_table->dpm_levels[min_level].value;
hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile;
hwmgr->compute_power_profile = hwmgr->default_compute_power_profile;
return 0;
}
#endif
/**
* Initializes the SMC table and uploads it
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data (PowerState)
* @return always 0
*/
static int vega12_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
if (!result) {
data->vbios_boot_state.vddc = boot_up_values.usVddc;
data->vbios_boot_state.vddci = boot_up_values.usVddci;
data->vbios_boot_state.mvddc = boot_up_values.usMvddc;
data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
data->vbios_boot_state.uc_cooling_id = boot_up_values.ucCoolingID;
data->vbios_boot_state.eclock = boot_up_values.ulEClk;
data->vbios_boot_state.dclock = boot_up_values.ulDClk;
data->vbios_boot_state.vclock = boot_up_values.ulVClk;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetMinDeepSleepDcefclk,
(uint32_t)(data->vbios_boot_state.dcef_clock / 100));
}
memcpy(pp_table, pptable_information->smc_pptable, sizeof(PPTable_t));
result = vega12_copy_table_to_smc(hwmgr,
(uint8_t *)pp_table, TABLE_PPTABLE);
PP_ASSERT_WITH_CODE(!result,
"Failed to upload PPtable!", return result);
return 0;
}
static int vega12_set_allowed_featuresmask(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
int i;
uint32_t allowed_features_low = 0, allowed_features_high = 0;
for (i = 0; i < GNLD_FEATURES_MAX; i++)
if (data->smu_features[i].allowed)
data->smu_features[i].smu_feature_id > 31 ?
(allowed_features_high |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_HIGH_SHIFT) & 0xFFFFFFFF)) :
(allowed_features_low |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_LOW_SHIFT) & 0xFFFFFFFF));
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskHigh, allowed_features_high) == 0,
"[SetAllowedFeaturesMask] Attempt to set allowed features mask (high) failed!",
return -1);
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskLow, allowed_features_low) == 0,
"[SetAllowedFeaturesMask] Attempt to set allowed features mask (low) failed!",
return -1);
return 0;
}
static int vega12_enable_all_smu_features(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint64_t features_enabled;
int i;
bool enabled;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAllSmuFeatures) == 0,
"[EnableAllSMUFeatures] Failed to enable all smu features!",
return -1);
if (vega12_get_enabled_smc_features(hwmgr, &features_enabled) == 0) {
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false;
data->smu_features[i].enabled = enabled;
data->smu_features[i].supported = enabled;
PP_ASSERT(
!data->smu_features[i].allowed || enabled,
"[EnableAllSMUFeatures] Enabled feature is different from allowed, expected disabled!");
}
}
return 0;
}
static int vega12_disable_all_smu_features(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint64_t features_enabled;
int i;
bool enabled;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableAllSmuFeatures) == 0,
"[DisableAllSMUFeatures] Failed to disable all smu features!",
return -1);
if (vega12_get_enabled_smc_features(hwmgr, &features_enabled) == 0) {
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false;
data->smu_features[i].enabled = enabled;
data->smu_features[i].supported = enabled;
}
}
return 0;
}
static int vega12_odn_initialize_default_settings(
struct pp_hwmgr *hwmgr)
{
return 0;
}
static int vega12_set_overdrive_target_percentage(struct pp_hwmgr *hwmgr,
uint32_t adjust_percent)
{
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_OverDriveSetPercentage, adjust_percent);
}
static int vega12_power_control_set_level(struct pp_hwmgr *hwmgr)
{
int adjust_percent, result = 0;
if (PP_CAP(PHM_PlatformCaps_PowerContainment)) {
adjust_percent =
hwmgr->platform_descriptor.TDPAdjustmentPolarity ?
hwmgr->platform_descriptor.TDPAdjustment :
(-1 * hwmgr->platform_descriptor.TDPAdjustment);
result = vega12_set_overdrive_target_percentage(hwmgr,
(uint32_t)adjust_percent);
}
return result;
}
static int vega12_get_all_clock_ranges_helper(struct pp_hwmgr *hwmgr,
PPCLK_e clkid, struct vega12_clock_range *clock)
{
/* AC Max */
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMaxDpmFreq, (clkid << 16)) == 0,
"[GetClockRanges] Failed to get max ac clock from SMC!",
return -EINVAL);
vega12_read_arg_from_smc(hwmgr, &(clock->ACMax));
/* AC Min */
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMinDpmFreq, (clkid << 16)) == 0,
"[GetClockRanges] Failed to get min ac clock from SMC!",
return -EINVAL);
vega12_read_arg_from_smc(hwmgr, &(clock->ACMin));
/* DC Max */
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDcModeMaxDpmFreq, (clkid << 16)) == 0,
"[GetClockRanges] Failed to get max dc clock from SMC!",
return -EINVAL);
vega12_read_arg_from_smc(hwmgr, &(clock->DCMax));
return 0;
}
static int vega12_get_all_clock_ranges(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint32_t i;
for (i = 0; i < PPCLK_COUNT; i++)
PP_ASSERT_WITH_CODE(!vega12_get_all_clock_ranges_helper(hwmgr,
i, &(data->clk_range[i])),
"Failed to get clk range from SMC!",
return -EINVAL);
return 0;
}
static int vega12_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_NumOfDisplays, 0);
result = vega12_set_allowed_featuresmask(hwmgr);
PP_ASSERT_WITH_CODE(result == 0,
"[EnableDPMTasks] Failed to set allowed featuresmask!\n",
return result);
tmp_result = vega12_init_smc_table(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to initialize SMC table!",
result = tmp_result);
result = vega12_enable_all_smu_features(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to enable all smu features!",
return result);
tmp_result = vega12_power_control_set_level(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to power control set level!",
result = tmp_result);
result = vega12_get_all_clock_ranges(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to get all clock ranges!",
return result);
result = vega12_odn_initialize_default_settings(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to power control set level!",
return result);
result = vega12_setup_default_dpm_tables(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to setup default DPM tables!",
return result);
return result;
}
static int vega12_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
return 0;
}
static uint32_t vega12_find_lowest_dpm_level(
struct vega12_single_dpm_table *table)
{
uint32_t i;
for (i = 0; i < table->count; i++) {
if (table->dpm_levels[i].enabled)
break;
}
if (i >= table->count) {
i = 0;
table->dpm_levels[i].enabled = true;
}
return i;
}
static uint32_t vega12_find_highest_dpm_level(
struct vega12_single_dpm_table *table)
{
int32_t i = 0;
PP_ASSERT_WITH_CODE(table->count <= MAX_REGULAR_DPM_NUMBER,
"[FindHighestDPMLevel] DPM Table has too many entries!",
return MAX_REGULAR_DPM_NUMBER - 1);
for (i = table->count - 1; i >= 0; i--) {
if (table->dpm_levels[i].enabled)
break;
}
if (i < 0) {
i = 0;
table->dpm_levels[i].enabled = true;
}
return (uint32_t)i;
}
static int vega12_upload_dpm_min_level(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = hwmgr->backend;
uint32_t min_freq;
int ret = 0;
if (data->smu_features[GNLD_DPM_GFXCLK].enabled) {
min_freq = data->dpm_table.gfx_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_GFXCLK << 16) | (min_freq & 0xffff))),
"Failed to set soft min gfxclk !",
return ret);
}
if (data->smu_features[GNLD_DPM_UCLK].enabled) {
min_freq = data->dpm_table.mem_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_UCLK << 16) | (min_freq & 0xffff))),
"Failed to set soft min memclk !",
return ret);
min_freq = data->dpm_table.mem_table.dpm_state.hard_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetHardMinByFreq,
(PPCLK_UCLK << 16) | (min_freq & 0xffff))),
"Failed to set hard min memclk !",
return ret);
}
if (data->smu_features[GNLD_DPM_UVD].enabled) {
min_freq = data->dpm_table.vclk_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_VCLK << 16) | (min_freq & 0xffff))),
"Failed to set soft min vclk!",
return ret);
min_freq = data->dpm_table.dclk_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_DCLK << 16) | (min_freq & 0xffff))),
"Failed to set soft min dclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_VCE].enabled) {
min_freq = data->dpm_table.eclk_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_ECLK << 16) | (min_freq & 0xffff))),
"Failed to set soft min eclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_SOCCLK].enabled) {
min_freq = data->dpm_table.soc_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_SOCCLK << 16) | (min_freq & 0xffff))),
"Failed to set soft min socclk!",
return ret);
}
return ret;
}
static int vega12_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = hwmgr->backend;
uint32_t max_freq;
int ret = 0;
if (data->smu_features[GNLD_DPM_GFXCLK].enabled) {
max_freq = data->dpm_table.gfx_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_GFXCLK << 16) | (max_freq & 0xffff))),
"Failed to set soft max gfxclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_UCLK].enabled) {
max_freq = data->dpm_table.mem_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_UCLK << 16) | (max_freq & 0xffff))),
"Failed to set soft max memclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_UVD].enabled) {
max_freq = data->dpm_table.vclk_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_VCLK << 16) | (max_freq & 0xffff))),
"Failed to set soft max vclk!",
return ret);
max_freq = data->dpm_table.dclk_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_DCLK << 16) | (max_freq & 0xffff))),
"Failed to set soft max dclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_VCE].enabled) {
max_freq = data->dpm_table.eclk_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_ECLK << 16) | (max_freq & 0xffff))),
"Failed to set soft max eclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_SOCCLK].enabled) {
max_freq = data->dpm_table.soc_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_SOCCLK << 16) | (max_freq & 0xffff))),
"Failed to set soft max socclk!",
return ret);
}
return ret;
}
int vega12_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_DPM_VCE].supported) {
PP_ASSERT_WITH_CODE(!vega12_enable_smc_features(hwmgr,
enable,
data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
"Attempt to Enable/Disable DPM VCE Failed!",
return -1);
data->smu_features[GNLD_DPM_VCE].enabled = enable;
}
return 0;
}
static uint32_t vega12_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint32_t gfx_clk;
if (!data->smu_features[GNLD_DPM_GFXCLK].enabled)
return -1;
if (low)
PP_ASSERT_WITH_CODE(
vega12_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, false) == 0,
"[GetSclks]: fail to get min PPCLK_GFXCLK\n",
return -1);
else
PP_ASSERT_WITH_CODE(
vega12_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, true) == 0,
"[GetSclks]: fail to get max PPCLK_GFXCLK\n",
return -1);
return (gfx_clk * 100);
}
static uint32_t vega12_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint32_t mem_clk;
if (!data->smu_features[GNLD_DPM_UCLK].enabled)
return -1;
if (low)
PP_ASSERT_WITH_CODE(
vega12_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, false) == 0,
"[GetMclks]: fail to get min PPCLK_UCLK\n",
return -1);
else
PP_ASSERT_WITH_CODE(
vega12_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, true) == 0,
"[GetMclks]: fail to get max PPCLK_UCLK\n",
return -1);
return (mem_clk * 100);
}
static int vega12_get_gpu_power(struct pp_hwmgr *hwmgr, uint32_t *query)
{
#if 0
uint32_t value;
PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_GetCurrPkgPwr),
"Failed to get current package power!",
return -EINVAL);
vega12_read_arg_from_smc(hwmgr, &value);
/* power value is an integer */
*query = value << 8;
#endif
return 0;
}
static int vega12_get_current_gfx_clk_freq(struct pp_hwmgr *hwmgr, uint32_t *gfx_freq)
{
uint32_t gfx_clk = 0;
*gfx_freq = 0;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_GFXCLK << 16)) == 0,
"[GetCurrentGfxClkFreq] Attempt to get Current GFXCLK Frequency Failed!",
return -1);
PP_ASSERT_WITH_CODE(
vega12_read_arg_from_smc(hwmgr, &gfx_clk) == 0,
"[GetCurrentGfxClkFreq] Attempt to read arg from SMC Failed",
return -1);
*gfx_freq = gfx_clk * 100;
return 0;
}
static int vega12_get_current_mclk_freq(struct pp_hwmgr *hwmgr, uint32_t *mclk_freq)
{
uint32_t mem_clk = 0;
*mclk_freq = 0;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_UCLK << 16)) == 0,
"[GetCurrentMClkFreq] Attempt to get Current MCLK Frequency Failed!",
return -1);
PP_ASSERT_WITH_CODE(
vega12_read_arg_from_smc(hwmgr, &mem_clk) == 0,
"[GetCurrentMClkFreq] Attempt to read arg from SMC Failed",
return -1);
*mclk_freq = mem_clk * 100;
return 0;
}
static int vega12_get_current_activity_percent(
struct pp_hwmgr *hwmgr,
uint32_t *activity_percent)
{
int ret = 0;
uint32_t current_activity = 50;
#if 0
ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0);
if (!ret) {
ret = vega12_read_arg_from_smc(hwmgr, ¤t_activity);
if (!ret) {
if (current_activity > 100) {
PP_ASSERT(false,
"[GetCurrentActivityPercent] Activity Percentage Exceeds 100!");
current_activity = 100;
}
} else
PP_ASSERT(false,
"[GetCurrentActivityPercent] Attempt To Read Average Graphics Activity from SMU Failed!");
} else
PP_ASSERT(false,
"[GetCurrentActivityPercent] Attempt To Send Get Average Graphics Activity to SMU Failed!");
#endif
*activity_percent = current_activity;
return ret;
}
static int vega12_read_sensor(struct pp_hwmgr *hwmgr, int idx,
void *value, int *size)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
int ret = 0;
switch (idx) {
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = vega12_get_current_gfx_clk_freq(hwmgr, (uint32_t *)value);
if (!ret)
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = vega12_get_current_mclk_freq(hwmgr, (uint32_t *)value);
if (!ret)
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = vega12_get_current_activity_percent(hwmgr, (uint32_t *)value);
if (!ret)
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_TEMP:
*((uint32_t *)value) = vega12_thermal_get_temperature(hwmgr);
*size = 4;
break;
case AMDGPU_PP_SENSOR_UVD_POWER:
*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCE_POWER:
*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = vega12_get_gpu_power(hwmgr, (uint32_t *)value);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int vega12_notify_smc_display_change(struct pp_hwmgr *hwmgr,
bool has_disp)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_DPM_UCLK].enabled)
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetUclkFastSwitch,
has_disp ? 0 : 1);
return 0;
}
int vega12_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
struct pp_display_clock_request *clock_req)
{
int result = 0;
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
enum amd_pp_clock_type clk_type = clock_req->clock_type;
uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
PPCLK_e clk_select = 0;
uint32_t clk_request = 0;
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
switch (clk_type) {
case amd_pp_dcef_clock:
clk_freq = clock_req->clock_freq_in_khz / 100;
clk_select = PPCLK_DCEFCLK;
break;
case amd_pp_disp_clock:
clk_select = PPCLK_DISPCLK;
break;
case amd_pp_pixel_clock:
clk_select = PPCLK_PIXCLK;
break;
case amd_pp_phy_clock:
clk_select = PPCLK_PHYCLK;
break;
default:
pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
result = -1;
break;
}
if (!result) {
clk_request = (clk_select << 16) | clk_freq;
result = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinByFreq,
clk_request);
}
}
return result;
}
static int vega12_notify_smc_display_config_after_ps_adjustment(
struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
struct PP_Clocks min_clocks = {0};
struct pp_display_clock_request clock_req;
uint32_t clk_request;
if (hwmgr->display_config->num_display > 1)
vega12_notify_smc_display_change(hwmgr, false);
else
vega12_notify_smc_display_change(hwmgr, true);
min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
if (data->smu_features[GNLD_DPM_DCEFCLK].supported) {
clock_req.clock_type = amd_pp_dcef_clock;
clock_req.clock_freq_in_khz = min_clocks.dcefClock;
if (!vega12_display_clock_voltage_request(hwmgr, &clock_req)) {
if (data->smu_features[GNLD_DS_DCEFCLK].supported)
PP_ASSERT_WITH_CODE(
!smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
min_clocks.dcefClockInSR /100),
"Attempt to set divider for DCEFCLK Failed!",
return -1);
} else {
pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
}
}
if (data->smu_features[GNLD_DPM_UCLK].enabled) {
clk_request = (PPCLK_UCLK << 16) | (min_clocks.memoryClock) / 100;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinByFreq, clk_request) == 0,
"[PhwVega12_NotifySMCDisplayConfigAfterPowerStateAdjustment] Attempt to set UCLK HardMin Failed!",
return -1);
data->dpm_table.mem_table.dpm_state.hard_min_level = min_clocks.memoryClock;
}
return 0;
}
static int vega12_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint32_t soft_level;
soft_level = vega12_find_highest_dpm_level(&(data->dpm_table.gfx_table));
data->dpm_table.gfx_table.dpm_state.soft_min_level =
data->dpm_table.gfx_table.dpm_state.soft_max_level =
data->dpm_table.gfx_table.dpm_levels[soft_level].value;
soft_level = vega12_find_highest_dpm_level(&(data->dpm_table.mem_table));
data->dpm_table.mem_table.dpm_state.soft_min_level =
data->dpm_table.mem_table.dpm_state.soft_max_level =
data->dpm_table.mem_table.dpm_levels[soft_level].value;
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr),
"Failed to upload boot level to highest!",
return -1);
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -1);
return 0;
}
static int vega12_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint32_t soft_level;
soft_level = vega12_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
data->dpm_table.gfx_table.dpm_state.soft_min_level =
data->dpm_table.gfx_table.dpm_state.soft_max_level =
data->dpm_table.gfx_table.dpm_levels[soft_level].value;
soft_level = vega12_find_lowest_dpm_level(&(data->dpm_table.mem_table));
data->dpm_table.mem_table.dpm_state.soft_min_level =
data->dpm_table.mem_table.dpm_state.soft_max_level =
data->dpm_table.mem_table.dpm_levels[soft_level].value;
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr),
"Failed to upload boot level to highest!",
return -1);
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -1);
return 0;
}
static int vega12_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr),
"Failed to upload DPM Bootup Levels!",
return -1);
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr),
"Failed to upload DPM Max Levels!",
return -1);
return 0;
}
static int vega12_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table);
struct vega12_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table);
struct vega12_single_dpm_table *soc_dpm_table = &(data->dpm_table.soc_table);
*sclk_mask = 0;
*mclk_mask = 0;
*soc_mask = 0;
if (gfx_dpm_table->count > VEGA12_UMD_PSTATE_GFXCLK_LEVEL &&
mem_dpm_table->count > VEGA12_UMD_PSTATE_MCLK_LEVEL &&
soc_dpm_table->count > VEGA12_UMD_PSTATE_SOCCLK_LEVEL) {
*sclk_mask = VEGA12_UMD_PSTATE_GFXCLK_LEVEL;
*mclk_mask = VEGA12_UMD_PSTATE_MCLK_LEVEL;
*soc_mask = VEGA12_UMD_PSTATE_SOCCLK_LEVEL;
}
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
*mclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
*sclk_mask = gfx_dpm_table->count - 1;
*mclk_mask = mem_dpm_table->count - 1;
*soc_mask = soc_dpm_table->count - 1;
}
return 0;
}
static void vega12_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
{
switch (mode) {
case AMD_FAN_CTRL_NONE:
break;
case AMD_FAN_CTRL_MANUAL:
if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
vega12_fan_ctrl_stop_smc_fan_control(hwmgr);
break;
case AMD_FAN_CTRL_AUTO:
if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
vega12_fan_ctrl_start_smc_fan_control(hwmgr);
break;
default:
break;
}
}
static int vega12_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
int ret = 0;
uint32_t sclk_mask = 0;
uint32_t mclk_mask = 0;
uint32_t soc_mask = 0;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = vega12_force_dpm_highest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = vega12_force_dpm_lowest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
ret = vega12_unforce_dpm_levels(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = vega12_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
if (ret)
return ret;
vega12_force_clock_level(hwmgr, PP_SCLK, 1 << sclk_mask);
vega12_force_clock_level(hwmgr, PP_MCLK, 1 << mclk_mask);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
return ret;
}
static uint32_t vega12_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
return AMD_FAN_CTRL_MANUAL;
else
return AMD_FAN_CTRL_AUTO;
}
static int vega12_get_dal_power_level(struct pp_hwmgr *hwmgr,
struct amd_pp_simple_clock_info *info)
{
#if 0
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_clock_and_voltage_limits *max_limits =
&table_info->max_clock_voltage_on_ac;
info->engine_max_clock = max_limits->sclk;
info->memory_max_clock = max_limits->mclk;
#endif
return 0;
}
static int vega12_get_clock_ranges(struct pp_hwmgr *hwmgr,
uint32_t *clock,
PPCLK_e clock_select,
bool max)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
if (max)
*clock = data->clk_range[clock_select].ACMax;
else
*clock = data->clk_range[clock_select].ACMin;
return 0;
}
static int vega12_get_sclks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
uint32_t ucount;
int i;
struct vega12_single_dpm_table *dpm_table;
if (!data->smu_features[GNLD_DPM_GFXCLK].enabled)
return -1;
dpm_table = &(data->dpm_table.gfx_table);
ucount = (dpm_table->count > VG12_PSUEDO_NUM_GFXCLK_DPM_LEVELS) ?
VG12_PSUEDO_NUM_GFXCLK_DPM_LEVELS : dpm_table->count;
for (i = 0; i < ucount; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 100;
clocks->data[i].latency_in_us = 0;
}
clocks->num_levels = ucount;
return 0;
}
static uint32_t vega12_get_mem_latency(struct pp_hwmgr *hwmgr,
uint32_t clock)
{
return 25;
}
static int vega12_get_memclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
uint32_t ucount;
int i;
struct vega12_single_dpm_table *dpm_table;
if (!data->smu_features[GNLD_DPM_UCLK].enabled)
return -1;
dpm_table = &(data->dpm_table.mem_table);
ucount = (dpm_table->count > VG12_PSUEDO_NUM_UCLK_DPM_LEVELS) ?
VG12_PSUEDO_NUM_UCLK_DPM_LEVELS : dpm_table->count;
for (i = 0; i < ucount; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 100;
clocks->data[i].latency_in_us =
data->mclk_latency_table.entries[i].latency =
vega12_get_mem_latency(hwmgr, dpm_table->dpm_levels[i].value);
}
clocks->num_levels = data->mclk_latency_table.count = ucount;
return 0;
}
static int vega12_get_dcefclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
uint32_t ucount;
int i;
struct vega12_single_dpm_table *dpm_table;
if (!data->smu_features[GNLD_DPM_DCEFCLK].enabled)
return -1;
dpm_table = &(data->dpm_table.dcef_table);
ucount = (dpm_table->count > VG12_PSUEDO_NUM_DCEFCLK_DPM_LEVELS) ?
VG12_PSUEDO_NUM_DCEFCLK_DPM_LEVELS : dpm_table->count;
for (i = 0; i < ucount; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 100;
clocks->data[i].latency_in_us = 0;
}
clocks->num_levels = ucount;
return 0;
}
static int vega12_get_socclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
uint32_t ucount;
int i;
struct vega12_single_dpm_table *dpm_table;
if (!data->smu_features[GNLD_DPM_SOCCLK].enabled)
return -1;
dpm_table = &(data->dpm_table.soc_table);
ucount = (dpm_table->count > VG12_PSUEDO_NUM_SOCCLK_DPM_LEVELS) ?
VG12_PSUEDO_NUM_SOCCLK_DPM_LEVELS : dpm_table->count;
for (i = 0; i < ucount; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 100;
clocks->data[i].latency_in_us = 0;
}
clocks->num_levels = ucount;
return 0;
}
static int vega12_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_latency *clocks)
{
int ret;
switch (type) {
case amd_pp_sys_clock:
ret = vega12_get_sclks(hwmgr, clocks);
break;
case amd_pp_mem_clock:
ret = vega12_get_memclocks(hwmgr, clocks);
break;
case amd_pp_dcef_clock:
ret = vega12_get_dcefclocks(hwmgr, clocks);
break;
case amd_pp_soc_clock:
ret = vega12_get_socclocks(hwmgr, clocks);
break;
default:
return -EINVAL;
}
return ret;
}
static int vega12_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_voltage *clocks)
{
clocks->num_levels = 0;
return 0;
}
static int vega12_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
struct pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
Watermarks_t *table = &(data->smc_state_table.water_marks_table);
int result = 0;
uint32_t i;
if (!data->registry_data.disable_water_mark &&
data->smu_features[GNLD_DPM_DCEFCLK].supported &&
data->smu_features[GNLD_DPM_SOCCLK].supported) {
for (i = 0; i < wm_with_clock_ranges->num_wm_sets_dmif; i++) {
table->WatermarkRow[WM_DCEFCLK][i].MinClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_min_dcefclk_in_khz) /
100);
table->WatermarkRow[WM_DCEFCLK][i].MaxClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_max_dcefclk_in_khz) /
100);
table->WatermarkRow[WM_DCEFCLK][i].MinUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_min_memclk_in_khz) /
100);
table->WatermarkRow[WM_DCEFCLK][i].MaxUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_max_memclk_in_khz) /
100);
table->WatermarkRow[WM_DCEFCLK][i].WmSetting = (uint8_t)
wm_with_clock_ranges->wm_sets_dmif[i].wm_set_id;
}
for (i = 0; i < wm_with_clock_ranges->num_wm_sets_mcif; i++) {
table->WatermarkRow[WM_SOCCLK][i].MinClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_min_socclk_in_khz) /
100);
table->WatermarkRow[WM_SOCCLK][i].MaxClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_max_socclk_in_khz) /
100);
table->WatermarkRow[WM_SOCCLK][i].MinUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_min_memclk_in_khz) /
100);
table->WatermarkRow[WM_SOCCLK][i].MaxUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_max_memclk_in_khz) /
100);
table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t)
wm_with_clock_ranges->wm_sets_mcif[i].wm_set_id;
}
data->water_marks_bitmap |= WaterMarksExist;
data->water_marks_bitmap &= ~WaterMarksLoaded;
}
return result;
}
static int vega12_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
uint32_t soft_min_level, soft_max_level;
int ret = 0;
switch (type) {
case PP_SCLK:
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
data->dpm_table.gfx_table.dpm_state.soft_min_level =
data->dpm_table.gfx_table.dpm_levels[soft_min_level].value;
data->dpm_table.gfx_table.dpm_state.soft_max_level =
data->dpm_table.gfx_table.dpm_levels[soft_max_level].value;
ret = vega12_upload_dpm_min_level(hwmgr);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload boot level to lowest!",
return ret);
ret = vega12_upload_dpm_max_level(hwmgr);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload dpm max level to highest!",
return ret);
break;
case PP_MCLK:
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
data->dpm_table.mem_table.dpm_state.soft_min_level =
data->dpm_table.mem_table.dpm_levels[soft_min_level].value;
data->dpm_table.mem_table.dpm_state.soft_max_level =
data->dpm_table.mem_table.dpm_levels[soft_max_level].value;
ret = vega12_upload_dpm_min_level(hwmgr);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload boot level to lowest!",
return ret);
ret = vega12_upload_dpm_max_level(hwmgr);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload dpm max level to highest!",
return ret);
break;
case PP_PCIE:
break;
default:
break;
}
return 0;
}
static int vega12_print_clock_levels(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, char *buf)
{
int i, now, size = 0;
struct pp_clock_levels_with_latency clocks;
switch (type) {
case PP_SCLK:
PP_ASSERT_WITH_CODE(
vega12_get_current_gfx_clk_freq(hwmgr, &now) == 0,
"Attempt to get current gfx clk Failed!",
return -1);
PP_ASSERT_WITH_CODE(
vega12_get_sclks(hwmgr, &clocks) == 0,
"Attempt to get gfx clk levels Failed!",
return -1);
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 100,
(clocks.data[i].clocks_in_khz == now) ? "*" : "");
break;
case PP_MCLK:
PP_ASSERT_WITH_CODE(
vega12_get_current_mclk_freq(hwmgr, &now) == 0,
"Attempt to get current mclk freq Failed!",
return -1);
PP_ASSERT_WITH_CODE(
vega12_get_memclocks(hwmgr, &clocks) == 0,
"Attempt to get memory clk levels Failed!",
return -1);
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 100,
(clocks.data[i].clocks_in_khz == now) ? "*" : "");
break;
case PP_PCIE:
break;
default:
break;
}
return size;
}
static int vega12_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
int result = 0;
Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
if ((data->water_marks_bitmap & WaterMarksExist) &&
!(data->water_marks_bitmap & WaterMarksLoaded)) {
result = vega12_copy_table_to_smc(hwmgr,
(uint8_t *)wm_table, TABLE_WATERMARKS);
PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return EINVAL);
data->water_marks_bitmap |= WaterMarksLoaded;
}
if ((data->water_marks_bitmap & WaterMarksExist) &&
data->smu_features[GNLD_DPM_DCEFCLK].supported &&
data->smu_features[GNLD_DPM_SOCCLK].supported)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display);
return result;
}
int vega12_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_DPM_UVD].supported) {
PP_ASSERT_WITH_CODE(!vega12_enable_smc_features(hwmgr,
enable,
data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
"Attempt to Enable/Disable DPM UVD Failed!",
return -1);
data->smu_features[GNLD_DPM_UVD].enabled = enable;
}
return 0;
}
static void vega12_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
data->vce_power_gated = bgate;
vega12_enable_disable_vce_dpm(hwmgr, !bgate);
}
static void vega12_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
data->uvd_power_gated = bgate;
vega12_enable_disable_uvd_dpm(hwmgr, !bgate);
}
static bool
vega12_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
bool is_update_required = false;
if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
is_update_required = true;
if (data->registry_data.gfx_clk_deep_sleep_support) {
if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
is_update_required = true;
}
return is_update_required;
}
static int vega12_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
tmp_result = vega12_disable_all_smu_features(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable all smu features!", result = tmp_result);
return result;
}
static int vega12_power_off_asic(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
int result;
result = vega12_disable_dpm_tasks(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"[disable_dpm_tasks] Failed to disable DPM!",
);
data->water_marks_bitmap &= ~(WaterMarksLoaded);
return result;
}
#if 0
static void vega12_find_min_clock_index(struct pp_hwmgr *hwmgr,
uint32_t *sclk_idx, uint32_t *mclk_idx,
uint32_t min_sclk, uint32_t min_mclk)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_dpm_table *dpm_table = &(data->dpm_table);
uint32_t i;
for (i = 0; i < dpm_table->gfx_table.count; i++) {
if (dpm_table->gfx_table.dpm_levels[i].enabled &&
dpm_table->gfx_table.dpm_levels[i].value >= min_sclk) {
*sclk_idx = i;
break;
}
}
for (i = 0; i < dpm_table->mem_table.count; i++) {
if (dpm_table->mem_table.dpm_levels[i].enabled &&
dpm_table->mem_table.dpm_levels[i].value >= min_mclk) {
*mclk_idx = i;
break;
}
}
}
#endif
#if 0
static int vega12_set_power_profile_state(struct pp_hwmgr *hwmgr,
struct amd_pp_profile *request)
{
return 0;
}
static int vega12_get_sclk_od(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
struct vega12_single_dpm_table *golden_sclk_table =
&(data->golden_dpm_table.gfx_table);
int value;
value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
100 /
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
return value;
}
static int vega12_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
return 0;
}
static int vega12_get_mclk_od(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
struct vega12_single_dpm_table *golden_mclk_table =
&(data->golden_dpm_table.mem_table);
int value;
value = (mclk_table->dpm_levels
[mclk_table->count - 1].value -
golden_mclk_table->dpm_levels
[golden_mclk_table->count - 1].value) *
100 /
golden_mclk_table->dpm_levels
[golden_mclk_table->count - 1].value;
return value;
}
static int vega12_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
return 0;
}
#endif
static int vega12_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
uint32_t virtual_addr_low,
uint32_t virtual_addr_hi,
uint32_t mc_addr_low,
uint32_t mc_addr_hi,
uint32_t size)
{
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSystemVirtualDramAddrHigh,
virtual_addr_hi);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSystemVirtualDramAddrLow,
virtual_addr_low);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramAddrHigh,
mc_addr_hi);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramAddrLow,
mc_addr_low);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramSize,
size);
return 0;
}
static int vega12_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
struct PP_TemperatureRange *thermal_data)
{
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
thermal_data->max = pptable_information->us_software_shutdown_temp *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static const struct pp_hwmgr_func vega12_hwmgr_funcs = {
.backend_init = vega12_hwmgr_backend_init,
.backend_fini = vega12_hwmgr_backend_fini,
.asic_setup = vega12_setup_asic_task,
.dynamic_state_management_enable = vega12_enable_dpm_tasks,
.dynamic_state_management_disable = vega12_disable_dpm_tasks,
.patch_boot_state = vega12_patch_boot_state,
.get_sclk = vega12_dpm_get_sclk,
.get_mclk = vega12_dpm_get_mclk,
.notify_smc_display_config_after_ps_adjustment =
vega12_notify_smc_display_config_after_ps_adjustment,
.force_dpm_level = vega12_dpm_force_dpm_level,
.stop_thermal_controller = vega12_thermal_stop_thermal_controller,
.get_fan_speed_info = vega12_fan_ctrl_get_fan_speed_info,
.reset_fan_speed_to_default =
vega12_fan_ctrl_reset_fan_speed_to_default,
.get_fan_speed_rpm = vega12_fan_ctrl_get_fan_speed_rpm,
.set_fan_control_mode = vega12_set_fan_control_mode,
.get_fan_control_mode = vega12_get_fan_control_mode,
.read_sensor = vega12_read_sensor,
.get_dal_power_level = vega12_get_dal_power_level,
.get_clock_by_type_with_latency = vega12_get_clock_by_type_with_latency,
.get_clock_by_type_with_voltage = vega12_get_clock_by_type_with_voltage,
.set_watermarks_for_clocks_ranges = vega12_set_watermarks_for_clocks_ranges,
.display_clock_voltage_request = vega12_display_clock_voltage_request,
.force_clock_level = vega12_force_clock_level,
.print_clock_levels = vega12_print_clock_levels,
.display_config_changed = vega12_display_configuration_changed_task,
.powergate_uvd = vega12_power_gate_uvd,
.powergate_vce = vega12_power_gate_vce,
.check_smc_update_required_for_display_configuration =
vega12_check_smc_update_required_for_display_configuration,
.power_off_asic = vega12_power_off_asic,
.disable_smc_firmware_ctf = vega12_thermal_disable_alert,
#if 0
.set_power_profile_state = vega12_set_power_profile_state,
.get_sclk_od = vega12_get_sclk_od,
.set_sclk_od = vega12_set_sclk_od,
.get_mclk_od = vega12_get_mclk_od,
.set_mclk_od = vega12_set_mclk_od,
#endif
.notify_cac_buffer_info = vega12_notify_cac_buffer_info,
.get_thermal_temperature_range = vega12_get_thermal_temperature_range,
.register_irq_handlers = smu9_register_irq_handlers,
.start_thermal_controller = vega12_start_thermal_controller,
};
int vega12_hwmgr_init(struct pp_hwmgr *hwmgr)
{
hwmgr->hwmgr_func = &vega12_hwmgr_funcs;
hwmgr->pptable_func = &vega12_pptable_funcs;
return 0;
}