/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dcn30_init.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn20/dcn20_resource.h"
#include "dcn30_resource.h"
#include "dcn10/dcn10_ipp.h"
#include "dcn30/dcn30_hubbub.h"
#include "dcn30/dcn30_mpc.h"
#include "dcn30/dcn30_hubp.h"
#include "irq/dcn30/irq_service_dcn30.h"
#include "dcn30/dcn30_dpp.h"
#include "dcn30/dcn30_optc.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn30/dcn30_opp.h"
#include "dcn20/dcn20_dsc.h"
#include "dcn30/dcn30_vpg.h"
#include "dcn30/dcn30_afmt.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn30/dcn30_dio_link_encoder.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "clk_mgr.h"
#include "virtual/virtual_stream_encoder.h"
#include "dce110/dce110_resource.h"
#include "dml/display_mode_vba.h"
#include "dcn30/dcn30_dccg.h"
#include "dcn10/dcn10_resource.h"
#include "dc_link_ddc.h"
#include "dce/dce_panel_cntl.h"
#include "dcn30/dcn30_dwb.h"
#include "dcn30/dcn30_mmhubbub.h"
#include "sienna_cichlid_ip_offset.h"
#include "dcn/dcn_3_0_0_offset.h"
#include "dcn/dcn_3_0_0_sh_mask.h"
#include "nbio/nbio_7_4_offset.h"
#include "dcn/dpcs_3_0_0_offset.h"
#include "dcn/dpcs_3_0_0_sh_mask.h"
#include "mmhub/mmhub_2_0_0_offset.h"
#include "mmhub/mmhub_2_0_0_sh_mask.h"
#include "reg_helper.h"
#include "dce/dmub_abm.h"
#include "dce/dmub_psr.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "dml/dcn30/display_mode_vba_30.h"
#include "vm_helper.h"
#include "dcn20/dcn20_vmid.h"
#include "amdgpu_socbb.h"
#define DC_LOGGER_INIT(logger)
struct _vcs_dpi_ip_params_st dcn3_0_ip = {
.use_min_dcfclk = 1,
.clamp_min_dcfclk = 0,
.odm_capable = 1,
.gpuvm_enable = 0,
.hostvm_enable = 0,
.gpuvm_max_page_table_levels = 4,
.hostvm_max_page_table_levels = 4,
.hostvm_cached_page_table_levels = 0,
.pte_group_size_bytes = 2048,
.num_dsc = 6,
.rob_buffer_size_kbytes = 184,
.det_buffer_size_kbytes = 184,
.dpte_buffer_size_in_pte_reqs_luma = 84,
.pde_proc_buffer_size_64k_reqs = 48,
.dpp_output_buffer_pixels = 2560,
.opp_output_buffer_lines = 1,
.pixel_chunk_size_kbytes = 8,
.pte_enable = 1,
.max_page_table_levels = 2,
.pte_chunk_size_kbytes = 2, // ?
.meta_chunk_size_kbytes = 2,
.writeback_chunk_size_kbytes = 8,
.line_buffer_size_bits = 789504,
.is_line_buffer_bpp_fixed = 0, // ?
.line_buffer_fixed_bpp = 0, // ?
.dcc_supported = true,
.writeback_interface_buffer_size_kbytes = 90,
.writeback_line_buffer_buffer_size = 0,
.max_line_buffer_lines = 12,
.writeback_luma_buffer_size_kbytes = 12, // writeback_line_buffer_buffer_size = 656640
.writeback_chroma_buffer_size_kbytes = 8,
.writeback_chroma_line_buffer_width_pixels = 4,
.writeback_max_hscl_ratio = 1,
.writeback_max_vscl_ratio = 1,
.writeback_min_hscl_ratio = 1,
.writeback_min_vscl_ratio = 1,
.writeback_max_hscl_taps = 1,
.writeback_max_vscl_taps = 1,
.writeback_line_buffer_luma_buffer_size = 0,
.writeback_line_buffer_chroma_buffer_size = 14643,
.cursor_buffer_size = 8,
.cursor_chunk_size = 2,
.max_num_otg = 6,
.max_num_dpp = 6,
.max_num_wb = 1,
.max_dchub_pscl_bw_pix_per_clk = 4,
.max_pscl_lb_bw_pix_per_clk = 2,
.max_lb_vscl_bw_pix_per_clk = 4,
.max_vscl_hscl_bw_pix_per_clk = 4,
.max_hscl_ratio = 6,
.max_vscl_ratio = 6,
.hscl_mults = 4,
.vscl_mults = 4,
.max_hscl_taps = 8,
.max_vscl_taps = 8,
.dispclk_ramp_margin_percent = 1,
.underscan_factor = 1.11,
.min_vblank_lines = 32,
.dppclk_delay_subtotal = 46,
.dynamic_metadata_vm_enabled = true,
.dppclk_delay_scl_lb_only = 16,
.dppclk_delay_scl = 50,
.dppclk_delay_cnvc_formatter = 27,
.dppclk_delay_cnvc_cursor = 6,
.dispclk_delay_subtotal = 119,
.dcfclk_cstate_latency = 5.2, // SRExitTime
.max_inter_dcn_tile_repeaters = 8,
.odm_combine_4to1_supported = true,
.xfc_supported = false,
.xfc_fill_bw_overhead_percent = 10.0,
.xfc_fill_constant_bytes = 0,
.gfx7_compat_tiling_supported = 0,
.number_of_cursors = 1,
};
struct _vcs_dpi_soc_bounding_box_st dcn3_0_soc = {
.clock_limits = {
{
.state = 0,
.dispclk_mhz = 562.0,
.dppclk_mhz = 300.0,
.phyclk_mhz = 300.0,
.phyclk_d18_mhz = 667.0,
.dscclk_mhz = 405.6,
},
},
.min_dcfclk = 500.0, /* TODO: set this to actual min DCFCLK */
.num_states = 1,
.sr_exit_time_us = 12,
.sr_enter_plus_exit_time_us = 20,
.urgent_latency_us = 4.0,
.urgent_latency_pixel_data_only_us = 4.0,
.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
.urgent_latency_vm_data_only_us = 4.0,
.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0,
.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0,
.max_avg_sdp_bw_use_normal_percent = 60.0,
.max_avg_dram_bw_use_normal_percent = 40.0,
.writeback_latency_us = 12.0,
.max_request_size_bytes = 256,
.fabric_datapath_to_dcn_data_return_bytes = 64,
.dcn_downspread_percent = 0.5,
.downspread_percent = 0.38,
.dram_page_open_time_ns = 50.0,
.dram_rw_turnaround_time_ns = 17.5,
.dram_return_buffer_per_channel_bytes = 8192,
.round_trip_ping_latency_dcfclk_cycles = 191,
.urgent_out_of_order_return_per_channel_bytes = 4096,
.channel_interleave_bytes = 256,
.num_banks = 8,
.gpuvm_min_page_size_bytes = 4096,
.hostvm_min_page_size_bytes = 4096,
.dram_clock_change_latency_us = 404,
.dummy_pstate_latency_us = 5,
.writeback_dram_clock_change_latency_us = 23.0,
.return_bus_width_bytes = 64,
.dispclk_dppclk_vco_speed_mhz = 3650,
.xfc_bus_transport_time_us = 20, // ?
.xfc_xbuf_latency_tolerance_us = 4, // ?
.use_urgent_burst_bw = 1, // ?
.do_urgent_latency_adjustment = true,
.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
.urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
};
enum dcn30_clk_src_array_id {
DCN30_CLK_SRC_PLL0,
DCN30_CLK_SRC_PLL1,
DCN30_CLK_SRC_PLL2,
DCN30_CLK_SRC_PLL3,
DCN30_CLK_SRC_PLL4,
DCN30_CLK_SRC_PLL5,
DCN30_CLK_SRC_TOTAL
};
/* begin *********************
* macros to expend register list macro defined in HW object header file
*/
/* DCN */
/* TODO awful hack. fixup dcn20_dwb.h */
#undef BASE_INNER
#define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRI2(reg_name, block, id)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRIR(var_name, reg_name, block, id)\
.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII_MPC_RMU(reg_name, block, id)\
.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII_DWB(reg_name, temp_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## temp_name
#define DCCG_SRII(reg_name, block, id)\
.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define VUPDATE_SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
mm ## reg_name ## _ ## block ## id
/* NBIO */
#define NBIO_BASE_INNER(seg) \
NBIO_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* MMHUB */
#define MMHUB_BASE_INNER(seg) \
MMHUB_BASE__INST0_SEG ## seg
#define MMHUB_BASE(seg) \
MMHUB_BASE_INNER(seg)
#define MMHUB_SR(reg_name)\
.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
mmMM ## reg_name
/* CLOCK */
#define CLK_BASE_INNER(seg) \
CLK_BASE__INST0_SEG ## seg
#define CLK_BASE(seg) \
CLK_BASE_INNER(seg)
#define CLK_SRI(reg_name, block, inst)\
.reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## _ ## inst ## _ ## reg_name
static const struct bios_registers bios_regs = {
NBIO_SR(BIOS_SCRATCH_3),
NBIO_SR(BIOS_SCRATCH_6)
};
#define clk_src_regs(index, pllid)\
[index] = {\
CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D),
clk_src_regs(4, E),
clk_src_regs(5, F)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
#define abm_regs(id)\
[id] = {\
ABM_DCN30_REG_LIST(id)\
}
static const struct dce_abm_registers abm_regs[] = {
abm_regs(0),
abm_regs(1),
abm_regs(2),
abm_regs(3),
abm_regs(4),
abm_regs(5),
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN30(_MASK)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6)
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define vpg_regs(id)\
[id] = {\
VPG_DCN3_REG_LIST(id)\
}
static const struct dcn30_vpg_registers vpg_regs[] = {
vpg_regs(0),
vpg_regs(1),
vpg_regs(2),
vpg_regs(3),
vpg_regs(4),
vpg_regs(5),
vpg_regs(6),
};
static const struct dcn30_vpg_shift vpg_shift = {
DCN3_VPG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_vpg_mask vpg_mask = {
DCN3_VPG_MASK_SH_LIST(_MASK)
};
#define afmt_regs(id)\
[id] = {\
AFMT_DCN3_REG_LIST(id)\
}
static const struct dcn30_afmt_registers afmt_regs[] = {
afmt_regs(0),
afmt_regs(1),
afmt_regs(2),
afmt_regs(3),
afmt_regs(4),
afmt_regs(5),
afmt_regs(6),
};
static const struct dcn30_afmt_shift afmt_shift = {
DCN3_AFMT_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_afmt_mask afmt_mask = {
DCN3_AFMT_MASK_SH_LIST(_MASK)
};
#define stream_enc_regs(id)\
[id] = {\
SE_DCN3_REG_LIST(id)\
}
static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
stream_enc_regs(4),
stream_enc_regs(5)
};
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define aux_regs(id)\
[id] = {\
DCN2_AUX_REG_LIST(id)\
}
static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id, phyid)\
[id] = {\
LE_DCN3_REG_LIST(id), \
UNIPHY_DCN2_REG_LIST(phyid), \
DPCS_DCN2_REG_LIST(id), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dce110_aux_registers_shift aux_shift = {
DCN_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCN_AUX_MASK_SH_LIST(_MASK)
};
static const struct dcn10_link_enc_registers link_enc_regs[] = {
link_regs(0, A),
link_regs(1, B),
link_regs(2, C),
link_regs(3, D),
link_regs(4, E),
link_regs(5, F)
};
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\
DPCS_DCN2_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\
DPCS_DCN2_MASK_SH_LIST(_MASK)
};
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCN_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
#define dpp_regs(id)\
[id] = {\
DPP_REG_LIST_DCN30(id),\
}
static const struct dcn3_dpp_registers dpp_regs[] = {
dpp_regs(0),
dpp_regs(1),
dpp_regs(2),
dpp_regs(3),
dpp_regs(4),
dpp_regs(5),
};
static const struct dcn3_dpp_shift tf_shift = {
DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
};
static const struct dcn3_dpp_mask tf_mask = {
DPP_REG_LIST_SH_MASK_DCN30(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_REG_LIST_DCN30(id),\
}
static const struct dcn20_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5)
};
static const struct dcn20_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn20_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST0(id), \
.AUXN_IMPCAL = 0, \
.AUXP_IMPCAL = 0, \
.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define dwbc_regs_dcn3(id)\
[id] = {\
DWBC_COMMON_REG_LIST_DCN30(id),\
}
static const struct dcn30_dwbc_registers dwbc30_regs[] = {
dwbc_regs_dcn3(0),
};
static const struct dcn30_dwbc_shift dwbc30_shift = {
DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_dwbc_mask dwbc30_mask = {
DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define mcif_wb_regs_dcn3(id)\
[id] = {\
MCIF_WB_COMMON_REG_LIST_DCN30(id),\
}
static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
mcif_wb_regs_dcn3(0)
};
static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define dsc_regsDCN20(id)\
[id] = {\
DSC_REG_LIST_DCN20(id)\
}
static const struct dcn20_dsc_registers dsc_regs[] = {
dsc_regsDCN20(0),
dsc_regsDCN20(1),
dsc_regsDCN20(2),
dsc_regsDCN20(3),
dsc_regsDCN20(4),
dsc_regsDCN20(5)
};
static const struct dcn20_dsc_shift dsc_shift = {
DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};
static const struct dcn20_dsc_mask dsc_mask = {
DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};
static const struct dcn30_mpc_registers mpc_regs = {
MPC_REG_LIST_DCN3_0(0),
MPC_REG_LIST_DCN3_0(1),
MPC_REG_LIST_DCN3_0(2),
MPC_REG_LIST_DCN3_0(3),
MPC_REG_LIST_DCN3_0(4),
MPC_REG_LIST_DCN3_0(5),
MPC_OUT_MUX_REG_LIST_DCN3_0(0),
MPC_OUT_MUX_REG_LIST_DCN3_0(1),
MPC_OUT_MUX_REG_LIST_DCN3_0(2),
MPC_OUT_MUX_REG_LIST_DCN3_0(3),
MPC_OUT_MUX_REG_LIST_DCN3_0(4),
MPC_OUT_MUX_REG_LIST_DCN3_0(5),
MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
MPC_RMU_REG_LIST_DCN3AG(0),
MPC_RMU_REG_LIST_DCN3AG(1),
MPC_RMU_REG_LIST_DCN3AG(2),
MPC_DWB_MUX_REG_LIST_DCN3_0(0),
};
static const struct dcn30_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define optc_regs(id)\
[id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
static const struct dcn_optc_registers optc_regs[] = {
optc_regs(0),
optc_regs(1),
optc_regs(2),
optc_regs(3),
optc_regs(4),
optc_regs(5)
};
static const struct dcn_optc_shift optc_shift = {
OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_optc_mask optc_mask = {
OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define hubp_regs(id)\
[id] = {\
HUBP_REG_LIST_DCN30(id)\
}
static const struct dcn_hubp2_registers hubp_regs[] = {
hubp_regs(0),
hubp_regs(1),
hubp_regs(2),
hubp_regs(3),
hubp_regs(4),
hubp_regs(5)
};
static const struct dcn_hubp2_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_hubp2_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN30(_MASK)
};
static const struct dcn_hubbub_registers hubbub_reg = {
HUBBUB_REG_LIST_DCN30(0)
};
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN30(_MASK)
};
static const struct dccg_registers dccg_regs = {
DCCG_REG_LIST_DCN30()
};
static const struct dccg_shift dccg_shift = {
DCCG_MASK_SH_LIST_DCN3(__SHIFT)
};
static const struct dccg_mask dccg_mask = {
DCCG_MASK_SH_LIST_DCN3(_MASK)
};
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCN30_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN30_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN30_MASK_SH_LIST(_MASK)
};
#define vmid_regs(id)\
[id] = {\
DCN20_VMID_REG_LIST(id)\
}
static const struct dcn_vmid_registers vmid_regs[] = {
vmid_regs(0),
vmid_regs(1),
vmid_regs(2),
vmid_regs(3),
vmid_regs(4),
vmid_regs(5),
vmid_regs(6),
vmid_regs(7),
vmid_regs(8),
vmid_regs(9),
vmid_regs(10),
vmid_regs(11),
vmid_regs(12),
vmid_regs(13),
vmid_regs(14),
vmid_regs(15)
};
static const struct dcn20_vmid_shift vmid_shifts = {
DCN20_VMID_MASK_SH_LIST(__SHIFT)
};
static const struct dcn20_vmid_mask vmid_masks = {
DCN20_VMID_MASK_SH_LIST(_MASK)
};
static const struct resource_caps res_cap_dcn3 = {
.num_timing_generator = 6,
.num_opp = 6,
.num_video_plane = 6,
.num_audio = 6,
.num_stream_encoder = 6,
.num_pll = 6,
.num_dwb = 1,
.num_ddc = 6,
.num_vmid = 16,
.num_mpc_3dlut = 3,
.num_dsc = 6,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.blends_with_above = true,
.blends_with_below = true,
.per_pixel_alpha = true,
.pixel_format_support = {
.argb8888 = true,
.nv12 = true,
.fp16 = true,
.p010 = false,
.ayuv = false,
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 16000,
.fp16 = 16000
},
.max_downscale_factor = {
.argb8888 = 600,
.nv12 = 600,
.fp16 = 600
}
};
static const struct dc_debug_options debug_defaults_drv = {
.disable_dmcu = true, //No DMCU on DCN30
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
.disable_pplib_clock_request = true,
.pipe_split_policy = MPC_SPLIT_DYNAMIC,
.force_single_disp_pipe_split = false,
.disable_dcc = DCC_ENABLE,
.vsr_support = true,
.performance_trace = false,
.max_downscale_src_width = 7680,/*upto 8K*/
.disable_pplib_wm_range = false,
.scl_reset_length10 = true,
.sanity_checks = false,
.underflow_assert_delay_us = 0xFFFFFFFF,
.dwb_fi_phase = -1, // -1 = disable,
.dmub_command_table = true,
.disable_psr = false,
};
static const struct dc_debug_options debug_defaults_diags = {
.disable_dmcu = true, //No dmcu on DCN30
.force_abm_enable = false,
.timing_trace = true,
.clock_trace = true,
.disable_dpp_power_gate = true,
.disable_hubp_power_gate = true,
.disable_clock_gate = true,
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
.disable_stutter = false,
.scl_reset_length10 = true,
.dwb_fi_phase = -1, // -1 = disable
.dmub_command_table = true,
.disable_psr = true,
.enable_tri_buf = true,
};
void dcn30_dpp_destroy(struct dpp **dpp)
{
kfree(TO_DCN20_DPP(*dpp));
*dpp = NULL;
}
static struct dpp *dcn30_dpp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn3_dpp *dpp =
kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
if (!dpp)
return NULL;
if (dpp3_construct(dpp, ctx, inst,
&dpp_regs[inst], &tf_shift, &tf_mask))
return &dpp->base;
BREAK_TO_DEBUGGER();
kfree(dpp);
return NULL;
}
static struct output_pixel_processor *dcn30_opp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_opp *opp =
kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
if (!opp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn20_opp_construct(opp, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dcn30_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
};
static struct dce_i2c_hw *dcn30_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct mpc *dcn30_mpc_create(
struct dc_context *ctx,
int num_mpcc,
int num_rmu)
{
struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
GFP_KERNEL);
if (!mpc30)
return NULL;
dcn30_mpc_construct(mpc30, ctx,
&mpc_regs,
&mpc_shift,
&mpc_mask,
num_mpcc,
num_rmu);
return &mpc30->base;
}
struct hubbub *dcn30_hubbub_create(struct dc_context *ctx)
{
int i;
struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
GFP_KERNEL);
if (!hubbub3)
return NULL;
hubbub3_construct(hubbub3, ctx,
&hubbub_reg,
&hubbub_shift,
&hubbub_mask);
for (i = 0; i < res_cap_dcn3.num_vmid; i++) {
struct dcn20_vmid *vmid = &hubbub3->vmid[i];
vmid->ctx = ctx;
vmid->regs = &vmid_regs[i];
vmid->shifts = &vmid_shifts;
vmid->masks = &vmid_masks;
}
return &hubbub3->base;
}
static struct timing_generator *dcn30_timing_generator_create(
struct dc_context *ctx,
uint32_t instance)
{
struct optc *tgn10 =
kzalloc(sizeof(struct optc), GFP_KERNEL);
if (!tgn10)
return NULL;
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &optc_regs[instance];
tgn10->tg_shift = &optc_shift;
tgn10->tg_mask = &optc_mask;
dcn30_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.fec_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
static struct link_encoder *dcn30_link_encoder_create(
const struct encoder_init_data *enc_init_data)
{
struct dcn20_link_encoder *enc20 =
kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
if (!enc20)
return NULL;
dcn30_link_encoder_construct(enc20,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source],
&le_shift,
&le_mask);
return &enc20->enc10.base;
}
static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static struct audio *dcn30_create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct vpg *dcn30_vpg_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
if (!vpg3)
return NULL;
vpg3_construct(vpg3, ctx, inst,
&vpg_regs[inst],
&vpg_shift,
&vpg_mask);
return &vpg3->base;
}
static struct afmt *dcn30_afmt_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
if (!afmt3)
return NULL;
afmt3_construct(afmt3, ctx, inst,
&afmt_regs[inst],
&afmt_shift,
&afmt_mask);
return &afmt3->base;
}
struct stream_encoder *dcn30_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1;
struct vpg *vpg;
struct afmt *afmt;
int vpg_inst;
int afmt_inst;
/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
if (eng_id <= ENGINE_ID_DIGF) {
vpg_inst = eng_id;
afmt_inst = eng_id;
} else
return NULL;
enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
vpg = dcn30_vpg_create(ctx, vpg_inst);
afmt = dcn30_afmt_create(ctx, afmt_inst);
if (!enc1 || !vpg || !afmt)
return NULL;
dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
eng_id, vpg, afmt,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
struct dce_hwseq *dcn30_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = dcn30_create_audio,
.create_stream_encoder = dcn30_stream_encoder_create,
.create_hwseq = dcn30_hwseq_create,
};
static const struct resource_create_funcs res_create_maximus_funcs = {
.read_dce_straps = NULL,
.create_audio = NULL,
.create_stream_encoder = NULL,
.create_hwseq = dcn30_hwseq_create,
};
static void dcn30_resource_destruct(struct dcn30_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
if (pool->base.stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
pool->base.stream_enc[i]->vpg = NULL;
}
if (pool->base.stream_enc[i]->afmt != NULL) {
kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
pool->base.stream_enc[i]->afmt = NULL;
}
kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
pool->base.stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
if (pool->base.dscs[i] != NULL)
dcn20_dsc_destroy(&pool->base.dscs[i]);
}
if (pool->base.mpc != NULL) {
kfree(TO_DCN20_MPC(pool->base.mpc));
pool->base.mpc = NULL;
}
if (pool->base.hubbub != NULL) {
kfree(pool->base.hubbub);
pool->base.hubbub = NULL;
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.dpps[i] != NULL)
dcn30_dpp_destroy(&pool->base.dpps[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.hubps[i] != NULL) {
kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
pool->base.hubps[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
if (pool->base.dwbc[i] != NULL) {
kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
pool->base.dwbc[i] = NULL;
}
if (pool->base.mcif_wb[i] != NULL) {
kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
pool->base.mcif_wb[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
if (pool->base.mpc_lut[i] != NULL) {
dc_3dlut_func_release(pool->base.mpc_lut[i]);
pool->base.mpc_lut[i] = NULL;
}
if (pool->base.mpc_shaper[i] != NULL) {
dc_transfer_func_release(pool->base.mpc_shaper[i]);
pool->base.mpc_shaper[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn20_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.multiple_abms[i] != NULL)
dce_abm_destroy(&pool->base.multiple_abms[i]);
}
if (pool->base.psr != NULL)
dmub_psr_destroy(&pool->base.psr);
if (pool->base.dccg != NULL)
dcn_dccg_destroy(&pool->base.dccg);
if (pool->base.oem_device != NULL)
dal_ddc_service_destroy(&pool->base.oem_device);
}
static struct hubp *dcn30_hubp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_hubp *hubp2 =
kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
if (!hubp2)
return NULL;
if (hubp3_construct(hubp2, ctx, inst,
&hubp_regs[inst], &hubp_shift, &hubp_mask))
return &hubp2->base;
BREAK_TO_DEBUGGER();
kfree(hubp2);
return NULL;
}
static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
for (i = 0; i < pipe_count; i++) {
struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
GFP_KERNEL);
if (!dwbc30) {
dm_error("DC: failed to create dwbc30!\n");
return false;
}
dcn30_dwbc_construct(dwbc30, ctx,
&dwbc30_regs[i],
&dwbc30_shift,
&dwbc30_mask,
i);
pool->dwbc[i] = &dwbc30->base;
}
return true;
}
static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
for (i = 0; i < pipe_count; i++) {
struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
GFP_KERNEL);
if (!mcif_wb30) {
dm_error("DC: failed to create mcif_wb30!\n");
return false;
}
dcn30_mmhubbub_construct(mcif_wb30, ctx,
&mcif_wb30_regs[i],
&mcif_wb30_shift,
&mcif_wb30_mask,
i);
pool->mcif_wb[i] = &mcif_wb30->base;
}
return true;
}
static struct display_stream_compressor *dcn30_dsc_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_dsc *dsc =
kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
if (!dsc) {
BREAK_TO_DEBUGGER();
return NULL;
}
dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
return &dsc->base;
}
enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
{
return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream);
}
static void dcn30_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool);
dcn30_resource_destruct(dcn30_pool);
kfree(dcn30_pool);
*pool = NULL;
}
static struct clock_source *dcn30_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dcn3_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
BREAK_TO_DEBUGGER();
return NULL;
}
int dcn30_populate_dml_pipes_from_context(
struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes)
{
int i, pipe_cnt;
struct resource_context *res_ctx = &context->res_ctx;
dcn20_populate_dml_pipes_from_context(dc, context, pipes);
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
if (!res_ctx->pipe_ctx[i].stream)
continue;
pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth =
dm_lb_16;
}
return pipe_cnt;
}
void dcn30_populate_dml_writeback_from_context(
struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
{
int pipe_cnt, i, j;
double max_calc_writeback_dispclk;
double writeback_dispclk;
struct writeback_st dout_wb;
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
struct dc_stream_state *stream = res_ctx->pipe_ctx[i].stream;
if (!stream)
continue;
max_calc_writeback_dispclk = 0;
/* Set writeback information */
pipes[pipe_cnt].dout.wb_enable = 0;
pipes[pipe_cnt].dout.num_active_wb = 0;
for (j = 0; j < stream->num_wb_info; j++) {
struct dc_writeback_info *wb_info = &stream->writeback_info[j];
if (wb_info->wb_enabled && wb_info->writeback_source_plane &&
(wb_info->writeback_source_plane == res_ctx->pipe_ctx[i].plane_state)) {
pipes[pipe_cnt].dout.wb_enable = 1;
pipes[pipe_cnt].dout.num_active_wb++;
dout_wb.wb_src_height = wb_info->dwb_params.cnv_params.crop_en ?
wb_info->dwb_params.cnv_params.crop_height :
wb_info->dwb_params.cnv_params.src_height;
dout_wb.wb_src_width = wb_info->dwb_params.cnv_params.crop_en ?
wb_info->dwb_params.cnv_params.crop_width :
wb_info->dwb_params.cnv_params.src_width;
dout_wb.wb_dst_width = wb_info->dwb_params.dest_width;
dout_wb.wb_dst_height = wb_info->dwb_params.dest_height;
/* For IP that doesn't support WB scaling, set h/v taps to 1 to avoid DML validation failure */
if (dc->dml.ip.writeback_max_hscl_taps > 1) {
dout_wb.wb_htaps_luma = wb_info->dwb_params.scaler_taps.h_taps;
dout_wb.wb_vtaps_luma = wb_info->dwb_params.scaler_taps.v_taps;
} else {
dout_wb.wb_htaps_luma = 1;
dout_wb.wb_vtaps_luma = 1;
}
dout_wb.wb_htaps_chroma = 0;
dout_wb.wb_vtaps_chroma = 0;
dout_wb.wb_hratio = wb_info->dwb_params.cnv_params.crop_en ?
(double)wb_info->dwb_params.cnv_params.crop_width /
(double)wb_info->dwb_params.dest_width :
(double)wb_info->dwb_params.cnv_params.src_width /
(double)wb_info->dwb_params.dest_width;
dout_wb.wb_vratio = wb_info->dwb_params.cnv_params.crop_en ?
(double)wb_info->dwb_params.cnv_params.crop_height /
(double)wb_info->dwb_params.dest_height :
(double)wb_info->dwb_params.cnv_params.src_height /
(double)wb_info->dwb_params.dest_height;
if (wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
dout_wb.wb_pixel_format = dm_444_64;
else
dout_wb.wb_pixel_format = dm_444_32;
/* Workaround for cases where multiple writebacks are connected to same plane
* In which case, need to compute worst case and set the associated writeback parameters
* This workaround is necessary due to DML computation assuming only 1 set of writeback
* parameters per pipe
*/
writeback_dispclk = dml30_CalculateWriteBackDISPCLK(
dout_wb.wb_pixel_format,
pipes[pipe_cnt].pipe.dest.pixel_rate_mhz,
dout_wb.wb_hratio,
dout_wb.wb_vratio,
dout_wb.wb_htaps_luma,
dout_wb.wb_vtaps_luma,
dout_wb.wb_src_width,
dout_wb.wb_dst_width,
pipes[pipe_cnt].pipe.dest.htotal,
dc->current_state->bw_ctx.dml.ip.writeback_line_buffer_buffer_size);
if (writeback_dispclk > max_calc_writeback_dispclk) {
max_calc_writeback_dispclk = writeback_dispclk;
pipes[pipe_cnt].dout.wb = dout_wb;
}
}
}
pipe_cnt++;
}
}
unsigned int dcn30_calc_max_scaled_time(
unsigned int time_per_pixel,
enum mmhubbub_wbif_mode mode,
unsigned int urgent_watermark)
{
unsigned int time_per_byte = 0;
unsigned int total_free_entry = 0xb40;
unsigned int buf_lh_capability;
unsigned int max_scaled_time;
if (mode == PACKED_444) /* packed mode 32 bpp */
time_per_byte = time_per_pixel/4;
else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */
time_per_byte = time_per_pixel/8;
if (time_per_byte == 0)
time_per_byte = 1;
buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/
max_scaled_time = buf_lh_capability - urgent_watermark;
return max_scaled_time;
}
void dcn30_set_mcif_arb_params(
struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt)
{
enum mmhubbub_wbif_mode wbif_mode;
struct display_mode_lib *dml = &context->bw_ctx.dml;
struct mcif_arb_params *wb_arb_params;
int i, j, k, dwb_pipe;
/* Writeback MCIF_WB arbitration parameters */
dwb_pipe = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
for (j = 0; j < MAX_DWB_PIPES; j++) {
struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j];
if (writeback_info->wb_enabled == false)
continue;
//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
wbif_mode = PACKED_444_FP16;
else
wbif_mode = PACKED_444;
for (k = 0; k < sizeof(wb_arb_params->cli_watermark)/sizeof(wb_arb_params->cli_watermark[0]); k++) {
wb_arb_params->cli_watermark[k] = get_wm_writeback_urgent(dml, pipes, pipe_cnt) * 1000;
wb_arb_params->pstate_watermark[k] = get_wm_writeback_dram_clock_change(dml, pipes, pipe_cnt) * 1000;
}
wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */
wb_arb_params->slice_lines = 32;
wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */
wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel,
wbif_mode,
wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
wb_arb_params->dram_speed_change_duration = dml->vba.WritebackAllowDRAMClockChangeEndPosition[j] * pipes[0].clks_cfg.refclk_mhz; /* num_clock_cycles = us * MHz */
dwb_pipe++;
if (dwb_pipe >= MAX_DWB_PIPES)
return;
}
if (dwb_pipe >= MAX_DWB_PIPES)
return;
}
}
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
};
bool dcn30_acquire_post_bldn_3dlut(
struct resource_context *res_ctx,
const struct resource_pool *pool,
int mpcc_id,
struct dc_3dlut **lut,
struct dc_transfer_func **shaper)
{
int i;
bool ret = false;
union dc_3dlut_state *state;
ASSERT(*lut == NULL && *shaper == NULL);
*lut = NULL;
*shaper = NULL;
for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
if (!res_ctx->is_mpc_3dlut_acquired[i]) {
*lut = pool->mpc_lut[i];
*shaper = pool->mpc_shaper[i];
state = &pool->mpc_lut[i]->state;
res_ctx->is_mpc_3dlut_acquired[i] = true;
state->bits.rmu_idx_valid = 1;
state->bits.rmu_mux_num = i;
if (state->bits.rmu_mux_num == 0)
state->bits.mpc_rmu0_mux = mpcc_id;
else if (state->bits.rmu_mux_num == 1)
state->bits.mpc_rmu1_mux = mpcc_id;
else if (state->bits.rmu_mux_num == 2)
state->bits.mpc_rmu2_mux = mpcc_id;
ret = true;
break;
}
}
return ret;
}
bool dcn30_release_post_bldn_3dlut(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_3dlut **lut,
struct dc_transfer_func **shaper)
{
int i;
bool ret = false;
for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
res_ctx->is_mpc_3dlut_acquired[i] = false;
pool->mpc_lut[i]->state.raw = 0;
*lut = NULL;
*shaper = NULL;
ret = true;
break;
}
}
return ret;
}
#define fixed16_to_double(x) (((double) x) / ((double) (1 << 16)))
#define fixed16_to_double_to_cpu(x) fixed16_to_double(le32_to_cpu(x))
static bool is_soc_bounding_box_valid(struct dc *dc)
{
uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev))
return true;
return false;
}
static bool init_soc_bounding_box(struct dc *dc,
struct dcn30_resource_pool *pool)
{
const struct gpu_info_soc_bounding_box_v1_0 *bb = dc->soc_bounding_box;
struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc;
struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip;
DC_LOGGER_INIT(dc->ctx->logger);
if (!bb && !is_soc_bounding_box_valid(dc)) {
DC_LOG_ERROR("%s: not valid soc bounding box/n", __func__);
return false;
}
if (bb && !is_soc_bounding_box_valid(dc)) {
int i;
dcn3_0_soc.sr_exit_time_us =
fixed16_to_double_to_cpu(bb->sr_exit_time_us);
dcn3_0_soc.sr_enter_plus_exit_time_us =
fixed16_to_double_to_cpu(bb->sr_enter_plus_exit_time_us);
dcn3_0_soc.urgent_latency_us =
fixed16_to_double_to_cpu(bb->urgent_latency_us);
dcn3_0_soc.urgent_latency_pixel_data_only_us =
fixed16_to_double_to_cpu(bb->urgent_latency_pixel_data_only_us);
dcn3_0_soc.urgent_latency_pixel_mixed_with_vm_data_us =
fixed16_to_double_to_cpu(bb->urgent_latency_pixel_mixed_with_vm_data_us);
dcn3_0_soc.urgent_latency_vm_data_only_us =
fixed16_to_double_to_cpu(bb->urgent_latency_vm_data_only_us);
dcn3_0_soc.urgent_out_of_order_return_per_channel_pixel_only_bytes =
le32_to_cpu(bb->urgent_out_of_order_return_per_channel_pixel_only_bytes);
dcn3_0_soc.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes =
le32_to_cpu(bb->urgent_out_of_order_return_per_channel_pixel_and_vm_bytes);
dcn3_0_soc.urgent_out_of_order_return_per_channel_vm_only_bytes =
le32_to_cpu(bb->urgent_out_of_order_return_per_channel_vm_only_bytes);
dcn3_0_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only =
fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_pixel_only);
dcn3_0_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm =
fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm);
dcn3_0_soc.pct_ideal_dram_sdp_bw_after_urgent_vm_only =
fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_vm_only);
dcn3_0_soc.max_avg_sdp_bw_use_normal_percent =
fixed16_to_double_to_cpu(bb->max_avg_sdp_bw_use_normal_percent);
dcn3_0_soc.max_avg_dram_bw_use_normal_percent =
fixed16_to_double_to_cpu(bb->max_avg_dram_bw_use_normal_percent);
dcn3_0_soc.writeback_latency_us =
fixed16_to_double_to_cpu(bb->writeback_latency_us);
dcn3_0_soc.ideal_dram_bw_after_urgent_percent =
fixed16_to_double_to_cpu(bb->ideal_dram_bw_after_urgent_percent);
dcn3_0_soc.max_request_size_bytes =
le32_to_cpu(bb->max_request_size_bytes);
dcn3_0_soc.dram_channel_width_bytes =
le32_to_cpu(bb->dram_channel_width_bytes);
dcn3_0_soc.fabric_datapath_to_dcn_data_return_bytes =
le32_to_cpu(bb->fabric_datapath_to_dcn_data_return_bytes);
dcn3_0_soc.dcn_downspread_percent =
fixed16_to_double_to_cpu(bb->dcn_downspread_percent);
dcn3_0_soc.downspread_percent =
fixed16_to_double_to_cpu(bb->downspread_percent);
dcn3_0_soc.dram_page_open_time_ns =
fixed16_to_double_to_cpu(bb->dram_page_open_time_ns);
dcn3_0_soc.dram_rw_turnaround_time_ns =
fixed16_to_double_to_cpu(bb->dram_rw_turnaround_time_ns);
dcn3_0_soc.dram_return_buffer_per_channel_bytes =
le32_to_cpu(bb->dram_return_buffer_per_channel_bytes);
dcn3_0_soc.round_trip_ping_latency_dcfclk_cycles =
le32_to_cpu(bb->round_trip_ping_latency_dcfclk_cycles);
dcn3_0_soc.urgent_out_of_order_return_per_channel_bytes =
le32_to_cpu(bb->urgent_out_of_order_return_per_channel_bytes);
dcn3_0_soc.channel_interleave_bytes =
le32_to_cpu(bb->channel_interleave_bytes);
dcn3_0_soc.num_banks =
le32_to_cpu(bb->num_banks);
dcn3_0_soc.num_chans =
le32_to_cpu(bb->num_chans);
dcn3_0_soc.gpuvm_min_page_size_bytes =
le32_to_cpu(bb->vmm_page_size_bytes);
dcn3_0_soc.dram_clock_change_latency_us =
fixed16_to_double_to_cpu(bb->dram_clock_change_latency_us);
dcn3_0_soc.writeback_dram_clock_change_latency_us =
fixed16_to_double_to_cpu(bb->writeback_dram_clock_change_latency_us);
dcn3_0_soc.return_bus_width_bytes =
le32_to_cpu(bb->return_bus_width_bytes);
dcn3_0_soc.dispclk_dppclk_vco_speed_mhz =
le32_to_cpu(bb->dispclk_dppclk_vco_speed_mhz);
dcn3_0_soc.xfc_bus_transport_time_us =
le32_to_cpu(bb->xfc_bus_transport_time_us);
dcn3_0_soc.xfc_xbuf_latency_tolerance_us =
le32_to_cpu(bb->xfc_xbuf_latency_tolerance_us);
dcn3_0_soc.use_urgent_burst_bw =
le32_to_cpu(bb->use_urgent_burst_bw);
dcn3_0_soc.num_states =
le32_to_cpu(bb->num_states);
for (i = 0; i < dcn3_0_soc.num_states; i++) {
dcn3_0_soc.clock_limits[i].state =
le32_to_cpu(bb->clock_limits[i].state);
dcn3_0_soc.clock_limits[i].dcfclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].dcfclk_mhz);
dcn3_0_soc.clock_limits[i].fabricclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].fabricclk_mhz);
dcn3_0_soc.clock_limits[i].dispclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].dispclk_mhz);
dcn3_0_soc.clock_limits[i].dppclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].dppclk_mhz);
dcn3_0_soc.clock_limits[i].phyclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].phyclk_mhz);
dcn3_0_soc.clock_limits[i].socclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].socclk_mhz);
dcn3_0_soc.clock_limits[i].dscclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].dscclk_mhz);
dcn3_0_soc.clock_limits[i].dram_speed_mts =
fixed16_to_double_to_cpu(bb->clock_limits[i].dram_speed_mts);
}
}
loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
loaded_ip->max_num_dpp = pool->base.pipe_count;
loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
dcn20_patch_bounding_box(dc, loaded_bb);
if (!bb && dc->ctx->dc_bios->funcs->get_soc_bb_info) {
struct bp_soc_bb_info bb_info = {0};
if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
if (bb_info.dram_clock_change_latency_100ns > 0)
dcn3_0_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10;
if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
dcn3_0_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10;
if (bb_info.dram_sr_exit_latency_100ns > 0)
dcn3_0_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10;
}
}
return true;
}
static bool dcn30_split_stream_for_mpc_or_odm(
const struct dc *dc,
struct resource_context *res_ctx,
struct pipe_ctx *pri_pipe,
struct pipe_ctx *sec_pipe,
bool odm)
{
int pipe_idx = sec_pipe->pipe_idx;
const struct resource_pool *pool = dc->res_pool;
*sec_pipe = *pri_pipe;
sec_pipe->pipe_idx = pipe_idx;
sec_pipe->plane_res.mi = pool->mis[pipe_idx];
sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
sec_pipe->stream_res.dsc = NULL;
if (odm) {
if (pri_pipe->next_odm_pipe) {
ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
}
if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
}
if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
}
pri_pipe->next_odm_pipe = sec_pipe;
sec_pipe->prev_odm_pipe = pri_pipe;
ASSERT(sec_pipe->top_pipe == NULL);
if (!sec_pipe->top_pipe)
sec_pipe->stream_res.opp = pool->opps[pipe_idx];
else
sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
if (sec_pipe->stream->timing.flags.DSC == 1) {
dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
ASSERT(sec_pipe->stream_res.dsc);
if (sec_pipe->stream_res.dsc == NULL)
return false;
}
} else {
if (pri_pipe->bottom_pipe) {
ASSERT(pri_pipe->bottom_pipe != sec_pipe);
sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
sec_pipe->bottom_pipe->top_pipe = sec_pipe;
}
pri_pipe->bottom_pipe = sec_pipe;
sec_pipe->top_pipe = pri_pipe;
ASSERT(pri_pipe->plane_state);
}
return true;
}
static struct pipe_ctx *dcn30_find_split_pipe(
struct dc *dc,
struct dc_state *context,
int old_index)
{
struct pipe_ctx *pipe = NULL;
int i;
if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
pipe = &context->res_ctx.pipe_ctx[old_index];
pipe->pipe_idx = old_index;
}
if (!pipe)
for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
if (context->res_ctx.pipe_ctx[i].stream == NULL) {
pipe = &context->res_ctx.pipe_ctx[i];
pipe->pipe_idx = i;
break;
}
}
}
/*
* May need to fix pipes getting tossed from 1 opp to another on flip
* Add for debugging transient underflow during topology updates:
* ASSERT(pipe);
*/
if (!pipe)
for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
if (context->res_ctx.pipe_ctx[i].stream == NULL) {
pipe = &context->res_ctx.pipe_ctx[i];
pipe->pipe_idx = i;
break;
}
}
return pipe;
}
static bool dcn30_internal_validate_bw(
struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int *pipe_cnt_out,
int *vlevel_out,
bool fast_validate)
{
bool out = false;
bool repopulate_pipes = false;
int split[MAX_PIPES] = { 0 };
bool merge[MAX_PIPES] = { false };
bool newly_split[MAX_PIPES] = { false };
int pipe_cnt, i, pipe_idx, vlevel;
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
ASSERT(pipes);
if (!pipes)
return false;
pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes);
if (!pipe_cnt) {
out = true;
goto validate_out;
}
dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
if (!fast_validate) {
/*
* DML favors voltage over p-state, but we're more interested in
* supporting p-state over voltage. We can't support p-state in
* prefetch mode > 0 so try capping the prefetch mode to start.
*/
context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
dm_allow_self_refresh_and_mclk_switch;
vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
/* This may adjust vlevel and maxMpcComb */
if (vlevel < context->bw_ctx.dml.soc.num_states)
vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
}
if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
/*
* If mode is unsupported or there's still no p-state support then
* fall back to favoring voltage.
*
* We don't actually support prefetch mode 2, so require that we
* at least support prefetch mode 1.
*/
context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
dm_allow_self_refresh;
vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
if (vlevel < context->bw_ctx.dml.soc.num_states) {
memset(split, 0, sizeof(split));
memset(merge, 0, sizeof(merge));
vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
}
}
dml_log_mode_support_params(&context->bw_ctx.dml);
/* TODO: Need to check calculated vlevel why that fails validation of below resolutions */
if (context->res_ctx.pipe_ctx[0].stream != NULL) {
if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 640 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 480)
vlevel = 0;
if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 1280 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 800)
vlevel = 0;
if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 1280 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 768)
vlevel = 0;
if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 1280 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 1024)
vlevel = 0;
if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 2048 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 1536)
vlevel = 0;
}
if (vlevel == context->bw_ctx.dml.soc.num_states)
goto validate_fail;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
if (!pipe->stream)
continue;
/* We only support full screen mpo with ODM */
if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
&& pipe->plane_state && mpo_pipe
&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
&pipe->plane_res.scl_data.recout,
sizeof(struct rect)) != 0) {
ASSERT(mpo_pipe->plane_state != pipe->plane_state);
goto validate_fail;
}
pipe_idx++;
}
/* merge pipes if necessary */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
/*skip pipes that don't need merging*/
if (!merge[i])
continue;
/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
if (pipe->prev_odm_pipe) {
/*split off odm pipe*/
pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
if (pipe->next_odm_pipe)
pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
pipe->bottom_pipe = NULL;
pipe->next_odm_pipe = NULL;
pipe->plane_state = NULL;
pipe->stream = NULL;
pipe->top_pipe = NULL;
pipe->prev_odm_pipe = NULL;
if (pipe->stream_res.dsc)
dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
repopulate_pipes = true;
} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
struct pipe_ctx *top_pipe = pipe->top_pipe;
struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
top_pipe->bottom_pipe = bottom_pipe;
if (bottom_pipe)
bottom_pipe->top_pipe = top_pipe;
pipe->top_pipe = NULL;
pipe->bottom_pipe = NULL;
pipe->plane_state = NULL;
pipe->stream = NULL;
memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
repopulate_pipes = true;
} else
ASSERT(0); /* Should never try to merge master pipe */
}
for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *hsplit_pipe = NULL;
bool odm;
int old_index = -1;
if (!pipe->stream || newly_split[i])
continue;
pipe_idx++;
odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
if (!pipe->plane_state && !odm)
continue;
if (split[i]) {
if (odm) {
if (split[i] == 4 && old_pipe->next_odm_pipe->next_odm_pipe)
old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
else if (old_pipe->next_odm_pipe)
old_index = old_pipe->next_odm_pipe->pipe_idx;
} else {
if (split[i] == 4 && old_pipe->bottom_pipe->bottom_pipe &&
old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
else if (old_pipe->bottom_pipe &&
old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
old_index = old_pipe->bottom_pipe->pipe_idx;
}
hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index);
ASSERT(hsplit_pipe);
if (!hsplit_pipe)
goto validate_fail;
if (!dcn30_split_stream_for_mpc_or_odm(
dc, &context->res_ctx,
pipe, hsplit_pipe, odm))
goto validate_fail;
newly_split[hsplit_pipe->pipe_idx] = true;
repopulate_pipes = true;
}
if (split[i] == 4) {
struct pipe_ctx *pipe_4to1;
if (odm && old_pipe->next_odm_pipe)
old_index = old_pipe->next_odm_pipe->pipe_idx;
else if (!odm && old_pipe->bottom_pipe &&
old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
old_index = old_pipe->bottom_pipe->pipe_idx;
else
old_index = -1;
pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
ASSERT(pipe_4to1);
if (!pipe_4to1)
goto validate_fail;
if (!dcn30_split_stream_for_mpc_or_odm(
dc, &context->res_ctx,
pipe, pipe_4to1, odm))
goto validate_fail;
newly_split[pipe_4to1->pipe_idx] = true;
if (odm && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
else if (!odm && old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
else
old_index = -1;
pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
ASSERT(pipe_4to1);
if (!pipe_4to1)
goto validate_fail;
if (!dcn30_split_stream_for_mpc_or_odm(
dc, &context->res_ctx,
hsplit_pipe, pipe_4to1, odm))
goto validate_fail;
newly_split[pipe_4to1->pipe_idx] = true;
}
if (odm)
dcn20_build_mapped_resource(dc, context, pipe->stream);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->plane_state) {
if (!resource_build_scaling_params(pipe))
goto validate_fail;
}
}
/* Actual dsc count per stream dsc validation*/
if (!dcn20_validate_dsc(dc, context)) {
vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
goto validate_fail;
}
if (repopulate_pipes)
pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes);
*vlevel_out = vlevel;
*pipe_cnt_out = pipe_cnt;
out = true;
goto validate_out;
validate_fail:
out = false;
validate_out:
return out;
}
void dcn30_calculate_wm_and_dlg(
struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt,
int vlevel)
{
int i, pipe_idx;
double dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
dm_dram_clock_change_unsupported;
if (context->bw_ctx.dml.soc.min_dcfclk > dcfclk)
dcfclk = context->bw_ctx.dml.soc.min_dcfclk;
pipes[0].clks_cfg.voltage = vlevel;
pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
/* Set B:
* DCFCLK: 1GHz or min required above 1GHz
* FCLK/UCLK: Max
*/
if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
if (vlevel == 0) {
pipes[0].clks_cfg.voltage = 1;
pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dcfclk_mhz;
}
context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
}
context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
pipes[0].clks_cfg.voltage = vlevel;
pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
/* Set D:
* DCFCLK: Min Required
* FCLK(proportional to UCLK): 1GHz or Max
* MALL stutter, sr_enter_exit = 4, sr_exit = 2us
*/
/*
if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
}
context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
*/
/* Set C:
* DCFCLK: Min Required
* FCLK(proportional to UCLK): 1GHz or Max
* pstate latency overridden to 5us
*/
if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
unsigned int min_dram_speed_mts_margin = 160;
context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_dram_clock_change_unsupported)
min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16;
for (i = 3; i > 0; i--) {
if ((min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts) &&
(min_dram_speed_mts - min_dram_speed_mts_margin < dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts))
context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us;
}
context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
}
context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
if (!pstate_en) {
/* The only difference between A and C is p-state latency, if p-state is not supported we want to
* calculate DLG based on dummy p-state latency, and max out the set A p-state watermark
*/
context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
} else {
/* Set A:
* DCFCLK: Min Required
* FCLK(proportional to UCLK): 1GHz or Max
*
* Set A calculated last so that following calculations are based on Set A
*/
if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].valid) {
context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
}
context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
}
context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
/* Make set D = set A until set D is enabled */
context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
if (dc->config.forced_clocks) {
pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
}
if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
pipe_idx++;
}
dcn20_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
if (!pstate_en)
/* Restore full p-state latency */
context->bw_ctx.dml.soc.dram_clock_change_latency_us =
dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
}
bool dcn30_validate_bandwidth(struct dc *dc,
struct dc_state *context,
bool fast_validate)
{
bool out = false;
BW_VAL_TRACE_SETUP();
int vlevel = 0;
int pipe_cnt = 0;
display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
DC_LOGGER_INIT(dc->ctx->logger);
BW_VAL_TRACE_COUNT();
out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
if (pipe_cnt == 0)
goto validate_out;
if (!out)
goto validate_fail;
BW_VAL_TRACE_END_VOLTAGE_LEVEL();
if (fast_validate) {
BW_VAL_TRACE_SKIP(fast);
goto validate_out;
}
dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
BW_VAL_TRACE_END_WATERMARKS();
goto validate_out;
validate_fail:
DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
BW_VAL_TRACE_SKIP(fail);
out = false;
validate_out:
kfree(pipes);
BW_VAL_TRACE_FINISH();
return out;
}
static void get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
unsigned int *optimal_dcfclk,
unsigned int *optimal_fclk)
{
double bw_from_dram, bw_from_dram1, bw_from_dram2;
bw_from_dram1 = uclk_mts * dcn3_0_soc.num_chans *
dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_dram_bw_use_normal_percent / 100);
bw_from_dram2 = uclk_mts * dcn3_0_soc.num_chans *
dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100);
bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
if (optimal_fclk)
*optimal_fclk = bw_from_dram /
(dcn3_0_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100));
if (optimal_dcfclk)
*optimal_dcfclk = bw_from_dram /
(dcn3_0_soc.return_bus_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100));
}
void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
{
unsigned int i, j;
unsigned int num_states = 0;
unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
unsigned int num_dcfclk_sta_targets = 4;
unsigned int num_uclk_states;
if (dc->ctx->dc_bios->vram_info.num_chans)
dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
dcn3_0_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
dcn3_0_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
if (bw_params->clk_table.entries[0].memclk_mhz) {
if (bw_params->clk_table.entries[1].dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
dcfclk_sta_targets[num_dcfclk_sta_targets] = bw_params->clk_table.entries[1].dcfclk_mhz;
num_dcfclk_sta_targets++;
} else if (bw_params->clk_table.entries[1].dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
for (i = 0; i < num_dcfclk_sta_targets; i++) {
if (dcfclk_sta_targets[i] > bw_params->clk_table.entries[1].dcfclk_mhz) {
dcfclk_sta_targets[i] = bw_params->clk_table.entries[1].dcfclk_mhz;
break;
}
}
// Update size of array since we "removed" duplicates
num_dcfclk_sta_targets = i + 1;
}
num_uclk_states = bw_params->clk_table.num_entries;
// Calculate optimal dcfclk for each uclk
for (i = 0; i < num_uclk_states; i++) {
get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
&optimal_dcfclk_for_uclk[i], NULL);
if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
}
}
// Calculate optimal uclk for each dcfclk sta target
for (i = 0; i < num_dcfclk_sta_targets; i++) {
for (j = 0; j < num_uclk_states; j++) {
if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
optimal_uclk_for_dcfclk_sta_targets[i] =
bw_params->clk_table.entries[j].memclk_mhz * 16;
break;
}
}
}
i = 0;
j = 0;
// create the final dcfclk and uclk table
while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
} else {
if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) {
dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
} else {
j = num_uclk_states;
}
}
}
while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
}
while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) {
dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
}
for (i = 0; i < dcn3_0_soc.num_states; i++) {
dcn3_0_soc.clock_limits[i].state = i;
dcn3_0_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
dcn3_0_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
dcn3_0_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
/* Fill all states with max values of all other clocks */
dcn3_0_soc.clock_limits[i].dispclk_mhz = bw_params->clk_table.entries[1].dispclk_mhz;
dcn3_0_soc.clock_limits[i].dppclk_mhz = bw_params->clk_table.entries[1].dppclk_mhz;
dcn3_0_soc.clock_limits[i].phyclk_mhz = bw_params->clk_table.entries[1].phyclk_mhz;
dcn3_0_soc.clock_limits[i].dtbclk_mhz = dcn3_0_soc.clock_limits[0].dtbclk_mhz;
/* These clocks cannot come from bw_params, always fill from dcn3_0_soc[1] */
/* FCLK, PHYCLK_D18, SOCCLK, DSCCLK */
dcn3_0_soc.clock_limits[i].phyclk_d18_mhz = dcn3_0_soc.clock_limits[0].phyclk_d18_mhz;
dcn3_0_soc.clock_limits[i].socclk_mhz = dcn3_0_soc.clock_limits[0].socclk_mhz;
dcn3_0_soc.clock_limits[i].dscclk_mhz = dcn3_0_soc.clock_limits[0].dscclk_mhz;
}
/* re-init DML with updated bb */
dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
if (dc->current_state)
dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
}
/* re-init DML with updated bb */
dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
if (dc->current_state)
dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
}
static const struct resource_funcs dcn30_res_pool_funcs = {
.destroy = dcn30_destroy_resource_pool,
.link_enc_create = dcn30_link_encoder_create,
.panel_cntl_create = dcn30_panel_cntl_create,
.validate_bandwidth = dcn30_validate_bandwidth,
.calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
.add_stream_to_ctx = dcn30_add_stream_to_ctx,
.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
.set_mcif_arb_params = dcn30_set_mcif_arb_params,
.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
.update_bw_bounding_box = dcn30_update_bw_bounding_box,
.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
};
static bool dcn30_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dcn30_resource_pool *pool)
{
int i;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data init_data;
struct ddc_service_init_data ddc_init_data;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap_dcn3;
pool->base.funcs = &dcn30_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
dc->caps.max_downscale_ratio = 600;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
dc->caps.max_cursor_size = 256;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dmdata_alloc_size = 2048;
dc->caps.max_slave_planes = 1;
dc->caps.post_blend_color_processing = true;
dc->caps.force_dp_tps4_for_cp2520 = true;
dc->caps.extended_aux_timeout_support = true;
dc->caps.dmcub_support = true;
/* Color pipeline capabilities */
dc->caps.color.dpp.dcn_arch = 1;
dc->caps.color.dpp.input_lut_shared = 0;
dc->caps.color.dpp.icsc = 1;
dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
dc->caps.color.dpp.dgam_rom_caps.pq = 1;
dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
dc->caps.color.dpp.post_csc = 1;
dc->caps.color.dpp.gamma_corr = 1;
dc->caps.color.dpp.hw_3d_lut = 1;
dc->caps.color.dpp.ogam_ram = 1;
// no OGAM ROM on DCN3
dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.ogam_rom_caps.pq = 0;
dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
dc->caps.color.dpp.ocsc = 0;
dc->caps.color.mpc.gamut_remap = 1;
dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3
dc->caps.color.mpc.ogam_ram = 1;
dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.mpc.ogam_rom_caps.pq = 0;
dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
dc->caps.color.mpc.ocsc = 1;
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->debug = debug_defaults_drv;
else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
dc->debug = debug_defaults_diags;
} else
dc->debug = debug_defaults_diags;
// Init the vm_helper
if (dc->vm_helper)
vm_helper_init(dc->vm_helper, 16);
/*************************************************
* Create resources *
*************************************************/
/* Clock Sources for Pixel Clock*/
pool->base.clock_sources[DCN30_CLK_SRC_PLL0] =
dcn30_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN30_CLK_SRC_PLL1] =
dcn30_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN30_CLK_SRC_PLL2] =
dcn30_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCN30_CLK_SRC_PLL3] =
dcn30_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCN30_CLK_SRC_PLL4] =
dcn30_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clock_sources[DCN30_CLK_SRC_PLL5] =
dcn30_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL5,
&clk_src_regs[5], false);
pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL;
/* todo: not reuse phy_pll registers */
pool->base.dp_clock_source =
dcn30_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* DCCG */
pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
if (pool->base.dccg == NULL) {
dm_error("DC: failed to create dccg!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* PP Lib and SMU interfaces */
init_soc_bounding_box(dc, pool);
dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
/* IRQ */
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
if (!pool->base.irqs)
goto create_fail;
/* HUBBUB */
pool->base.hubbub = dcn30_hubbub_create(ctx);
if (pool->base.hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto create_fail;
}
/* HUBPs, DPPs, OPPs and TGs */
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.hubps[i] = dcn30_hubp_create(ctx, i);
if (pool->base.hubps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create hubps!\n");
goto create_fail;
}
pool->base.dpps[i] = dcn30_dpp_create(ctx, i);
if (pool->base.dpps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create dpps!\n");
goto create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
pool->base.opps[i] = dcn30_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
pool->base.timing_generators[i] = dcn30_timing_generator_create(
ctx, i);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto create_fail;
}
}
pool->base.timing_generator_count = i;
/* PSR */
pool->base.psr = dmub_psr_create(ctx);
if (pool->base.psr == NULL) {
dm_error("DC: failed to create PSR obj!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* ABM */
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
pool->base.multiple_abms[i] = dmub_abm_create(ctx,
&abm_regs[i],
&abm_shift,
&abm_mask);
if (pool->base.multiple_abms[i] == NULL) {
dm_error("DC: failed to create abm for pipe %d!\n", i);
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* MPC and DSC */
pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
if (pool->base.mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto create_fail;
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
pool->base.dscs[i] = dcn30_dsc_create(ctx, i);
if (pool->base.dscs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create display stream compressor %d!\n", i);
goto create_fail;
}
}
/* DWB and MMHUBBUB */
if (!dcn30_dwbc_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create dwbc!\n");
goto create_fail;
}
if (!dcn30_mmhubbub_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mcif_wb!\n");
goto create_fail;
}
/* AUX and I2C */
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dcn30_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto create_fail;
}
pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create hw i2c!!\n");
goto create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
/* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */
if (!resource_construct(num_virtual_links, dc, &pool->base,
(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
&res_create_funcs : &res_create_maximus_funcs)))
goto create_fail;
/* HW Sequencer and Plane caps */
dcn30_hw_sequencer_construct(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
ddc_init_data.ctx = dc->ctx;
ddc_init_data.link = NULL;
ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
ddc_init_data.id.enum_id = 0;
ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
} else {
pool->base.oem_device = NULL;
}
return true;
create_fail:
dcn30_resource_destruct(pool);
return false;
}
struct resource_pool *dcn30_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc)
{
struct dcn30_resource_pool *pool =
kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
kfree(pool);
return NULL;
}