summaryrefslogblamecommitdiff
path: root/drivers/dma/idxd/perfmon.c
blob: d73004f47cf4b40f0cddf8a57907500884b69e29 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662





















































































































































































































































































































































































































































































































































































































































































                                                                                          
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2020 Intel Corporation. All rights rsvd. */

#include <linux/sched/task.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include "idxd.h"
#include "perfmon.h"

static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
			    char *buf);

static cpumask_t		perfmon_dsa_cpu_mask;
static bool			cpuhp_set_up;
static enum cpuhp_state		cpuhp_slot;

/*
 * perf userspace reads this attribute to determine which cpus to open
 * counters on.  It's connected to perfmon_dsa_cpu_mask, which is
 * maintained by the cpu hotplug handlers.
 */
static DEVICE_ATTR_RO(cpumask);

static struct attribute *perfmon_cpumask_attrs[] = {
	&dev_attr_cpumask.attr,
	NULL,
};

static struct attribute_group cpumask_attr_group = {
	.attrs = perfmon_cpumask_attrs,
};

/*
 * These attributes specify the bits in the config word that the perf
 * syscall uses to pass the event ids and categories to perfmon.
 */
DEFINE_PERFMON_FORMAT_ATTR(event_category, "config:0-3");
DEFINE_PERFMON_FORMAT_ATTR(event, "config:4-31");

/*
 * These attributes specify the bits in the config1 word that the perf
 * syscall uses to pass filter data to perfmon.
 */
DEFINE_PERFMON_FORMAT_ATTR(filter_wq, "config1:0-31");
DEFINE_PERFMON_FORMAT_ATTR(filter_tc, "config1:32-39");
DEFINE_PERFMON_FORMAT_ATTR(filter_pgsz, "config1:40-43");
DEFINE_PERFMON_FORMAT_ATTR(filter_sz, "config1:44-51");
DEFINE_PERFMON_FORMAT_ATTR(filter_eng, "config1:52-59");

#define PERFMON_FILTERS_START	2
#define PERFMON_FILTERS_MAX	5

static struct attribute *perfmon_format_attrs[] = {
	&format_attr_idxd_event_category.attr,
	&format_attr_idxd_event.attr,
	&format_attr_idxd_filter_wq.attr,
	&format_attr_idxd_filter_tc.attr,
	&format_attr_idxd_filter_pgsz.attr,
	&format_attr_idxd_filter_sz.attr,
	&format_attr_idxd_filter_eng.attr,
	NULL,
};

static struct attribute_group perfmon_format_attr_group = {
	.name = "format",
	.attrs = perfmon_format_attrs,
};

static const struct attribute_group *perfmon_attr_groups[] = {
	&perfmon_format_attr_group,
	&cpumask_attr_group,
	NULL,
};

static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	return cpumap_print_to_pagebuf(true, buf, &perfmon_dsa_cpu_mask);
}

static bool is_idxd_event(struct idxd_pmu *idxd_pmu, struct perf_event *event)
{
	return &idxd_pmu->pmu == event->pmu;
}

static int perfmon_collect_events(struct idxd_pmu *idxd_pmu,
				  struct perf_event *leader,
				  bool do_grp)
{
	struct perf_event *event;
	int n, max_count;

	max_count = idxd_pmu->n_counters;
	n = idxd_pmu->n_events;

	if (n >= max_count)
		return -EINVAL;

	if (is_idxd_event(idxd_pmu, leader)) {
		idxd_pmu->event_list[n] = leader;
		idxd_pmu->event_list[n]->hw.idx = n;
		n++;
	}

	if (!do_grp)
		return n;

	for_each_sibling_event(event, leader) {
		if (!is_idxd_event(idxd_pmu, event) ||
		    event->state <= PERF_EVENT_STATE_OFF)
			continue;

		if (n >= max_count)
			return -EINVAL;

		idxd_pmu->event_list[n] = event;
		idxd_pmu->event_list[n]->hw.idx = n;
		n++;
	}

	return n;
}

static void perfmon_assign_hw_event(struct idxd_pmu *idxd_pmu,
				    struct perf_event *event, int idx)
{
	struct idxd_device *idxd = idxd_pmu->idxd;
	struct hw_perf_event *hwc = &event->hw;

	hwc->idx = idx;
	hwc->config_base = ioread64(CNTRCFG_REG(idxd, idx));
	hwc->event_base = ioread64(CNTRCFG_REG(idxd, idx));
}

static int perfmon_assign_event(struct idxd_pmu *idxd_pmu,
				struct perf_event *event)
{
	int i;

	for (i = 0; i < IDXD_PMU_EVENT_MAX; i++)
		if (!test_and_set_bit(i, idxd_pmu->used_mask))
			return i;

	return -EINVAL;
}

/*
 * Check whether there are enough counters to satisfy that all the
 * events in the group can actually be scheduled at the same time.
 *
 * To do this, create a fake idxd_pmu object so the event collection
 * and assignment functions can be used without affecting the internal
 * state of the real idxd_pmu object.
 */
static int perfmon_validate_group(struct idxd_pmu *pmu,
				  struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;
	struct idxd_pmu *fake_pmu;
	int i, ret = 0, n, idx;

	fake_pmu = kzalloc(sizeof(*fake_pmu), GFP_KERNEL);
	if (!fake_pmu)
		return -ENOMEM;

	fake_pmu->pmu.name = pmu->pmu.name;
	fake_pmu->n_counters = pmu->n_counters;

	n = perfmon_collect_events(fake_pmu, leader, true);
	if (n < 0) {
		ret = n;
		goto out;
	}

	fake_pmu->n_events = n;
	n = perfmon_collect_events(fake_pmu, event, false);
	if (n < 0) {
		ret = n;
		goto out;
	}

	fake_pmu->n_events = n;

	for (i = 0; i < n; i++) {
		event = fake_pmu->event_list[i];

		idx = perfmon_assign_event(fake_pmu, event);
		if (idx < 0) {
			ret = idx;
			goto out;
		}
	}
out:
	kfree(fake_pmu);

	return ret;
}

static int perfmon_pmu_event_init(struct perf_event *event)
{
	struct idxd_device *idxd;
	int ret = 0;

	idxd = event_to_idxd(event);
	event->hw.idx = -1;

	if (event->attr.type != event->pmu->type)
		return -ENOENT;

	/* sampling not supported */
	if (event->attr.sample_period)
		return -EINVAL;

	if (event->cpu < 0)
		return -EINVAL;

	if (event->pmu != &idxd->idxd_pmu->pmu)
		return -EINVAL;

	event->hw.event_base = ioread64(PERFMON_TABLE_OFFSET(idxd));
	event->cpu = idxd->idxd_pmu->cpu;
	event->hw.config = event->attr.config;

	if (event->group_leader != event)
		 /* non-group events have themselves as leader */
		ret = perfmon_validate_group(idxd->idxd_pmu, event);

	return ret;
}

static inline u64 perfmon_pmu_read_counter(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct idxd_device *idxd;
	int cntr = hwc->idx;

	idxd = event_to_idxd(event);

	return ioread64(CNTRDATA_REG(idxd, cntr));
}

static void perfmon_pmu_event_update(struct perf_event *event)
{
	struct idxd_device *idxd = event_to_idxd(event);
	u64 prev_raw_count, new_raw_count, delta, p, n;
	int shift = 64 - idxd->idxd_pmu->counter_width;
	struct hw_perf_event *hwc = &event->hw;

	do {
		prev_raw_count = local64_read(&hwc->prev_count);
		new_raw_count = perfmon_pmu_read_counter(event);
	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
			new_raw_count) != prev_raw_count);

	n = (new_raw_count << shift);
	p = (prev_raw_count << shift);

	delta = ((n - p) >> shift);

	local64_add(delta, &event->count);
}

void perfmon_counter_overflow(struct idxd_device *idxd)
{
	int i, n_counters, max_loop = OVERFLOW_SIZE;
	struct perf_event *event;
	unsigned long ovfstatus;

	n_counters = min(idxd->idxd_pmu->n_counters, OVERFLOW_SIZE);

	ovfstatus = ioread32(OVFSTATUS_REG(idxd));

	/*
	 * While updating overflowed counters, other counters behind
	 * them could overflow and be missed in a given pass.
	 * Normally this could happen at most n_counters times, but in
	 * theory a tiny counter width could result in continual
	 * overflows and endless looping.  max_loop provides a
	 * failsafe in that highly unlikely case.
	 */
	while (ovfstatus && max_loop--) {
		/* Figure out which counter(s) overflowed */
		for_each_set_bit(i, &ovfstatus, n_counters) {
			unsigned long ovfstatus_clear = 0;

			/* Update event->count for overflowed counter */
			event = idxd->idxd_pmu->event_list[i];
			perfmon_pmu_event_update(event);
			/* Writing 1 to OVFSTATUS bit clears it */
			set_bit(i, &ovfstatus_clear);
			iowrite32(ovfstatus_clear, OVFSTATUS_REG(idxd));
		}

		ovfstatus = ioread32(OVFSTATUS_REG(idxd));
	}

	/*
	 * Should never happen.  If so, it means a counter(s) looped
	 * around twice while this handler was running.
	 */
	WARN_ON_ONCE(ovfstatus);
}

static inline void perfmon_reset_config(struct idxd_device *idxd)
{
	iowrite32(CONFIG_RESET, PERFRST_REG(idxd));
	iowrite32(0, OVFSTATUS_REG(idxd));
	iowrite32(0, PERFFRZ_REG(idxd));
}

static inline void perfmon_reset_counters(struct idxd_device *idxd)
{
	iowrite32(CNTR_RESET, PERFRST_REG(idxd));
}

static inline void perfmon_reset(struct idxd_device *idxd)
{
	perfmon_reset_config(idxd);
	perfmon_reset_counters(idxd);
}

static void perfmon_pmu_event_start(struct perf_event *event, int mode)
{
	u32 flt_wq, flt_tc, flt_pg_sz, flt_xfer_sz, flt_eng = 0;
	u64 cntr_cfg, cntrdata, event_enc, event_cat = 0;
	struct hw_perf_event *hwc = &event->hw;
	union filter_cfg flt_cfg;
	union event_cfg event_cfg;
	struct idxd_device *idxd;
	int cntr;

	idxd = event_to_idxd(event);

	event->hw.idx = hwc->idx;
	cntr = hwc->idx;

	/* Obtain event category and event value from user space */
	event_cfg.val = event->attr.config;
	flt_cfg.val = event->attr.config1;
	event_cat = event_cfg.event_cat;
	event_enc = event_cfg.event_enc;

	/* Obtain filter configuration from user space */
	flt_wq = flt_cfg.wq;
	flt_tc = flt_cfg.tc;
	flt_pg_sz = flt_cfg.pg_sz;
	flt_xfer_sz = flt_cfg.xfer_sz;
	flt_eng = flt_cfg.eng;

	if (flt_wq && test_bit(FLT_WQ, &idxd->idxd_pmu->supported_filters))
		iowrite32(flt_wq, FLTCFG_REG(idxd, cntr, FLT_WQ));
	if (flt_tc && test_bit(FLT_TC, &idxd->idxd_pmu->supported_filters))
		iowrite32(flt_tc, FLTCFG_REG(idxd, cntr, FLT_TC));
	if (flt_pg_sz && test_bit(FLT_PG_SZ, &idxd->idxd_pmu->supported_filters))
		iowrite32(flt_pg_sz, FLTCFG_REG(idxd, cntr, FLT_PG_SZ));
	if (flt_xfer_sz && test_bit(FLT_XFER_SZ, &idxd->idxd_pmu->supported_filters))
		iowrite32(flt_xfer_sz, FLTCFG_REG(idxd, cntr, FLT_XFER_SZ));
	if (flt_eng && test_bit(FLT_ENG, &idxd->idxd_pmu->supported_filters))
		iowrite32(flt_eng, FLTCFG_REG(idxd, cntr, FLT_ENG));

	/* Read the start value */
	cntrdata = ioread64(CNTRDATA_REG(idxd, cntr));
	local64_set(&event->hw.prev_count, cntrdata);

	/* Set counter to event/category */
	cntr_cfg = event_cat << CNTRCFG_CATEGORY_SHIFT;
	cntr_cfg |= event_enc << CNTRCFG_EVENT_SHIFT;
	/* Set interrupt on overflow and counter enable bits */
	cntr_cfg |= (CNTRCFG_IRQ_OVERFLOW | CNTRCFG_ENABLE);

	iowrite64(cntr_cfg, CNTRCFG_REG(idxd, cntr));
}

static void perfmon_pmu_event_stop(struct perf_event *event, int mode)
{
	struct hw_perf_event *hwc = &event->hw;
	struct idxd_device *idxd;
	int i, cntr = hwc->idx;
	u64 cntr_cfg;

	idxd = event_to_idxd(event);

	/* remove this event from event list */
	for (i = 0; i < idxd->idxd_pmu->n_events; i++) {
		if (event != idxd->idxd_pmu->event_list[i])
			continue;

		for (++i; i < idxd->idxd_pmu->n_events; i++)
			idxd->idxd_pmu->event_list[i - 1] = idxd->idxd_pmu->event_list[i];
		--idxd->idxd_pmu->n_events;
		break;
	}

	cntr_cfg = ioread64(CNTRCFG_REG(idxd, cntr));
	cntr_cfg &= ~CNTRCFG_ENABLE;
	iowrite64(cntr_cfg, CNTRCFG_REG(idxd, cntr));

	if (mode == PERF_EF_UPDATE)
		perfmon_pmu_event_update(event);

	event->hw.idx = -1;
	clear_bit(cntr, idxd->idxd_pmu->used_mask);
}

static void perfmon_pmu_event_del(struct perf_event *event, int mode)
{
	perfmon_pmu_event_stop(event, PERF_EF_UPDATE);
}

static int perfmon_pmu_event_add(struct perf_event *event, int flags)
{
	struct idxd_device *idxd = event_to_idxd(event);
	struct idxd_pmu *idxd_pmu = idxd->idxd_pmu;
	struct hw_perf_event *hwc = &event->hw;
	int idx, n;

	n = perfmon_collect_events(idxd_pmu, event, false);
	if (n < 0)
		return n;

	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
	if (!(flags & PERF_EF_START))
		hwc->state |= PERF_HES_ARCH;

	idx = perfmon_assign_event(idxd_pmu, event);
	if (idx < 0)
		return idx;

	perfmon_assign_hw_event(idxd_pmu, event, idx);

	if (flags & PERF_EF_START)
		perfmon_pmu_event_start(event, 0);

	idxd_pmu->n_events = n;

	return 0;
}

static void enable_perfmon_pmu(struct idxd_device *idxd)
{
	iowrite32(COUNTER_UNFREEZE, PERFFRZ_REG(idxd));
}

static void disable_perfmon_pmu(struct idxd_device *idxd)
{
	iowrite32(COUNTER_FREEZE, PERFFRZ_REG(idxd));
}

static void perfmon_pmu_enable(struct pmu *pmu)
{
	struct idxd_device *idxd = pmu_to_idxd(pmu);

	enable_perfmon_pmu(idxd);
}

static void perfmon_pmu_disable(struct pmu *pmu)
{
	struct idxd_device *idxd = pmu_to_idxd(pmu);

	disable_perfmon_pmu(idxd);
}

static void skip_filter(int i)
{
	int j;

	for (j = i; j < PERFMON_FILTERS_MAX; j++)
		perfmon_format_attrs[PERFMON_FILTERS_START + j] =
			perfmon_format_attrs[PERFMON_FILTERS_START + j + 1];
}

static void idxd_pmu_init(struct idxd_pmu *idxd_pmu)
{
	int i;

	for (i = 0 ; i < PERFMON_FILTERS_MAX; i++) {
		if (!test_bit(i, &idxd_pmu->supported_filters))
			skip_filter(i);
	}

	idxd_pmu->pmu.name		= idxd_pmu->name;
	idxd_pmu->pmu.attr_groups	= perfmon_attr_groups;
	idxd_pmu->pmu.task_ctx_nr	= perf_invalid_context;
	idxd_pmu->pmu.event_init	= perfmon_pmu_event_init;
	idxd_pmu->pmu.pmu_enable	= perfmon_pmu_enable,
	idxd_pmu->pmu.pmu_disable	= perfmon_pmu_disable,
	idxd_pmu->pmu.add		= perfmon_pmu_event_add;
	idxd_pmu->pmu.del		= perfmon_pmu_event_del;
	idxd_pmu->pmu.start		= perfmon_pmu_event_start;
	idxd_pmu->pmu.stop		= perfmon_pmu_event_stop;
	idxd_pmu->pmu.read		= perfmon_pmu_event_update;
	idxd_pmu->pmu.capabilities	= PERF_PMU_CAP_NO_EXCLUDE;
	idxd_pmu->pmu.module		= THIS_MODULE;
}

void perfmon_pmu_remove(struct idxd_device *idxd)
{
	if (!idxd->idxd_pmu)
		return;

	cpuhp_state_remove_instance(cpuhp_slot, &idxd->idxd_pmu->cpuhp_node);
	perf_pmu_unregister(&idxd->idxd_pmu->pmu);
	kfree(idxd->idxd_pmu);
	idxd->idxd_pmu = NULL;
}

static int perf_event_cpu_online(unsigned int cpu, struct hlist_node *node)
{
	struct idxd_pmu *idxd_pmu;

	idxd_pmu = hlist_entry_safe(node, typeof(*idxd_pmu), cpuhp_node);

	/* select the first online CPU as the designated reader */
	if (cpumask_empty(&perfmon_dsa_cpu_mask)) {
		cpumask_set_cpu(cpu, &perfmon_dsa_cpu_mask);
		idxd_pmu->cpu = cpu;
	}

	return 0;
}

static int perf_event_cpu_offline(unsigned int cpu, struct hlist_node *node)
{
	struct idxd_pmu *idxd_pmu;
	unsigned int target;

	idxd_pmu = hlist_entry_safe(node, typeof(*idxd_pmu), cpuhp_node);

	if (!cpumask_test_and_clear_cpu(cpu, &perfmon_dsa_cpu_mask))
		return 0;

	target = cpumask_any_but(cpu_online_mask, cpu);

	/* migrate events if there is a valid target */
	if (target < nr_cpu_ids)
		cpumask_set_cpu(target, &perfmon_dsa_cpu_mask);
	else
		target = -1;

	perf_pmu_migrate_context(&idxd_pmu->pmu, cpu, target);

	return 0;
}

int perfmon_pmu_init(struct idxd_device *idxd)
{
	union idxd_perfcap perfcap;
	struct idxd_pmu *idxd_pmu;
	int rc = -ENODEV;

	/*
	 * perfmon module initialization failed, nothing to do
	 */
	if (!cpuhp_set_up)
		return -ENODEV;

	/*
	 * If perfmon_offset or num_counters is 0, it means perfmon is
	 * not supported on this hardware.
	 */
	if (idxd->perfmon_offset == 0)
		return -ENODEV;

	idxd_pmu = kzalloc(sizeof(*idxd_pmu), GFP_KERNEL);
	if (!idxd_pmu)
		return -ENOMEM;

	idxd_pmu->idxd = idxd;
	idxd->idxd_pmu = idxd_pmu;

	if (idxd->data->type == IDXD_TYPE_DSA) {
		rc = sprintf(idxd_pmu->name, "dsa%d", idxd->id);
		if (rc < 0)
			goto free;
	} else if (idxd->data->type == IDXD_TYPE_IAX) {
		rc = sprintf(idxd_pmu->name, "iax%d", idxd->id);
		if (rc < 0)
			goto free;
	} else {
		goto free;
	}

	perfmon_reset(idxd);

	perfcap.bits = ioread64(PERFCAP_REG(idxd));

	/*
	 * If total perf counter is 0, stop further registration.
	 * This is necessary in order to support driver running on
	 * guest which does not have pmon support.
	 */
	if (perfcap.num_perf_counter == 0)
		goto free;

	/* A counter width of 0 means it can't count */
	if (perfcap.counter_width == 0)
		goto free;

	/* Overflow interrupt and counter freeze support must be available */
	if (!perfcap.overflow_interrupt || !perfcap.counter_freeze)
		goto free;

	/* Number of event categories cannot be 0 */
	if (perfcap.num_event_category == 0)
		goto free;

	/*
	 * We don't support per-counter capabilities for now.
	 */
	if (perfcap.cap_per_counter)
		goto free;

	idxd_pmu->n_event_categories = perfcap.num_event_category;
	idxd_pmu->supported_event_categories = perfcap.global_event_category;
	idxd_pmu->per_counter_caps_supported = perfcap.cap_per_counter;

	/* check filter capability.  If 0, then filters are not supported */
	idxd_pmu->supported_filters = perfcap.filter;
	if (perfcap.filter)
		idxd_pmu->n_filters = hweight8(perfcap.filter);

	/* Store the total number of counters categories, and counter width */
	idxd_pmu->n_counters = perfcap.num_perf_counter;
	idxd_pmu->counter_width = perfcap.counter_width;

	idxd_pmu_init(idxd_pmu);

	rc = perf_pmu_register(&idxd_pmu->pmu, idxd_pmu->name, -1);
	if (rc)
		goto free;

	rc = cpuhp_state_add_instance(cpuhp_slot, &idxd_pmu->cpuhp_node);
	if (rc) {
		perf_pmu_unregister(&idxd->idxd_pmu->pmu);
		goto free;
	}
out:
	return rc;
free:
	kfree(idxd_pmu);
	idxd->idxd_pmu = NULL;

	goto out;
}

void __init perfmon_init(void)
{
	int rc = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
					 "driver/dma/idxd/perf:online",
					 perf_event_cpu_online,
					 perf_event_cpu_offline);
	if (WARN_ON(rc < 0))
		return;

	cpuhp_slot = rc;
	cpuhp_set_up = true;
}

void __exit perfmon_exit(void)
{
	if (cpuhp_set_up)
		cpuhp_remove_multi_state(cpuhp_slot);
}