// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/dmaengine.h>
#include <uapi/linux/idxd.h>
#include "../dmaengine.h"
#include "idxd.h"
#include "registers.h"
void idxd_device_wqs_clear_state(struct idxd_device *idxd)
{
int i;
lockdep_assert_held(&idxd->dev_lock);
for (i = 0; i < idxd->max_wqs; i++) {
struct idxd_wq *wq = &idxd->wqs[i];
wq->state = IDXD_WQ_DISABLED;
}
}
static int idxd_restart(struct idxd_device *idxd)
{
int i, rc;
lockdep_assert_held(&idxd->dev_lock);
rc = __idxd_device_reset(idxd);
if (rc < 0)
goto out;
rc = idxd_device_config(idxd);
if (rc < 0)
goto out;
rc = idxd_device_enable(idxd);
if (rc < 0)
goto out;
for (i = 0; i < idxd->max_wqs; i++) {
struct idxd_wq *wq = &idxd->wqs[i];
if (wq->state == IDXD_WQ_ENABLED) {
rc = idxd_wq_enable(wq);
if (rc < 0) {
dev_warn(&idxd->pdev->dev,
"Unable to re-enable wq %s\n",
dev_name(&wq->conf_dev));
}
}
}
return 0;
out:
idxd_device_wqs_clear_state(idxd);
idxd->state = IDXD_DEV_HALTED;
return rc;
}
irqreturn_t idxd_irq_handler(int vec, void *data)
{
struct idxd_irq_entry *irq_entry = data;
struct idxd_device *idxd = irq_entry->idxd;
idxd_mask_msix_vector(idxd, irq_entry->id);
return IRQ_WAKE_THREAD;
}
irqreturn_t idxd_misc_thread(int vec, void *data)
{
struct idxd_irq_entry *irq_entry = data;
struct idxd_device *idxd = irq_entry->idxd;
struct device *dev = &idxd->pdev->dev;
union gensts_reg gensts;
u32 cause, val = 0;
int i, rc;
bool err = false;
cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
if (cause & IDXD_INTC_ERR) {
spin_lock_bh(&idxd->dev_lock);
for (i = 0; i < 4; i++)
idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
IDXD_SWERR_OFFSET + i * sizeof(u64));
iowrite64(IDXD_SWERR_ACK, idxd->reg_base + IDXD_SWERR_OFFSET);
if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
int id = idxd->sw_err.wq_idx;
struct idxd_wq *wq = &idxd->wqs[id];
if (wq->type == IDXD_WQT_USER)
wake_up_interruptible(&wq->idxd_cdev.err_queue);
} else {
int i;
for (i = 0; i < idxd->max_wqs; i++) {
struct idxd_wq *wq = &idxd->wqs[i];
if (wq->type == IDXD_WQT_USER)
wake_up_interruptible(&wq->idxd_cdev.err_queue);
}
}
spin_unlock_bh(&idxd->dev_lock);
val |= IDXD_INTC_ERR;
for (i = 0; i < 4; i++)
dev_warn(dev, "err[%d]: %#16.16llx\n",
i, idxd->sw_err.bits[i]);
err = true;
}
if (cause & IDXD_INTC_CMD) {
/* Driver does use command interrupts */
val |= IDXD_INTC_CMD;
}
if (cause & IDXD_INTC_OCCUPY) {
/* Driver does not utilize occupancy interrupt */
val |= IDXD_INTC_OCCUPY;
}
if (cause & IDXD_INTC_PERFMON_OVFL) {
/*
* Driver does not utilize perfmon counter overflow interrupt
* yet.
*/
val |= IDXD_INTC_PERFMON_OVFL;
}
val ^= cause;
if (val)
dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
val);
iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
if (!err)
return IRQ_HANDLED;
gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
if (gensts.state == IDXD_DEVICE_STATE_HALT) {
spin_lock_bh(&idxd->dev_lock);
if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
rc = idxd_restart(idxd);
if (rc < 0)
dev_err(&idxd->pdev->dev,
"idxd restart failed, device halt.");
} else {
idxd_device_wqs_clear_state(idxd);
idxd->state = IDXD_DEV_HALTED;
dev_err(&idxd->pdev->dev,
"idxd halted, need %s.\n",
gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
"FLR" : "system reset");
}
spin_unlock_bh(&idxd->dev_lock);
}
idxd_unmask_msix_vector(idxd, irq_entry->id);
return IRQ_HANDLED;
}
static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
int *processed)
{
struct idxd_desc *desc, *t;
struct llist_node *head;
int queued = 0;
head = llist_del_all(&irq_entry->pending_llist);
if (!head)
return 0;
llist_for_each_entry_safe(desc, t, head, llnode) {
if (desc->completion->status) {
idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL);
idxd_free_desc(desc->wq, desc);
(*processed)++;
} else {
list_add_tail(&desc->list, &irq_entry->work_list);
queued++;
}
}
return queued;
}
static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
int *processed)
{
struct list_head *node, *next;
int queued = 0;
if (list_empty(&irq_entry->work_list))
return 0;
list_for_each_safe(node, next, &irq_entry->work_list) {
struct idxd_desc *desc =
container_of(node, struct idxd_desc, list);
if (desc->completion->status) {
list_del(&desc->list);
/* process and callback */
idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL);
idxd_free_desc(desc->wq, desc);
(*processed)++;
} else {
queued++;
}
}
return queued;
}
irqreturn_t idxd_wq_thread(int irq, void *data)
{
struct idxd_irq_entry *irq_entry = data;
int rc, processed = 0, retry = 0;
/*
* There are two lists we are processing. The pending_llist is where
* submmiter adds all the submitted descriptor after sending it to
* the workqueue. It's a lockless singly linked list. The work_list
* is the common linux double linked list. We are in a scenario of
* multiple producers and a single consumer. The producers are all
* the kernel submitters of descriptors, and the consumer is the
* kernel irq handler thread for the msix vector when using threaded
* irq. To work with the restrictions of llist to remain lockless,
* we are doing the following steps:
* 1. Iterate through the work_list and process any completed
* descriptor. Delete the completed entries during iteration.
* 2. llist_del_all() from the pending list.
* 3. Iterate through the llist that was deleted from the pending list
* and process the completed entries.
* 4. If the entry is still waiting on hardware, list_add_tail() to
* the work_list.
* 5. Repeat until no more descriptors.
*/
do {
rc = irq_process_work_list(irq_entry, &processed);
if (rc != 0) {
retry++;
continue;
}
rc = irq_process_pending_llist(irq_entry, &processed);
} while (rc != 0 && retry != 10);
idxd_unmask_msix_vector(irq_entry->idxd, irq_entry->id);
if (processed == 0)
return IRQ_NONE;
return IRQ_HANDLED;
}