// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
*/
/*
* In Certain QCOM SoCs like apq8096 and msm8996 that have KRYO processors,
* the CPU frequency subset and voltage value of each OPP varies
* based on the silicon variant in use. Qualcomm Process Voltage Scaling Tables
* defines the voltage and frequency value based on the msm-id in SMEM
* and speedbin blown in the efuse combination.
* The qcom-cpufreq-nvmem driver reads the msm-id and efuse value from the SoC
* to provide the OPP framework with required information.
* This is used to determine the voltage and frequency value for each OPP of
* operating-points-v2 table when it is parsed by the OPP framework.
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/soc/qcom/smem.h>
#define MSM_ID_SMEM 137
enum _msm_id {
MSM8996V3 = 0xF6ul,
APQ8096V3 = 0x123ul,
MSM8996SG = 0x131ul,
APQ8096SG = 0x138ul,
};
enum _msm8996_version {
MSM8996_V3,
MSM8996_SG,
NUM_OF_MSM8996_VERSIONS,
};
struct qcom_cpufreq_drv;
struct qcom_cpufreq_match_data {
int (*get_version)(struct device *cpu_dev,
struct nvmem_cell *speedbin_nvmem,
char **pvs_name,
struct qcom_cpufreq_drv *drv);
const char **genpd_names;
};
struct qcom_cpufreq_drv {
struct opp_table **names_opp_tables;
struct opp_table **hw_opp_tables;
struct opp_table **genpd_opp_tables;
u32 versions;
const struct qcom_cpufreq_match_data *data;
};
static struct platform_device *cpufreq_dt_pdev, *cpufreq_pdev;
static void get_krait_bin_format_a(struct device *cpu_dev,
int *speed, int *pvs, int *pvs_ver,
struct nvmem_cell *pvs_nvmem, u8 *buf)
{
u32 pte_efuse;
pte_efuse = *((u32 *)buf);
*speed = pte_efuse & 0xf;
if (*speed == 0xf)
*speed = (pte_efuse >> 4) & 0xf;
if (*speed == 0xf) {
*speed = 0;
dev_warn(cpu_dev, "Speed bin: Defaulting to %d\n", *speed);
} else {
dev_dbg(cpu_dev, "Speed bin: %d\n", *speed);
}
*pvs = (pte_efuse >> 10) & 0x7;
if (*pvs == 0x7)
*pvs = (pte_efuse >> 13) & 0x7;
if (*pvs == 0x7) {
*pvs = 0;
dev_warn(cpu_dev, "PVS bin: Defaulting to %d\n", *pvs);
} else {
dev_dbg(cpu_dev, "PVS bin: %d\n", *pvs);
}
}
static void get_krait_bin_format_b(struct device *cpu_dev,
int *speed, int *pvs, int *pvs_ver,
struct nvmem_cell *pvs_nvmem, u8 *buf)
{
u32 pte_efuse, redundant_sel;
pte_efuse = *((u32 *)buf);
redundant_sel = (pte_efuse >> 24) & 0x7;
*pvs_ver = (pte_efuse >> 4) & 0x3;
switch (redundant_sel) {
case 1:
*pvs = ((pte_efuse >> 28) & 0x8) | ((pte_efuse >> 6) & 0x7);
*speed = (pte_efuse >> 27) & 0xf;
break;
case 2:
*pvs = (pte_efuse >> 27) & 0xf;
*speed = pte_efuse & 0x7;
break;
default:
/* 4 bits of PVS are in efuse register bits 31, 8-6. */
*pvs = ((pte_efuse >> 28) & 0x8) | ((pte_efuse >> 6) & 0x7);
*speed = pte_efuse & 0x7;
}
/* Check SPEED_BIN_BLOW_STATUS */
if (pte_efuse & BIT(3)) {
dev_dbg(cpu_dev, "Speed bin: %d\n", *speed);
} else {
dev_warn(cpu_dev, "Speed bin not set. Defaulting to 0!\n");
*speed = 0;
}
/* Check PVS_BLOW_STATUS */
pte_efuse = *(((u32 *)buf) + 1);
pte_efuse &= BIT(21);
if (pte_efuse) {
dev_dbg(cpu_dev, "PVS bin: %d\n", *pvs);
} else {
dev_warn(cpu_dev, "PVS bin not set. Defaulting to 0!\n");
*pvs = 0;
}
dev_dbg(cpu_dev, "PVS version: %d\n", *pvs_ver);
}
static enum _msm8996_version qcom_cpufreq_get_msm_id(void)
{
size_t len;
u32 *msm_id;
enum _msm8996_version version;
msm_id = qcom_smem_get(QCOM_SMEM_HOST_ANY, MSM_ID_SMEM, &len);
if (IS_ERR(msm_id))
return NUM_OF_MSM8996_VERSIONS;
/* The first 4 bytes are format, next to them is the actual msm-id */
msm_id++;
switch ((enum _msm_id)*msm_id) {
case MSM8996V3:
case APQ8096V3:
version = MSM8996_V3;
break;
case MSM8996SG:
case APQ8096SG:
version = MSM8996_SG;
break;
default:
version = NUM_OF_MSM8996_VERSIONS;
}
return version;
}
static int qcom_cpufreq_kryo_name_version(struct device *cpu_dev,
struct nvmem_cell *speedbin_nvmem,
char **pvs_name,
struct qcom_cpufreq_drv *drv)
{
size_t len;
u8 *speedbin;
enum _msm8996_version msm8996_version;
*pvs_name = NULL;
msm8996_version = qcom_cpufreq_get_msm_id();
if (NUM_OF_MSM8996_VERSIONS == msm8996_version) {
dev_err(cpu_dev, "Not Snapdragon 820/821!");
return -ENODEV;
}
speedbin = nvmem_cell_read(speedbin_nvmem, &len);
if (IS_ERR(speedbin))
return PTR_ERR(speedbin);
switch (msm8996_version) {
case MSM8996_V3:
drv->versions = 1 << (unsigned int)(*speedbin);
break;
case MSM8996_SG:
drv->versions = 1 << ((unsigned int)(*speedbin) + 4);
break;
default:
BUG();
break;
}
kfree(speedbin);
return 0;
}
static int qcom_cpufreq_krait_name_version(struct device *cpu_dev,
struct nvmem_cell *speedbin_nvmem,
char **pvs_name,
struct qcom_cpufreq_drv *drv)
{
int speed = 0, pvs = 0, pvs_ver = 0;
u8 *speedbin;
size_t len;
speedbin = nvmem_cell_read(speedbin_nvmem, &len);
if (IS_ERR(speedbin))
return PTR_ERR(speedbin);
switch (len) {
case 4:
get_krait_bin_format_a(cpu_dev, &speed, &pvs, &pvs_ver,
speedbin_nvmem, speedbin);
break;
case 8:
get_krait_bin_format_b(cpu_dev, &speed, &pvs, &pvs_ver,
speedbin_nvmem, speedbin);
break;
default:
dev_err(cpu_dev, "Unable to read nvmem data. Defaulting to 0!\n");
return -ENODEV;
}
snprintf(*pvs_name, sizeof("speedXX-pvsXX-vXX"), "speed%d-pvs%d-v%d",
speed, pvs, pvs_ver);
drv->versions = (1 << speed);
kfree(speedbin);
return 0;
}
static const struct qcom_cpufreq_match_data match_data_kryo = {
.get_version = qcom_cpufreq_kryo_name_version,
};
static const struct qcom_cpufreq_match_data match_data_krait = {
.get_version = qcom_cpufreq_krait_name_version,
};
static const char *qcs404_genpd_names[] = { "cpr", NULL };
static const struct qcom_cpufreq_match_data match_data_qcs404 = {
.genpd_names = qcs404_genpd_names,
};
static int qcom_cpufreq_probe(struct platform_device *pdev)
{
struct qcom_cpufreq_drv *drv;
struct nvmem_cell *speedbin_nvmem;
struct device_node *np;
struct device *cpu_dev;
char *pvs_name = "speedXX-pvsXX-vXX";
unsigned cpu;
const struct of_device_id *match;
int ret;
cpu_dev = get_cpu_device(0);
if (!cpu_dev)
return -ENODEV;
np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
if (!np)
return -ENOENT;
ret = of_device_is_compatible(np, "operating-points-v2-kryo-cpu");
if (!ret) {
of_node_put(np);
return -ENOENT;
}
drv = kzalloc(sizeof(*drv), GFP_KERNEL);
if (!drv)
return -ENOMEM;
match = pdev->dev.platform_data;
drv->data = match->data;
if (!drv->data) {
ret = -ENODEV;
goto free_drv;
}
if (drv->data->get_version) {
speedbin_nvmem = of_nvmem_cell_get(np, NULL);
if (IS_ERR(speedbin_nvmem)) {
if (PTR_ERR(speedbin_nvmem) != -EPROBE_DEFER)
dev_err(cpu_dev,
"Could not get nvmem cell: %ld\n",
PTR_ERR(speedbin_nvmem));
ret = PTR_ERR(speedbin_nvmem);
goto free_drv;
}
ret = drv->data->get_version(cpu_dev,
speedbin_nvmem, &pvs_name, drv);
if (ret) {
nvmem_cell_put(speedbin_nvmem);
goto free_drv;
}
nvmem_cell_put(speedbin_nvmem);
}
of_node_put(np);
drv->names_opp_tables = kcalloc(num_possible_cpus(),
sizeof(*drv->names_opp_tables),
GFP_KERNEL);
if (!drv->names_opp_tables) {
ret = -ENOMEM;
goto free_drv;
}
drv->hw_opp_tables = kcalloc(num_possible_cpus(),
sizeof(*drv->hw_opp_tables),
GFP_KERNEL);
if (!drv->hw_opp_tables) {
ret = -ENOMEM;
goto free_opp_names;
}
drv->genpd_opp_tables = kcalloc(num_possible_cpus(),
sizeof(*drv->genpd_opp_tables),
GFP_KERNEL);
if (!drv->genpd_opp_tables) {
ret = -ENOMEM;
goto free_opp;
}
for_each_possible_cpu(cpu) {
cpu_dev = get_cpu_device(cpu);
if (NULL == cpu_dev) {
ret = -ENODEV;
goto free_genpd_opp;
}
if (drv->data->get_version) {
if (pvs_name) {
drv->names_opp_tables[cpu] = dev_pm_opp_set_prop_name(
cpu_dev,
pvs_name);
if (IS_ERR(drv->names_opp_tables[cpu])) {
ret = PTR_ERR(drv->names_opp_tables[cpu]);
dev_err(cpu_dev, "Failed to add OPP name %s\n",
pvs_name);
goto free_opp;
}
}
drv->hw_opp_tables[cpu] = dev_pm_opp_set_supported_hw(
cpu_dev, &drv->versions, 1);
if (IS_ERR(drv->hw_opp_tables[cpu])) {
ret = PTR_ERR(drv->hw_opp_tables[cpu]);
dev_err(cpu_dev,
"Failed to set supported hardware\n");
goto free_genpd_opp;
}
}
if (drv->data->genpd_names) {
drv->genpd_opp_tables[cpu] =
dev_pm_opp_attach_genpd(cpu_dev,
drv->data->genpd_names,
NULL);
if (IS_ERR(drv->genpd_opp_tables[cpu])) {
ret = PTR_ERR(drv->genpd_opp_tables[cpu]);
if (ret != -EPROBE_DEFER)
dev_err(cpu_dev,
"Could not attach to pm_domain: %d\n",
ret);
goto free_genpd_opp;
}
}
}
cpufreq_dt_pdev = platform_device_register_simple("cpufreq-dt", -1,
NULL, 0);
if (!IS_ERR(cpufreq_dt_pdev)) {
platform_set_drvdata(pdev, drv);
return 0;
}
ret = PTR_ERR(cpufreq_dt_pdev);
dev_err(cpu_dev, "Failed to register platform device\n");
free_genpd_opp:
for_each_possible_cpu(cpu) {
if (IS_ERR(drv->genpd_opp_tables[cpu]))
break;
dev_pm_opp_detach_genpd(drv->genpd_opp_tables[cpu]);
}
kfree(drv->genpd_opp_tables);
free_opp:
for_each_possible_cpu(cpu) {
if (IS_ERR(drv->names_opp_tables[cpu]))
break;
dev_pm_opp_put_prop_name(drv->names_opp_tables[cpu]);
}
for_each_possible_cpu(cpu) {
if (IS_ERR(drv->hw_opp_tables[cpu]))
break;
dev_pm_opp_put_supported_hw(drv->hw_opp_tables[cpu]);
}
kfree(drv->hw_opp_tables);
free_opp_names:
kfree(drv->names_opp_tables);
free_drv:
kfree(drv);
return ret;
}
static int qcom_cpufreq_remove(struct platform_device *pdev)
{
struct qcom_cpufreq_drv *drv = platform_get_drvdata(pdev);
unsigned int cpu;
platform_device_unregister(cpufreq_dt_pdev);
for_each_possible_cpu(cpu) {
dev_pm_opp_put_supported_hw(drv->names_opp_tables[cpu]);
dev_pm_opp_put_supported_hw(drv->hw_opp_tables[cpu]);
dev_pm_opp_detach_genpd(drv->genpd_opp_tables[cpu]);
}
kfree(drv->names_opp_tables);
kfree(drv->hw_opp_tables);
kfree(drv->genpd_opp_tables);
kfree(drv);
return 0;
}
static struct platform_driver qcom_cpufreq_driver = {
.probe = qcom_cpufreq_probe,
.remove = qcom_cpufreq_remove,
.driver = {
.name = "qcom-cpufreq-nvmem",
},
};
static const struct of_device_id qcom_cpufreq_match_list[] __initconst = {
{ .compatible = "qcom,apq8096", .data = &match_data_kryo },
{ .compatible = "qcom,msm8996", .data = &match_data_kryo },
{ .compatible = "qcom,qcs404", .data = &match_data_qcs404 },
{ .compatible = "qcom,ipq8064", .data = &match_data_krait },
{ .compatible = "qcom,apq8064", .data = &match_data_krait },
{ .compatible = "qcom,msm8974", .data = &match_data_krait },
{ .compatible = "qcom,msm8960", .data = &match_data_krait },
{},
};
MODULE_DEVICE_TABLE(of, qcom_cpufreq_match_list);
/*
* Since the driver depends on smem and nvmem drivers, which may
* return EPROBE_DEFER, all the real activity is done in the probe,
* which may be defered as well. The init here is only registering
* the driver and the platform device.
*/
static int __init qcom_cpufreq_init(void)
{
struct device_node *np = of_find_node_by_path("/");
const struct of_device_id *match;
int ret;
if (!np)
return -ENODEV;
match = of_match_node(qcom_cpufreq_match_list, np);
of_node_put(np);
if (!match)
return -ENODEV;
ret = platform_driver_register(&qcom_cpufreq_driver);
if (unlikely(ret < 0))
return ret;
cpufreq_pdev = platform_device_register_data(NULL, "qcom-cpufreq-nvmem",
-1, match, sizeof(*match));
ret = PTR_ERR_OR_ZERO(cpufreq_pdev);
if (0 == ret)
return 0;
platform_driver_unregister(&qcom_cpufreq_driver);
return ret;
}
module_init(qcom_cpufreq_init);
static void __exit qcom_cpufreq_exit(void)
{
platform_device_unregister(cpufreq_pdev);
platform_driver_unregister(&qcom_cpufreq_driver);
}
module_exit(qcom_cpufreq_exit);
MODULE_DESCRIPTION("Qualcomm Technologies, Inc. CPUfreq driver");
MODULE_LICENSE("GPL v2");