// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2019 MediaTek Inc.
/*
* Bluetooth support for MediaTek SDIO devices
*
* This file is written based on btsdio.c and btmtkuart.c.
*
* Author: Sean Wang <sean.wang@mediatek.com>
*
*/
#include <asm/unaligned.h>
#include <linux/atomic.h>
#include <linux/gpio/consumer.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/skbuff.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sdio_ids.h>
#include <linux/mmc/sdio_func.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "h4_recv.h"
#include "btmtk.h"
#define VERSION "0.1"
#define MTKBTSDIO_AUTOSUSPEND_DELAY 1000
static bool enable_autosuspend = true;
struct btmtksdio_data {
const char *fwname;
u16 chipid;
bool lp_mbox_supported;
};
static const struct btmtksdio_data mt7663_data = {
.fwname = FIRMWARE_MT7663,
.chipid = 0x7663,
.lp_mbox_supported = false,
};
static const struct btmtksdio_data mt7668_data = {
.fwname = FIRMWARE_MT7668,
.chipid = 0x7668,
.lp_mbox_supported = false,
};
static const struct btmtksdio_data mt7921_data = {
.fwname = FIRMWARE_MT7961,
.chipid = 0x7921,
.lp_mbox_supported = true,
};
static const struct sdio_device_id btmtksdio_table[] = {
{SDIO_DEVICE(SDIO_VENDOR_ID_MEDIATEK, SDIO_DEVICE_ID_MEDIATEK_MT7663),
.driver_data = (kernel_ulong_t)&mt7663_data },
{SDIO_DEVICE(SDIO_VENDOR_ID_MEDIATEK, SDIO_DEVICE_ID_MEDIATEK_MT7668),
.driver_data = (kernel_ulong_t)&mt7668_data },
{SDIO_DEVICE(SDIO_VENDOR_ID_MEDIATEK, SDIO_DEVICE_ID_MEDIATEK_MT7961),
.driver_data = (kernel_ulong_t)&mt7921_data },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE(sdio, btmtksdio_table);
#define MTK_REG_CHLPCR 0x4 /* W1S */
#define C_INT_EN_SET BIT(0)
#define C_INT_EN_CLR BIT(1)
#define C_FW_OWN_REQ_SET BIT(8) /* For write */
#define C_COM_DRV_OWN BIT(8) /* For read */
#define C_FW_OWN_REQ_CLR BIT(9)
#define MTK_REG_CSDIOCSR 0x8
#define SDIO_RE_INIT_EN BIT(0)
#define SDIO_INT_CTL BIT(2)
#define MTK_REG_CHCR 0xc
#define C_INT_CLR_CTRL BIT(1)
#define BT_RST_DONE BIT(8)
/* CHISR have the same bits field definition with CHIER */
#define MTK_REG_CHISR 0x10
#define MTK_REG_CHIER 0x14
#define FW_OWN_BACK_INT BIT(0)
#define RX_DONE_INT BIT(1)
#define TX_EMPTY BIT(2)
#define TX_FIFO_OVERFLOW BIT(8)
#define FW_MAILBOX_INT BIT(15)
#define INT_MASK GENMASK(15, 0)
#define RX_PKT_LEN GENMASK(31, 16)
#define MTK_REG_CSICR 0xc0
#define CSICR_CLR_MBOX_ACK BIT(0)
#define MTK_REG_PH2DSM0R 0xc4
#define PH2DSM0R_DRIVER_OWN BIT(0)
#define MTK_REG_PD2HRM0R 0xdc
#define PD2HRM0R_DRV_OWN BIT(0)
#define MTK_REG_CTDR 0x18
#define MTK_REG_CRDR 0x1c
#define MTK_REG_CRPLR 0x24
#define MTK_SDIO_BLOCK_SIZE 256
#define BTMTKSDIO_TX_WAIT_VND_EVT 1
#define BTMTKSDIO_HW_TX_READY 2
#define BTMTKSDIO_FUNC_ENABLED 3
#define BTMTKSDIO_PATCH_ENABLED 4
#define BTMTKSDIO_HW_RESET_ACTIVE 5
struct mtkbtsdio_hdr {
__le16 len;
__le16 reserved;
u8 bt_type;
} __packed;
struct btmtksdio_dev {
struct hci_dev *hdev;
struct sdio_func *func;
struct device *dev;
struct work_struct txrx_work;
unsigned long tx_state;
struct sk_buff_head txq;
struct sk_buff *evt_skb;
const struct btmtksdio_data *data;
struct gpio_desc *reset;
};
static int mtk_hci_wmt_sync(struct hci_dev *hdev,
struct btmtk_hci_wmt_params *wmt_params)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
struct btmtk_hci_wmt_evt_funcc *wmt_evt_funcc;
struct btmtk_hci_wmt_evt_reg *wmt_evt_reg;
u32 hlen, status = BTMTK_WMT_INVALID;
struct btmtk_hci_wmt_evt *wmt_evt;
struct btmtk_hci_wmt_cmd *wc;
struct btmtk_wmt_hdr *hdr;
int err;
/* Send the WMT command and wait until the WMT event returns */
hlen = sizeof(*hdr) + wmt_params->dlen;
if (hlen > 255)
return -EINVAL;
wc = kzalloc(hlen, GFP_KERNEL);
if (!wc)
return -ENOMEM;
hdr = &wc->hdr;
hdr->dir = 1;
hdr->op = wmt_params->op;
hdr->dlen = cpu_to_le16(wmt_params->dlen + 1);
hdr->flag = wmt_params->flag;
memcpy(wc->data, wmt_params->data, wmt_params->dlen);
set_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state);
err = __hci_cmd_send(hdev, 0xfc6f, hlen, wc);
if (err < 0) {
clear_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state);
goto err_free_wc;
}
/* The vendor specific WMT commands are all answered by a vendor
* specific event and will not have the Command Status or Command
* Complete as with usual HCI command flow control.
*
* After sending the command, wait for BTMTKSDIO_TX_WAIT_VND_EVT
* state to be cleared. The driver specific event receive routine
* will clear that state and with that indicate completion of the
* WMT command.
*/
err = wait_on_bit_timeout(&bdev->tx_state, BTMTKSDIO_TX_WAIT_VND_EVT,
TASK_INTERRUPTIBLE, HCI_INIT_TIMEOUT);
if (err == -EINTR) {
bt_dev_err(hdev, "Execution of wmt command interrupted");
clear_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state);
goto err_free_wc;
}
if (err) {
bt_dev_err(hdev, "Execution of wmt command timed out");
clear_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state);
err = -ETIMEDOUT;
goto err_free_wc;
}
/* Parse and handle the return WMT event */
wmt_evt = (struct btmtk_hci_wmt_evt *)bdev->evt_skb->data;
if (wmt_evt->whdr.op != hdr->op) {
bt_dev_err(hdev, "Wrong op received %d expected %d",
wmt_evt->whdr.op, hdr->op);
err = -EIO;
goto err_free_skb;
}
switch (wmt_evt->whdr.op) {
case BTMTK_WMT_SEMAPHORE:
if (wmt_evt->whdr.flag == 2)
status = BTMTK_WMT_PATCH_UNDONE;
else
status = BTMTK_WMT_PATCH_DONE;
break;
case BTMTK_WMT_FUNC_CTRL:
wmt_evt_funcc = (struct btmtk_hci_wmt_evt_funcc *)wmt_evt;
if (be16_to_cpu(wmt_evt_funcc->status) == 0x404)
status = BTMTK_WMT_ON_DONE;
else if (be16_to_cpu(wmt_evt_funcc->status) == 0x420)
status = BTMTK_WMT_ON_PROGRESS;
else
status = BTMTK_WMT_ON_UNDONE;
break;
case BTMTK_WMT_PATCH_DWNLD:
if (wmt_evt->whdr.flag == 2)
status = BTMTK_WMT_PATCH_DONE;
else if (wmt_evt->whdr.flag == 1)
status = BTMTK_WMT_PATCH_PROGRESS;
else
status = BTMTK_WMT_PATCH_UNDONE;
break;
case BTMTK_WMT_REGISTER:
wmt_evt_reg = (struct btmtk_hci_wmt_evt_reg *)wmt_evt;
if (le16_to_cpu(wmt_evt->whdr.dlen) == 12)
status = le32_to_cpu(wmt_evt_reg->val);
break;
}
if (wmt_params->status)
*wmt_params->status = status;
err_free_skb:
kfree_skb(bdev->evt_skb);
bdev->evt_skb = NULL;
err_free_wc:
kfree(wc);
return err;
}
static int btmtksdio_tx_packet(struct btmtksdio_dev *bdev,
struct sk_buff *skb)
{
struct mtkbtsdio_hdr *sdio_hdr;
int err;
/* Make sure that there are enough rooms for SDIO header */
if (unlikely(skb_headroom(skb) < sizeof(*sdio_hdr))) {
err = pskb_expand_head(skb, sizeof(*sdio_hdr), 0,
GFP_ATOMIC);
if (err < 0)
return err;
}
/* Prepend MediaTek SDIO Specific Header */
skb_push(skb, sizeof(*sdio_hdr));
sdio_hdr = (void *)skb->data;
sdio_hdr->len = cpu_to_le16(skb->len);
sdio_hdr->reserved = cpu_to_le16(0);
sdio_hdr->bt_type = hci_skb_pkt_type(skb);
clear_bit(BTMTKSDIO_HW_TX_READY, &bdev->tx_state);
err = sdio_writesb(bdev->func, MTK_REG_CTDR, skb->data,
round_up(skb->len, MTK_SDIO_BLOCK_SIZE));
if (err < 0)
goto err_skb_pull;
bdev->hdev->stat.byte_tx += skb->len;
kfree_skb(skb);
return 0;
err_skb_pull:
skb_pull(skb, sizeof(*sdio_hdr));
return err;
}
static u32 btmtksdio_drv_own_query(struct btmtksdio_dev *bdev)
{
return sdio_readl(bdev->func, MTK_REG_CHLPCR, NULL);
}
static u32 btmtksdio_drv_own_query_79xx(struct btmtksdio_dev *bdev)
{
return sdio_readl(bdev->func, MTK_REG_PD2HRM0R, NULL);
}
static u32 btmtksdio_chcr_query(struct btmtksdio_dev *bdev)
{
return sdio_readl(bdev->func, MTK_REG_CHCR, NULL);
}
static int btmtksdio_fw_pmctrl(struct btmtksdio_dev *bdev)
{
u32 status;
int err;
sdio_claim_host(bdev->func);
if (bdev->data->lp_mbox_supported &&
test_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state)) {
sdio_writel(bdev->func, CSICR_CLR_MBOX_ACK, MTK_REG_CSICR,
&err);
err = readx_poll_timeout(btmtksdio_drv_own_query_79xx, bdev,
status, !(status & PD2HRM0R_DRV_OWN),
2000, 1000000);
if (err < 0) {
bt_dev_err(bdev->hdev, "mailbox ACK not cleared");
goto out;
}
}
/* Return ownership to the device */
sdio_writel(bdev->func, C_FW_OWN_REQ_SET, MTK_REG_CHLPCR, &err);
if (err < 0)
goto out;
err = readx_poll_timeout(btmtksdio_drv_own_query, bdev, status,
!(status & C_COM_DRV_OWN), 2000, 1000000);
out:
sdio_release_host(bdev->func);
if (err < 0)
bt_dev_err(bdev->hdev, "Cannot return ownership to device");
return err;
}
static int btmtksdio_drv_pmctrl(struct btmtksdio_dev *bdev)
{
u32 status;
int err;
sdio_claim_host(bdev->func);
/* Get ownership from the device */
sdio_writel(bdev->func, C_FW_OWN_REQ_CLR, MTK_REG_CHLPCR, &err);
if (err < 0)
goto out;
err = readx_poll_timeout(btmtksdio_drv_own_query, bdev, status,
status & C_COM_DRV_OWN, 2000, 1000000);
if (!err && bdev->data->lp_mbox_supported &&
test_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state))
err = readx_poll_timeout(btmtksdio_drv_own_query_79xx, bdev,
status, status & PD2HRM0R_DRV_OWN,
2000, 1000000);
out:
sdio_release_host(bdev->func);
if (err < 0)
bt_dev_err(bdev->hdev, "Cannot get ownership from device");
return err;
}
static int btmtksdio_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
struct hci_event_hdr *hdr = (void *)skb->data;
int err;
/* When someone waits for the WMT event, the skb is being cloned
* and being processed the events from there then.
*/
if (test_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state)) {
bdev->evt_skb = skb_clone(skb, GFP_KERNEL);
if (!bdev->evt_skb) {
err = -ENOMEM;
goto err_out;
}
}
err = hci_recv_frame(hdev, skb);
if (err < 0)
goto err_free_skb;
if (hdr->evt == HCI_EV_WMT) {
if (test_and_clear_bit(BTMTKSDIO_TX_WAIT_VND_EVT,
&bdev->tx_state)) {
/* Barrier to sync with other CPUs */
smp_mb__after_atomic();
wake_up_bit(&bdev->tx_state, BTMTKSDIO_TX_WAIT_VND_EVT);
}
}
return 0;
err_free_skb:
kfree_skb(bdev->evt_skb);
bdev->evt_skb = NULL;
err_out:
return err;
}
static int btmtksdio_recv_acl(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
u16 handle = le16_to_cpu(hci_acl_hdr(skb)->handle);
switch (handle) {
case 0xfc6f:
/* Firmware dump from device: when the firmware hangs, the
* device can no longer suspend and thus disable auto-suspend.
*/
pm_runtime_forbid(bdev->dev);
fallthrough;
case 0x05ff:
case 0x05fe:
/* Firmware debug logging */
return hci_recv_diag(hdev, skb);
}
return hci_recv_frame(hdev, skb);
}
static const struct h4_recv_pkt mtk_recv_pkts[] = {
{ H4_RECV_ACL, .recv = btmtksdio_recv_acl },
{ H4_RECV_SCO, .recv = hci_recv_frame },
{ H4_RECV_EVENT, .recv = btmtksdio_recv_event },
};
static int btmtksdio_rx_packet(struct btmtksdio_dev *bdev, u16 rx_size)
{
const struct h4_recv_pkt *pkts = mtk_recv_pkts;
int pkts_count = ARRAY_SIZE(mtk_recv_pkts);
struct mtkbtsdio_hdr *sdio_hdr;
int err, i, pad_size;
struct sk_buff *skb;
u16 dlen;
if (rx_size < sizeof(*sdio_hdr))
return -EILSEQ;
/* A SDIO packet is exactly containing a Bluetooth packet */
skb = bt_skb_alloc(rx_size, GFP_KERNEL);
if (!skb)
return -ENOMEM;
skb_put(skb, rx_size);
err = sdio_readsb(bdev->func, skb->data, MTK_REG_CRDR, rx_size);
if (err < 0)
goto err_kfree_skb;
sdio_hdr = (void *)skb->data;
/* We assume the default error as -EILSEQ simply to make the error path
* be cleaner.
*/
err = -EILSEQ;
if (rx_size != le16_to_cpu(sdio_hdr->len)) {
bt_dev_err(bdev->hdev, "Rx size in sdio header is mismatched ");
goto err_kfree_skb;
}
hci_skb_pkt_type(skb) = sdio_hdr->bt_type;
/* Remove MediaTek SDIO header */
skb_pull(skb, sizeof(*sdio_hdr));
/* We have to dig into the packet to get payload size and then know how
* many padding bytes at the tail, these padding bytes should be removed
* before the packet is indicated to the core layer.
*/
for (i = 0; i < pkts_count; i++) {
if (sdio_hdr->bt_type == (&pkts[i])->type)
break;
}
if (i >= pkts_count) {
bt_dev_err(bdev->hdev, "Invalid bt type 0x%02x",
sdio_hdr->bt_type);
goto err_kfree_skb;
}
/* Remaining bytes cannot hold a header*/
if (skb->len < (&pkts[i])->hlen) {
bt_dev_err(bdev->hdev, "The size of bt header is mismatched");
goto err_kfree_skb;
}
switch ((&pkts[i])->lsize) {
case 1:
dlen = skb->data[(&pkts[i])->loff];
break;
case 2:
dlen = get_unaligned_le16(skb->data +
(&pkts[i])->loff);
break;
default:
goto err_kfree_skb;
}
pad_size = skb->len - (&pkts[i])->hlen - dlen;
/* Remaining bytes cannot hold a payload */
if (pad_size < 0) {
bt_dev_err(bdev->hdev, "The size of bt payload is mismatched");
goto err_kfree_skb;
}
/* Remove padding bytes */
skb_trim(skb, skb->len - pad_size);
/* Complete frame */
(&pkts[i])->recv(bdev->hdev, skb);
bdev->hdev->stat.byte_rx += rx_size;
return 0;
err_kfree_skb:
kfree_skb(skb);
return err;
}
static void btmtksdio_txrx_work(struct work_struct *work)
{
struct btmtksdio_dev *bdev = container_of(work, struct btmtksdio_dev,
txrx_work);
unsigned long txrx_timeout;
u32 int_status, rx_size;
struct sk_buff *skb;
int err;
pm_runtime_get_sync(bdev->dev);
sdio_claim_host(bdev->func);
/* Disable interrupt */
sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, 0);
txrx_timeout = jiffies + 5 * HZ;
do {
int_status = sdio_readl(bdev->func, MTK_REG_CHISR, NULL);
/* Ack an interrupt as soon as possible before any operation on
* hardware.
*
* Note that we don't ack any status during operations to avoid race
* condition between the host and the device such as it's possible to
* mistakenly ack RX_DONE for the next packet and then cause interrupts
* not be raised again but there is still pending data in the hardware
* FIFO.
*/
sdio_writel(bdev->func, int_status, MTK_REG_CHISR, NULL);
int_status &= INT_MASK;
if ((int_status & FW_MAILBOX_INT) &&
bdev->data->chipid == 0x7921) {
sdio_writel(bdev->func, PH2DSM0R_DRIVER_OWN,
MTK_REG_PH2DSM0R, 0);
}
if (int_status & FW_OWN_BACK_INT)
bt_dev_dbg(bdev->hdev, "Get fw own back");
if (int_status & TX_EMPTY)
set_bit(BTMTKSDIO_HW_TX_READY, &bdev->tx_state);
else if (unlikely(int_status & TX_FIFO_OVERFLOW))
bt_dev_warn(bdev->hdev, "Tx fifo overflow");
if (test_bit(BTMTKSDIO_HW_TX_READY, &bdev->tx_state)) {
skb = skb_dequeue(&bdev->txq);
if (skb) {
err = btmtksdio_tx_packet(bdev, skb);
if (err < 0) {
bdev->hdev->stat.err_tx++;
skb_queue_head(&bdev->txq, skb);
}
}
}
if (int_status & RX_DONE_INT) {
rx_size = sdio_readl(bdev->func, MTK_REG_CRPLR, NULL);
rx_size = (rx_size & RX_PKT_LEN) >> 16;
if (btmtksdio_rx_packet(bdev, rx_size) < 0)
bdev->hdev->stat.err_rx++;
}
} while (int_status || time_is_before_jiffies(txrx_timeout));
/* Enable interrupt */
sdio_writel(bdev->func, C_INT_EN_SET, MTK_REG_CHLPCR, 0);
sdio_release_host(bdev->func);
pm_runtime_mark_last_busy(bdev->dev);
pm_runtime_put_autosuspend(bdev->dev);
}
static void btmtksdio_interrupt(struct sdio_func *func)
{
struct btmtksdio_dev *bdev = sdio_get_drvdata(func);
/* Disable interrupt */
sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, 0);
schedule_work(&bdev->txrx_work);
}
static int btmtksdio_open(struct hci_dev *hdev)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
u32 val;
int err;
sdio_claim_host(bdev->func);
err = sdio_enable_func(bdev->func);
if (err < 0)
goto err_release_host;
set_bit(BTMTKSDIO_FUNC_ENABLED, &bdev->tx_state);
err = btmtksdio_drv_pmctrl(bdev);
if (err < 0)
goto err_disable_func;
/* Disable interrupt & mask out all interrupt sources */
sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, &err);
if (err < 0)
goto err_disable_func;
sdio_writel(bdev->func, 0, MTK_REG_CHIER, &err);
if (err < 0)
goto err_disable_func;
err = sdio_claim_irq(bdev->func, btmtksdio_interrupt);
if (err < 0)
goto err_disable_func;
err = sdio_set_block_size(bdev->func, MTK_SDIO_BLOCK_SIZE);
if (err < 0)
goto err_release_irq;
/* SDIO CMD 5 allows the SDIO device back to idle state an
* synchronous interrupt is supported in SDIO 4-bit mode
*/
val = sdio_readl(bdev->func, MTK_REG_CSDIOCSR, &err);
if (err < 0)
goto err_release_irq;
val |= SDIO_INT_CTL;
sdio_writel(bdev->func, val, MTK_REG_CSDIOCSR, &err);
if (err < 0)
goto err_release_irq;
/* Explitly set write-1-clear method */
val = sdio_readl(bdev->func, MTK_REG_CHCR, &err);
if (err < 0)
goto err_release_irq;
val |= C_INT_CLR_CTRL;
sdio_writel(bdev->func, val, MTK_REG_CHCR, &err);
if (err < 0)
goto err_release_irq;
/* Setup interrupt sources */
sdio_writel(bdev->func, RX_DONE_INT | TX_EMPTY | TX_FIFO_OVERFLOW,
MTK_REG_CHIER, &err);
if (err < 0)
goto err_release_irq;
/* Enable interrupt */
sdio_writel(bdev->func, C_INT_EN_SET, MTK_REG_CHLPCR, &err);
if (err < 0)
goto err_release_irq;
sdio_release_host(bdev->func);
return 0;
err_release_irq:
sdio_release_irq(bdev->func);
err_disable_func:
sdio_disable_func(bdev->func);
err_release_host:
sdio_release_host(bdev->func);
return err;
}
static int btmtksdio_close(struct hci_dev *hdev)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
sdio_claim_host(bdev->func);
/* Disable interrupt */
sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, NULL);
sdio_release_irq(bdev->func);
cancel_work_sync(&bdev->txrx_work);
btmtksdio_fw_pmctrl(bdev);
clear_bit(BTMTKSDIO_FUNC_ENABLED, &bdev->tx_state);
sdio_disable_func(bdev->func);
sdio_release_host(bdev->func);
return 0;
}
static int btmtksdio_flush(struct hci_dev *hdev)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
skb_queue_purge(&bdev->txq);
cancel_work_sync(&bdev->txrx_work);
return 0;
}
static int btmtksdio_func_query(struct hci_dev *hdev)
{
struct btmtk_hci_wmt_params wmt_params;
int status, err;
u8 param = 0;
/* Query whether the function is enabled */
wmt_params.op = BTMTK_WMT_FUNC_CTRL;
wmt_params.flag = 4;
wmt_params.dlen = sizeof(param);
wmt_params.data = ¶m;
wmt_params.status = &status;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to query function status (%d)", err);
return err;
}
return status;
}
static int mt76xx_setup(struct hci_dev *hdev, const char *fwname)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
struct btmtk_hci_wmt_params wmt_params;
struct btmtk_tci_sleep tci_sleep;
struct sk_buff *skb;
int err, status;
u8 param = 0x1;
/* Query whether the firmware is already download */
wmt_params.op = BTMTK_WMT_SEMAPHORE;
wmt_params.flag = 1;
wmt_params.dlen = 0;
wmt_params.data = NULL;
wmt_params.status = &status;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to query firmware status (%d)", err);
return err;
}
if (status == BTMTK_WMT_PATCH_DONE) {
bt_dev_info(hdev, "Firmware already downloaded");
goto ignore_setup_fw;
}
/* Setup a firmware which the device definitely requires */
err = btmtk_setup_firmware(hdev, fwname, mtk_hci_wmt_sync);
if (err < 0)
return err;
ignore_setup_fw:
/* Query whether the device is already enabled */
err = readx_poll_timeout(btmtksdio_func_query, hdev, status,
status < 0 || status != BTMTK_WMT_ON_PROGRESS,
2000, 5000000);
/* -ETIMEDOUT happens */
if (err < 0)
return err;
/* The other errors happen in btusb_mtk_func_query */
if (status < 0)
return status;
if (status == BTMTK_WMT_ON_DONE) {
bt_dev_info(hdev, "function already on");
goto ignore_func_on;
}
/* Enable Bluetooth protocol */
wmt_params.op = BTMTK_WMT_FUNC_CTRL;
wmt_params.flag = 0;
wmt_params.dlen = sizeof(param);
wmt_params.data = ¶m;
wmt_params.status = NULL;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to send wmt func ctrl (%d)", err);
return err;
}
set_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state);
ignore_func_on:
/* Apply the low power environment setup */
tci_sleep.mode = 0x5;
tci_sleep.duration = cpu_to_le16(0x640);
tci_sleep.host_duration = cpu_to_le16(0x640);
tci_sleep.host_wakeup_pin = 0;
tci_sleep.time_compensation = 0;
skb = __hci_cmd_sync(hdev, 0xfc7a, sizeof(tci_sleep), &tci_sleep,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(hdev, "Failed to apply low power setting (%d)", err);
return err;
}
kfree_skb(skb);
return 0;
}
static int mt79xx_setup(struct hci_dev *hdev, const char *fwname)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
struct btmtk_hci_wmt_params wmt_params;
u8 param = 0x1;
int err;
err = btmtk_setup_firmware_79xx(hdev, fwname, mtk_hci_wmt_sync);
if (err < 0) {
bt_dev_err(hdev, "Failed to setup 79xx firmware (%d)", err);
return err;
}
/* Enable Bluetooth protocol */
wmt_params.op = BTMTK_WMT_FUNC_CTRL;
wmt_params.flag = 0;
wmt_params.dlen = sizeof(param);
wmt_params.data = ¶m;
wmt_params.status = NULL;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to send wmt func ctrl (%d)", err);
return err;
}
hci_set_msft_opcode(hdev, 0xFD30);
hci_set_aosp_capable(hdev);
set_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state);
return err;
}
static int btmtksdio_mtk_reg_read(struct hci_dev *hdev, u32 reg, u32 *val)
{
struct btmtk_hci_wmt_params wmt_params;
struct reg_read_cmd reg_read = {
.type = 1,
.num = 1,
};
u32 status;
int err;
reg_read.addr = cpu_to_le32(reg);
wmt_params.op = BTMTK_WMT_REGISTER;
wmt_params.flag = BTMTK_WMT_REG_READ;
wmt_params.dlen = sizeof(reg_read);
wmt_params.data = ®_read;
wmt_params.status = &status;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to read reg (%d)", err);
return err;
}
*val = status;
return err;
}
static int btmtksdio_mtk_reg_write(struct hci_dev *hdev, u32 reg, u32 val, u32 mask)
{
struct btmtk_hci_wmt_params wmt_params;
const struct reg_write_cmd reg_write = {
.type = 1,
.num = 1,
.addr = cpu_to_le32(reg),
.data = cpu_to_le32(val),
.mask = cpu_to_le32(mask),
};
int err, status;
wmt_params.op = BTMTK_WMT_REGISTER;
wmt_params.flag = BTMTK_WMT_REG_WRITE;
wmt_params.dlen = sizeof(reg_write);
wmt_params.data = ®_write;
wmt_params.status = &status;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0)
bt_dev_err(hdev, "Failed to write reg (%d)", err);
return err;
}
static int btmtksdio_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
{
/* uses 1 as data path id for all the usecases */
*data_path_id = 1;
return 0;
}
static int btmtksdio_get_codec_config_data(struct hci_dev *hdev,
__u8 link, struct bt_codec *codec,
__u8 *ven_len, __u8 **ven_data)
{
int err = 0;
if (!ven_data || !ven_len)
return -EINVAL;
*ven_len = 0;
*ven_data = NULL;
if (link != ESCO_LINK) {
bt_dev_err(hdev, "Invalid link type(%u)", link);
return -EINVAL;
}
*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
if (!ven_data) {
err = -ENOMEM;
goto error;
}
/* supports only CVSD and mSBC offload codecs */
switch (codec->id) {
case 0x02:
**ven_data = 0x00;
break;
case 0x05:
**ven_data = 0x01;
break;
default:
err = -EINVAL;
bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
goto error;
}
/* codec and its capabilities are pre-defined to ids
* preset id = 0x00 represents CVSD codec with sampling rate 8K
* preset id = 0x01 represents mSBC codec with sampling rate 16K
*/
*ven_len = sizeof(__u8);
return err;
error:
kfree(*ven_data);
*ven_data = NULL;
return err;
}
static int btmtksdio_sco_setting(struct hci_dev *hdev)
{
const struct btmtk_sco sco_setting = {
.clock_config = 0x49,
.channel_format_config = 0x80,
};
struct sk_buff *skb;
u32 val;
int err;
/* Enable SCO over I2S/PCM for MediaTek chipset */
skb = __hci_cmd_sync(hdev, 0xfc72, sizeof(sco_setting),
&sco_setting, HCI_CMD_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
err = btmtksdio_mtk_reg_read(hdev, MT7921_PINMUX_0, &val);
if (err < 0)
return err;
val |= 0x11000000;
err = btmtksdio_mtk_reg_write(hdev, MT7921_PINMUX_0, val, ~0);
if (err < 0)
return err;
err = btmtksdio_mtk_reg_read(hdev, MT7921_PINMUX_1, &val);
if (err < 0)
return err;
val |= 0x00000101;
err = btmtksdio_mtk_reg_write(hdev, MT7921_PINMUX_1, val, ~0);
if (err < 0)
return err;
hdev->get_data_path_id = btmtksdio_get_data_path_id;
hdev->get_codec_config_data = btmtksdio_get_codec_config_data;
return err;
}
static int btmtksdio_reset_setting(struct hci_dev *hdev)
{
int err;
u32 val;
err = btmtksdio_mtk_reg_read(hdev, MT7921_PINMUX_1, &val);
if (err < 0)
return err;
val |= 0x20; /* set the pin (bit field 11:8) work as GPIO mode */
err = btmtksdio_mtk_reg_write(hdev, MT7921_PINMUX_1, val, ~0);
if (err < 0)
return err;
err = btmtksdio_mtk_reg_read(hdev, MT7921_BTSYS_RST, &val);
if (err < 0)
return err;
val |= MT7921_BTSYS_RST_WITH_GPIO;
return btmtksdio_mtk_reg_write(hdev, MT7921_BTSYS_RST, val, ~0);
}
static int btmtksdio_setup(struct hci_dev *hdev)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
ktime_t calltime, delta, rettime;
unsigned long long duration;
char fwname[64];
int err, dev_id;
u32 fw_version = 0, val;
calltime = ktime_get();
set_bit(BTMTKSDIO_HW_TX_READY, &bdev->tx_state);
switch (bdev->data->chipid) {
case 0x7921:
if (test_bit(BTMTKSDIO_HW_RESET_ACTIVE, &bdev->tx_state)) {
err = btmtksdio_mtk_reg_read(hdev, MT7921_DLSTATUS,
&val);
if (err < 0)
return err;
val &= ~BT_DL_STATE;
err = btmtksdio_mtk_reg_write(hdev, MT7921_DLSTATUS,
val, ~0);
if (err < 0)
return err;
btmtksdio_fw_pmctrl(bdev);
msleep(20);
btmtksdio_drv_pmctrl(bdev);
clear_bit(BTMTKSDIO_HW_RESET_ACTIVE, &bdev->tx_state);
}
err = btmtksdio_mtk_reg_read(hdev, 0x70010200, &dev_id);
if (err < 0) {
bt_dev_err(hdev, "Failed to get device id (%d)", err);
return err;
}
err = btmtksdio_mtk_reg_read(hdev, 0x80021004, &fw_version);
if (err < 0) {
bt_dev_err(hdev, "Failed to get fw version (%d)", err);
return err;
}
snprintf(fwname, sizeof(fwname),
"mediatek/BT_RAM_CODE_MT%04x_1_%x_hdr.bin",
dev_id & 0xffff, (fw_version & 0xff) + 1);
err = mt79xx_setup(hdev, fwname);
if (err < 0)
return err;
err = btmtksdio_fw_pmctrl(bdev);
if (err < 0)
return err;
err = btmtksdio_drv_pmctrl(bdev);
if (err < 0)
return err;
/* Enable SCO over I2S/PCM */
err = btmtksdio_sco_setting(hdev);
if (err < 0) {
bt_dev_err(hdev, "Failed to enable SCO setting (%d)", err);
return err;
}
/* Enable GPIO reset mechanism */
if (bdev->reset) {
err = btmtksdio_reset_setting(hdev);
if (err < 0) {
bt_dev_err(hdev, "Failed to enable Reset setting (%d)", err);
devm_gpiod_put(bdev->dev, bdev->reset);
bdev->reset = NULL;
}
}
/* Valid LE States quirk for MediaTek 7921 */
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
break;
case 0x7663:
case 0x7668:
err = mt76xx_setup(hdev, bdev->data->fwname);
if (err < 0)
return err;
break;
default:
return -ENODEV;
}
rettime = ktime_get();
delta = ktime_sub(rettime, calltime);
duration = (unsigned long long)ktime_to_ns(delta) >> 10;
pm_runtime_set_autosuspend_delay(bdev->dev,
MTKBTSDIO_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(bdev->dev);
err = pm_runtime_set_active(bdev->dev);
if (err < 0)
return err;
/* Default forbid runtime auto suspend, that can be allowed by
* enable_autosuspend flag or the PM runtime entry under sysfs.
*/
pm_runtime_forbid(bdev->dev);
pm_runtime_enable(bdev->dev);
if (enable_autosuspend)
pm_runtime_allow(bdev->dev);
bt_dev_info(hdev, "Device setup in %llu usecs", duration);
return 0;
}
static int btmtksdio_shutdown(struct hci_dev *hdev)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
struct btmtk_hci_wmt_params wmt_params;
u8 param = 0x0;
int err;
/* Get back the state to be consistent with the state
* in btmtksdio_setup.
*/
pm_runtime_get_sync(bdev->dev);
/* Disable the device */
wmt_params.op = BTMTK_WMT_FUNC_CTRL;
wmt_params.flag = 0;
wmt_params.dlen = sizeof(param);
wmt_params.data = ¶m;
wmt_params.status = NULL;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to send wmt func ctrl (%d)", err);
return err;
}
pm_runtime_put_noidle(bdev->dev);
pm_runtime_disable(bdev->dev);
return 0;
}
static int btmtksdio_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
switch (hci_skb_pkt_type(skb)) {
case HCI_COMMAND_PKT:
hdev->stat.cmd_tx++;
break;
case HCI_ACLDATA_PKT:
hdev->stat.acl_tx++;
break;
case HCI_SCODATA_PKT:
hdev->stat.sco_tx++;
break;
default:
return -EILSEQ;
}
skb_queue_tail(&bdev->txq, skb);
schedule_work(&bdev->txrx_work);
return 0;
}
static void btmtksdio_cmd_timeout(struct hci_dev *hdev)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
u32 status;
int err;
if (!bdev->reset || bdev->data->chipid != 0x7921)
return;
pm_runtime_get_sync(bdev->dev);
if (test_and_set_bit(BTMTKSDIO_HW_RESET_ACTIVE, &bdev->tx_state))
return;
sdio_claim_host(bdev->func);
sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, NULL);
skb_queue_purge(&bdev->txq);
cancel_work_sync(&bdev->txrx_work);
gpiod_set_value_cansleep(bdev->reset, 1);
msleep(100);
gpiod_set_value_cansleep(bdev->reset, 0);
err = readx_poll_timeout(btmtksdio_chcr_query, bdev, status,
status & BT_RST_DONE, 100000, 2000000);
if (err < 0) {
bt_dev_err(hdev, "Failed to reset (%d)", err);
goto err;
}
clear_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state);
err:
sdio_release_host(bdev->func);
pm_runtime_put_noidle(bdev->dev);
pm_runtime_disable(bdev->dev);
hci_reset_dev(hdev);
}
static bool btmtksdio_sdio_wakeup(struct hci_dev *hdev)
{
struct btmtksdio_dev *bdev = hci_get_drvdata(hdev);
bool may_wakeup = device_may_wakeup(bdev->dev);
const struct btmtk_wakeon bt_awake = {
.mode = 0x1,
.gpo = 0,
.active_high = 0x1,
.enable_delay = cpu_to_le16(0xc80),
.wakeup_delay = cpu_to_le16(0x20),
};
if (may_wakeup && bdev->data->chipid == 0x7921) {
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc27, sizeof(bt_awake),
&bt_awake, HCI_CMD_TIMEOUT);
if (IS_ERR(skb))
may_wakeup = false;
else
kfree_skb(skb);
}
return may_wakeup;
}
static int btmtksdio_probe(struct sdio_func *func,
const struct sdio_device_id *id)
{
struct btmtksdio_dev *bdev;
struct hci_dev *hdev;
int err;
bdev = devm_kzalloc(&func->dev, sizeof(*bdev), GFP_KERNEL);
if (!bdev)
return -ENOMEM;
bdev->data = (void *)id->driver_data;
if (!bdev->data)
return -ENODEV;
bdev->dev = &func->dev;
bdev->func = func;
INIT_WORK(&bdev->txrx_work, btmtksdio_txrx_work);
skb_queue_head_init(&bdev->txq);
/* Initialize and register HCI device */
hdev = hci_alloc_dev();
if (!hdev) {
dev_err(&func->dev, "Can't allocate HCI device\n");
return -ENOMEM;
}
bdev->hdev = hdev;
hdev->bus = HCI_SDIO;
hci_set_drvdata(hdev, bdev);
hdev->open = btmtksdio_open;
hdev->close = btmtksdio_close;
hdev->cmd_timeout = btmtksdio_cmd_timeout;
hdev->flush = btmtksdio_flush;
hdev->setup = btmtksdio_setup;
hdev->shutdown = btmtksdio_shutdown;
hdev->send = btmtksdio_send_frame;
hdev->wakeup = btmtksdio_sdio_wakeup;
hdev->set_bdaddr = btmtk_set_bdaddr;
SET_HCIDEV_DEV(hdev, &func->dev);
hdev->manufacturer = 70;
set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
sdio_set_drvdata(func, bdev);
err = hci_register_dev(hdev);
if (err < 0) {
dev_err(&func->dev, "Can't register HCI device\n");
hci_free_dev(hdev);
return err;
}
/* pm_runtime_enable would be done after the firmware is being
* downloaded because the core layer probably already enables
* runtime PM for this func such as the case host->caps &
* MMC_CAP_POWER_OFF_CARD.
*/
if (pm_runtime_enabled(bdev->dev))
pm_runtime_disable(bdev->dev);
/* As explaination in drivers/mmc/core/sdio_bus.c tells us:
* Unbound SDIO functions are always suspended.
* During probe, the function is set active and the usage count
* is incremented. If the driver supports runtime PM,
* it should call pm_runtime_put_noidle() in its probe routine and
* pm_runtime_get_noresume() in its remove routine.
*
* So, put a pm_runtime_put_noidle here !
*/
pm_runtime_put_noidle(bdev->dev);
err = device_init_wakeup(bdev->dev, true);
if (err)
bt_dev_err(hdev, "failed to initialize device wakeup");
bdev->dev->of_node = of_find_compatible_node(NULL, NULL,
"mediatek,mt7921s-bluetooth");
bdev->reset = devm_gpiod_get_optional(bdev->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(bdev->reset))
err = PTR_ERR(bdev->reset);
return err;
}
static void btmtksdio_remove(struct sdio_func *func)
{
struct btmtksdio_dev *bdev = sdio_get_drvdata(func);
struct hci_dev *hdev;
if (!bdev)
return;
/* Be consistent the state in btmtksdio_probe */
pm_runtime_get_noresume(bdev->dev);
hdev = bdev->hdev;
sdio_set_drvdata(func, NULL);
hci_unregister_dev(hdev);
hci_free_dev(hdev);
}
#ifdef CONFIG_PM
static int btmtksdio_runtime_suspend(struct device *dev)
{
struct sdio_func *func = dev_to_sdio_func(dev);
struct btmtksdio_dev *bdev;
int err;
bdev = sdio_get_drvdata(func);
if (!bdev)
return 0;
if (!test_bit(BTMTKSDIO_FUNC_ENABLED, &bdev->tx_state))
return 0;
sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
err = btmtksdio_fw_pmctrl(bdev);
bt_dev_dbg(bdev->hdev, "status (%d) return ownership to device", err);
return err;
}
static int btmtksdio_runtime_resume(struct device *dev)
{
struct sdio_func *func = dev_to_sdio_func(dev);
struct btmtksdio_dev *bdev;
int err;
bdev = sdio_get_drvdata(func);
if (!bdev)
return 0;
if (!test_bit(BTMTKSDIO_FUNC_ENABLED, &bdev->tx_state))
return 0;
err = btmtksdio_drv_pmctrl(bdev);
bt_dev_dbg(bdev->hdev, "status (%d) get ownership from device", err);
return err;
}
static UNIVERSAL_DEV_PM_OPS(btmtksdio_pm_ops, btmtksdio_runtime_suspend,
btmtksdio_runtime_resume, NULL);
#define BTMTKSDIO_PM_OPS (&btmtksdio_pm_ops)
#else /* CONFIG_PM */
#define BTMTKSDIO_PM_OPS NULL
#endif /* CONFIG_PM */
static struct sdio_driver btmtksdio_driver = {
.name = "btmtksdio",
.probe = btmtksdio_probe,
.remove = btmtksdio_remove,
.id_table = btmtksdio_table,
.drv = {
.owner = THIS_MODULE,
.pm = BTMTKSDIO_PM_OPS,
}
};
module_sdio_driver(btmtksdio_driver);
module_param(enable_autosuspend, bool, 0644);
MODULE_PARM_DESC(enable_autosuspend, "Enable autosuspend by default");
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_DESCRIPTION("MediaTek Bluetooth SDIO driver ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");