// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
* cpuid support routines
*
* derived from arch/x86/kvm/x86.c
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
* Copyright IBM Corporation, 2008
*/
#include <linux/kvm_host.h>
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <linux/uaccess.h>
#include <linux/sched/stat.h>
#include <asm/processor.h>
#include <asm/user.h>
#include <asm/fpu/xstate.h>
#include "cpuid.h"
#include "lapic.h"
#include "mmu.h"
#include "trace.h"
#include "pmu.h"
/*
* Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
* aligned to sizeof(unsigned long) because it's not accessed via bitops.
*/
u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
EXPORT_SYMBOL_GPL(kvm_cpu_caps);
static u32 xstate_required_size(u64 xstate_bv, bool compacted)
{
int feature_bit = 0;
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
xstate_bv &= XFEATURE_MASK_EXTEND;
while (xstate_bv) {
if (xstate_bv & 0x1) {
u32 eax, ebx, ecx, edx, offset;
cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
offset = compacted ? ret : ebx;
ret = max(ret, offset + eax);
}
xstate_bv >>= 1;
feature_bit++;
}
return ret;
}
#define F feature_bit
static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
{
struct kvm_cpuid_entry2 *e;
int i;
for (i = 0; i < nent; i++) {
e = &entries[i];
if (e->function == function && (e->index == index ||
!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
return e;
}
return NULL;
}
static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
{
struct kvm_cpuid_entry2 *best;
/*
* The existing code assumes virtual address is 48-bit or 57-bit in the
* canonical address checks; exit if it is ever changed.
*/
best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
if (best) {
int vaddr_bits = (best->eax & 0xff00) >> 8;
if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
return -EINVAL;
}
return 0;
}
void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 1, 0);
if (best) {
/* Update OSXSAVE bit */
if (boot_cpu_has(X86_FEATURE_XSAVE))
cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
cpuid_entry_change(best, X86_FEATURE_APIC,
vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
}
best = kvm_find_cpuid_entry(vcpu, 7, 0);
if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
cpuid_entry_change(best, X86_FEATURE_OSPKE,
kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
if (best)
best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
if (kvm_hlt_in_guest(vcpu->kvm) && best &&
(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
/*
* save the feature bitmap to avoid cpuid lookup for every PV
* operation
*/
if (best)
vcpu->arch.pv_cpuid.features = best->eax;
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
if (best)
cpuid_entry_change(best, X86_FEATURE_MWAIT,
vcpu->arch.ia32_misc_enable_msr &
MSR_IA32_MISC_ENABLE_MWAIT);
}
}
static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
struct kvm_cpuid_entry2 *best;
kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
best = kvm_find_cpuid_entry(vcpu, 1, 0);
if (best && apic) {
if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
apic->lapic_timer.timer_mode_mask = 3 << 17;
else
apic->lapic_timer.timer_mode_mask = 1 << 17;
kvm_apic_set_version(vcpu);
}
best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
if (!best)
vcpu->arch.guest_supported_xcr0 = 0;
else
vcpu->arch.guest_supported_xcr0 =
(best->eax | ((u64)best->edx << 32)) & supported_xcr0;
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
kvm_mmu_reset_context(vcpu);
kvm_pmu_refresh(vcpu);
vcpu->arch.cr4_guest_rsvd_bits =
__cr4_reserved_bits(guest_cpuid_has, vcpu);
kvm_x86_ops.update_exception_bitmap(vcpu);
}
static int is_efer_nx(void)
{
return host_efer & EFER_NX;
}
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_cpuid_entry2 *e, *entry;
entry = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
e = &vcpu->arch.cpuid_entries[i];
if (e->function == 0x80000001) {
entry = e;
break;
}
}
if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
cpuid_entry_clear(entry, X86_FEATURE_NX);
printk(KERN_INFO "kvm: guest NX capability removed\n");
}
}
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
if (!best || best->eax < 0x80000008)
goto not_found;
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
if (best)
return best->eax & 0xff;
not_found:
return 36;
}
/* when an old userspace process fills a new kernel module */
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid *cpuid,
struct kvm_cpuid_entry __user *entries)
{
int r, i;
struct kvm_cpuid_entry *e = NULL;
struct kvm_cpuid_entry2 *e2 = NULL;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
return -E2BIG;
if (cpuid->nent) {
e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
if (IS_ERR(e))
return PTR_ERR(e);
e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
if (!e2) {
r = -ENOMEM;
goto out_free_cpuid;
}
}
for (i = 0; i < cpuid->nent; i++) {
e2[i].function = e[i].function;
e2[i].eax = e[i].eax;
e2[i].ebx = e[i].ebx;
e2[i].ecx = e[i].ecx;
e2[i].edx = e[i].edx;
e2[i].index = 0;
e2[i].flags = 0;
e2[i].padding[0] = 0;
e2[i].padding[1] = 0;
e2[i].padding[2] = 0;
}
r = kvm_check_cpuid(e2, cpuid->nent);
if (r) {
kvfree(e2);
goto out_free_cpuid;
}
kvfree(vcpu->arch.cpuid_entries);
vcpu->arch.cpuid_entries = e2;
vcpu->arch.cpuid_nent = cpuid->nent;
cpuid_fix_nx_cap(vcpu);
kvm_update_cpuid_runtime(vcpu);
kvm_vcpu_after_set_cpuid(vcpu);
out_free_cpuid:
kvfree(e);
return r;
}
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
struct kvm_cpuid_entry2 *e2 = NULL;
int r;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
return -E2BIG;
if (cpuid->nent) {
e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
if (IS_ERR(e2))
return PTR_ERR(e2);
}
r = kvm_check_cpuid(e2, cpuid->nent);
if (r) {
kvfree(e2);
return r;
}
kvfree(vcpu->arch.cpuid_entries);
vcpu->arch.cpuid_entries = e2;
vcpu->arch.cpuid_nent = cpuid->nent;
kvm_update_cpuid_runtime(vcpu);
kvm_vcpu_after_set_cpuid(vcpu);
return 0;
}
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent < vcpu->arch.cpuid_nent)
goto out;
r = -EFAULT;
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
goto out;
return 0;
out:
cpuid->nent = vcpu->arch.cpuid_nent;
return r;
}
static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
{
const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
struct kvm_cpuid_entry2 entry;
reverse_cpuid_check(leaf);
kvm_cpu_caps[leaf] &= mask;
cpuid_count(cpuid.function, cpuid.index,
&entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
}
void kvm_set_cpu_caps(void)
{
unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
#ifdef CONFIG_X86_64
unsigned int f_gbpages = F(GBPAGES);
unsigned int f_lm = F(LM);
#else
unsigned int f_gbpages = 0;
unsigned int f_lm = 0;
#endif
BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
sizeof(boot_cpu_data.x86_capability));
memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
sizeof(kvm_cpu_caps));
kvm_cpu_cap_mask(CPUID_1_ECX,
/*
* NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
* advertised to guests via CPUID!
*/
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
0 /* DS-CPL, VMX, SMX, EST */ |
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
F(F16C) | F(RDRAND)
);
/* KVM emulates x2apic in software irrespective of host support. */
kvm_cpu_cap_set(X86_FEATURE_X2APIC);
kvm_cpu_cap_mask(CPUID_1_EDX,
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
0 /* Reserved, DS, ACPI */ | F(MMX) |
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
0 /* HTT, TM, Reserved, PBE */
);
kvm_cpu_cap_mask(CPUID_7_0_EBX,
F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
);
kvm_cpu_cap_mask(CPUID_7_ECX,
F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
);
/* Set LA57 based on hardware capability. */
if (cpuid_ecx(7) & F(LA57))
kvm_cpu_cap_set(X86_FEATURE_LA57);
/*
* PKU not yet implemented for shadow paging and requires OSPKE
* to be set on the host. Clear it if that is not the case
*/
if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
kvm_cpu_cap_clear(X86_FEATURE_PKU);
kvm_cpu_cap_mask(CPUID_7_EDX,
F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
F(SERIALIZE) | F(TSXLDTRK)
);
/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
if (boot_cpu_has(X86_FEATURE_STIBP))
kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
kvm_cpu_cap_mask(CPUID_7_1_EAX,
F(AVX512_BF16)
);
kvm_cpu_cap_mask(CPUID_D_1_EAX,
F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
);
kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
F(TOPOEXT) | F(PERFCTR_CORE)
);
kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* Reserved */ |
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
);
if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
F(CLZERO) | F(XSAVEERPTR) |
F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
);
/*
* AMD has separate bits for each SPEC_CTRL bit.
* arch/x86/kernel/cpu/bugs.c is kind enough to
* record that in cpufeatures so use them.
*/
if (boot_cpu_has(X86_FEATURE_IBPB))
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
if (boot_cpu_has(X86_FEATURE_IBRS))
kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
if (boot_cpu_has(X86_FEATURE_STIBP))
kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
/*
* The preference is to use SPEC CTRL MSR instead of the
* VIRT_SPEC MSR.
*/
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
!boot_cpu_has(X86_FEATURE_AMD_SSBD))
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
/*
* Hide all SVM features by default, SVM will set the cap bits for
* features it emulates and/or exposes for L1.
*/
kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
F(PMM) | F(PMM_EN)
);
}
EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
struct kvm_cpuid_array {
struct kvm_cpuid_entry2 *entries;
int maxnent;
int nent;
};
static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
u32 function, u32 index)
{
struct kvm_cpuid_entry2 *entry;
if (array->nent >= array->maxnent)
return NULL;
entry = &array->entries[array->nent++];
entry->function = function;
entry->index = index;
entry->flags = 0;
cpuid_count(entry->function, entry->index,
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
switch (function) {
case 4:
case 7:
case 0xb:
case 0xd:
case 0xf:
case 0x10:
case 0x12:
case 0x14:
case 0x17:
case 0x18:
case 0x1f:
case 0x8000001d:
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
break;
}
return entry;
}
static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
{
struct kvm_cpuid_entry2 *entry;
if (array->nent >= array->maxnent)
return -E2BIG;
entry = &array->entries[array->nent];
entry->function = func;
entry->index = 0;
entry->flags = 0;
switch (func) {
case 0:
entry->eax = 7;
++array->nent;
break;
case 1:
entry->ecx = F(MOVBE);
++array->nent;
break;
case 7:
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
entry->eax = 0;
entry->ecx = F(RDPID);
++array->nent;
default:
break;
}
return 0;
}
static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
{
struct kvm_cpuid_entry2 *entry;
int r, i, max_idx;
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
r = -E2BIG;
entry = do_host_cpuid(array, function, 0);
if (!entry)
goto out;
switch (function) {
case 0:
/* Limited to the highest leaf implemented in KVM. */
entry->eax = min(entry->eax, 0x1fU);
break;
case 1:
cpuid_entry_override(entry, CPUID_1_EDX);
cpuid_entry_override(entry, CPUID_1_ECX);
break;
case 2:
/*
* On ancient CPUs, function 2 entries are STATEFUL. That is,
* CPUID(function=2, index=0) may return different results each
* time, with the least-significant byte in EAX enumerating the
* number of times software should do CPUID(2, 0).
*
* Modern CPUs, i.e. every CPU KVM has *ever* run on are less
* idiotic. Intel's SDM states that EAX & 0xff "will always
* return 01H. Software should ignore this value and not
* interpret it as an informational descriptor", while AMD's
* APM states that CPUID(2) is reserved.
*
* WARN if a frankenstein CPU that supports virtualization and
* a stateful CPUID.0x2 is encountered.
*/
WARN_ON_ONCE((entry->eax & 0xff) > 1);
break;
/* functions 4 and 0x8000001d have additional index. */
case 4:
case 0x8000001d:
/*
* Read entries until the cache type in the previous entry is
* zero, i.e. indicates an invalid entry.
*/
for (i = 1; entry->eax & 0x1f; ++i) {
entry = do_host_cpuid(array, function, i);
if (!entry)
goto out;
}
break;
case 6: /* Thermal management */
entry->eax = 0x4; /* allow ARAT */
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
break;
/* function 7 has additional index. */
case 7:
entry->eax = min(entry->eax, 1u);
cpuid_entry_override(entry, CPUID_7_0_EBX);
cpuid_entry_override(entry, CPUID_7_ECX);
cpuid_entry_override(entry, CPUID_7_EDX);
/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
if (entry->eax == 1) {
entry = do_host_cpuid(array, function, 1);
if (!entry)
goto out;
cpuid_entry_override(entry, CPUID_7_1_EAX);
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
}
break;
case 9:
break;
case 0xa: { /* Architectural Performance Monitoring */
struct x86_pmu_capability cap;
union cpuid10_eax eax;
union cpuid10_edx edx;
perf_get_x86_pmu_capability(&cap);
/*
* Only support guest architectural pmu on a host
* with architectural pmu.
*/
if (!cap.version)
memset(&cap, 0, sizeof(cap));
eax.split.version_id = min(cap.version, 2);
eax.split.num_counters = cap.num_counters_gp;
eax.split.bit_width = cap.bit_width_gp;
eax.split.mask_length = cap.events_mask_len;
edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
edx.split.bit_width_fixed = cap.bit_width_fixed;
edx.split.reserved = 0;
entry->eax = eax.full;
entry->ebx = cap.events_mask;
entry->ecx = 0;
entry->edx = edx.full;
break;
}
/*
* Per Intel's SDM, the 0x1f is a superset of 0xb,
* thus they can be handled by common code.
*/
case 0x1f:
case 0xb:
/*
* Populate entries until the level type (ECX[15:8]) of the
* previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is
* the starting entry, filled by the primary do_host_cpuid().
*/
for (i = 1; entry->ecx & 0xff00; ++i) {
entry = do_host_cpuid(array, function, i);
if (!entry)
goto out;
}
break;
case 0xd:
entry->eax &= supported_xcr0;
entry->ebx = xstate_required_size(supported_xcr0, false);
entry->ecx = entry->ebx;
entry->edx &= supported_xcr0 >> 32;
if (!supported_xcr0)
break;
entry = do_host_cpuid(array, function, 1);
if (!entry)
goto out;
cpuid_entry_override(entry, CPUID_D_1_EAX);
if (entry->eax & (F(XSAVES)|F(XSAVEC)))
entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
true);
else {
WARN_ON_ONCE(supported_xss != 0);
entry->ebx = 0;
}
entry->ecx &= supported_xss;
entry->edx &= supported_xss >> 32;
for (i = 2; i < 64; ++i) {
bool s_state;
if (supported_xcr0 & BIT_ULL(i))
s_state = false;
else if (supported_xss & BIT_ULL(i))
s_state = true;
else
continue;
entry = do_host_cpuid(array, function, i);
if (!entry)
goto out;
/*
* The supported check above should have filtered out
* invalid sub-leafs. Only valid sub-leafs should
* reach this point, and they should have a non-zero
* save state size. Furthermore, check whether the
* processor agrees with supported_xcr0/supported_xss
* on whether this is an XCR0- or IA32_XSS-managed area.
*/
if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
--array->nent;
continue;
}
entry->edx = 0;
}
break;
/* Intel PT */
case 0x14:
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
if (!do_host_cpuid(array, function, i))
goto out;
}
break;
case KVM_CPUID_SIGNATURE: {
static const char signature[12] = "KVMKVMKVM\0\0";
const u32 *sigptr = (const u32 *)signature;
entry->eax = KVM_CPUID_FEATURES;
entry->ebx = sigptr[0];
entry->ecx = sigptr[1];
entry->edx = sigptr[2];
break;
}
case KVM_CPUID_FEATURES:
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
(1 << KVM_FEATURE_NOP_IO_DELAY) |
(1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_ASYNC_PF) |
(1 << KVM_FEATURE_PV_EOI) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
(1 << KVM_FEATURE_PV_UNHALT) |
(1 << KVM_FEATURE_PV_TLB_FLUSH) |
(1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
(1 << KVM_FEATURE_PV_SEND_IPI) |
(1 << KVM_FEATURE_POLL_CONTROL) |
(1 << KVM_FEATURE_PV_SCHED_YIELD) |
(1 << KVM_FEATURE_ASYNC_PF_INT);
if (sched_info_on())
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
break;
case 0x80000000:
entry->eax = min(entry->eax, 0x8000001f);
break;
case 0x80000001:
cpuid_entry_override(entry, CPUID_8000_0001_EDX);
cpuid_entry_override(entry, CPUID_8000_0001_ECX);
break;
case 0x80000006:
/* L2 cache and TLB: pass through host info. */
break;
case 0x80000007: /* Advanced power management */
/* invariant TSC is CPUID.80000007H:EDX[8] */
entry->edx &= (1 << 8);
/* mask against host */
entry->edx &= boot_cpu_data.x86_power;
entry->eax = entry->ebx = entry->ecx = 0;
break;
case 0x80000008: {
unsigned g_phys_as = (entry->eax >> 16) & 0xff;
unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
unsigned phys_as = entry->eax & 0xff;
if (!g_phys_as)
g_phys_as = phys_as;
entry->eax = g_phys_as | (virt_as << 8);
entry->edx = 0;
cpuid_entry_override(entry, CPUID_8000_0008_EBX);
break;
}
case 0x8000000A:
if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
entry->eax = 1; /* SVM revision 1 */
entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
ASID emulation to nested SVM */
entry->ecx = 0; /* Reserved */
cpuid_entry_override(entry, CPUID_8000_000A_EDX);
break;
case 0x80000019:
entry->ecx = entry->edx = 0;
break;
case 0x8000001a:
case 0x8000001e:
break;
/* Support memory encryption cpuid if host supports it */
case 0x8000001F:
if (!boot_cpu_has(X86_FEATURE_SEV))
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
/*Add support for Centaur's CPUID instruction*/
case 0xC0000000:
/*Just support up to 0xC0000004 now*/
entry->eax = min(entry->eax, 0xC0000004);
break;
case 0xC0000001:
cpuid_entry_override(entry, CPUID_C000_0001_EDX);
break;
case 3: /* Processor serial number */
case 5: /* MONITOR/MWAIT */
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
default:
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
r = 0;
out:
put_cpu();
return r;
}
static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
unsigned int type)
{
if (type == KVM_GET_EMULATED_CPUID)
return __do_cpuid_func_emulated(array, func);
return __do_cpuid_func(array, func);
}
#define CENTAUR_CPUID_SIGNATURE 0xC0000000
static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
unsigned int type)
{
u32 limit;
int r;
if (func == CENTAUR_CPUID_SIGNATURE &&
boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
return 0;
r = do_cpuid_func(array, func, type);
if (r)
return r;
limit = array->entries[array->nent - 1].eax;
for (func = func + 1; func <= limit; ++func) {
r = do_cpuid_func(array, func, type);
if (r)
break;
}
return r;
}
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
__u32 num_entries, unsigned int ioctl_type)
{
int i;
__u32 pad[3];
if (ioctl_type != KVM_GET_EMULATED_CPUID)
return false;
/*
* We want to make sure that ->padding is being passed clean from
* userspace in case we want to use it for something in the future.
*
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
* have to give ourselves satisfied only with the emulated side. /me
* sheds a tear.
*/
for (i = 0; i < num_entries; i++) {
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
return true;
if (pad[0] || pad[1] || pad[2])
return true;
}
return false;
}
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries,
unsigned int type)
{
static const u32 funcs[] = {
0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
};
struct kvm_cpuid_array array = {
.nent = 0,
};
int r, i;
if (cpuid->nent < 1)
return -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
if (sanity_check_entries(entries, cpuid->nent, type))
return -EINVAL;
array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
cpuid->nent));
if (!array.entries)
return -ENOMEM;
array.maxnent = cpuid->nent;
for (i = 0; i < ARRAY_SIZE(funcs); i++) {
r = get_cpuid_func(&array, funcs[i], type);
if (r)
goto out_free;
}
cpuid->nent = array.nent;
if (copy_to_user(entries, array.entries,
array.nent * sizeof(struct kvm_cpuid_entry2)))
r = -EFAULT;
out_free:
vfree(array.entries);
return r;
}
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
u32 function, u32 index)
{
return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
function, index);
}
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
/*
* Intel CPUID semantics treats any query for an out-of-range leaf as if the
* highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
* returns all zeroes for any undefined leaf, whether or not the leaf is in
* range. Centaur/VIA follows Intel semantics.
*
* A leaf is considered out-of-range if its function is higher than the maximum
* supported leaf of its associated class or if its associated class does not
* exist.
*
* There are three primary classes to be considered, with their respective
* ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
* class exists if a guest CPUID entry for its <base> leaf exists. For a given
* class, CPUID.<base>.EAX contains the max supported leaf for the class.
*
* - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
* - Hypervisor: 0x40000000 - 0x4fffffff
* - Extended: 0x80000000 - 0xbfffffff
* - Centaur: 0xc0000000 - 0xcfffffff
*
* The Hypervisor class is further subdivided into sub-classes that each act as
* their own indepdent class associated with a 0x100 byte range. E.g. if Qemu
* is advertising support for both HyperV and KVM, the resulting Hypervisor
* CPUID sub-classes are:
*
* - HyperV: 0x40000000 - 0x400000ff
* - KVM: 0x40000100 - 0x400001ff
*/
static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
{
struct kvm_cpuid_entry2 *basic, *class;
u32 function = *fn_ptr;
basic = kvm_find_cpuid_entry(vcpu, 0, 0);
if (!basic)
return NULL;
if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
return NULL;
if (function >= 0x40000000 && function <= 0x4fffffff)
class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
else if (function >= 0xc0000000)
class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
else
class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
if (class && function <= class->eax)
return NULL;
/*
* Leaf specific adjustments are also applied when redirecting to the
* max basic entry, e.g. if the max basic leaf is 0xb but there is no
* entry for CPUID.0xb.index (see below), then the output value for EDX
* needs to be pulled from CPUID.0xb.1.
*/
*fn_ptr = basic->eax;
/*
* The class does not exist or the requested function is out of range;
* the effective CPUID entry is the max basic leaf. Note, the index of
* the original requested leaf is observed!
*/
return kvm_find_cpuid_entry(vcpu, basic->eax, index);
}
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
u32 *ecx, u32 *edx, bool exact_only)
{
u32 orig_function = *eax, function = *eax, index = *ecx;
struct kvm_cpuid_entry2 *entry;
bool exact, used_max_basic = false;
entry = kvm_find_cpuid_entry(vcpu, function, index);
exact = !!entry;
if (!entry && !exact_only) {
entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
used_max_basic = !!entry;
}
if (entry) {
*eax = entry->eax;
*ebx = entry->ebx;
*ecx = entry->ecx;
*edx = entry->edx;
if (function == 7 && index == 0) {
u64 data;
if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
(data & TSX_CTRL_CPUID_CLEAR))
*ebx &= ~(F(RTM) | F(HLE));
}
} else {
*eax = *ebx = *ecx = *edx = 0;
/*
* When leaf 0BH or 1FH is defined, CL is pass-through
* and EDX is always the x2APIC ID, even for undefined
* subleaves. Index 1 will exist iff the leaf is
* implemented, so we pass through CL iff leaf 1
* exists. EDX can be copied from any existing index.
*/
if (function == 0xb || function == 0x1f) {
entry = kvm_find_cpuid_entry(vcpu, function, 1);
if (entry) {
*ecx = index & 0xff;
*edx = entry->edx;
}
}
}
trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
used_max_basic);
return exact;
}
EXPORT_SYMBOL_GPL(kvm_cpuid);
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
u32 eax, ebx, ecx, edx;
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
return 1;
eax = kvm_rax_read(vcpu);
ecx = kvm_rcx_read(vcpu);
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
kvm_rax_write(vcpu, eax);
kvm_rbx_write(vcpu, ebx);
kvm_rcx_write(vcpu, ecx);
kvm_rdx_write(vcpu, edx);
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);