// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt) "SMP alternatives: " fmt
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/perf_event.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/stringify.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/memory.h>
#include <linux/stop_machine.h>
#include <linux/slab.h>
#include <linux/kdebug.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/bsearch.h>
#include <linux/sync_core.h>
#include <asm/text-patching.h>
#include <asm/alternative.h>
#include <asm/sections.h>
#include <asm/mce.h>
#include <asm/nmi.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/insn.h>
#include <asm/io.h>
#include <asm/fixmap.h>
#include <asm/paravirt.h>
#include <asm/asm-prototypes.h>
int __read_mostly alternatives_patched;
EXPORT_SYMBOL_GPL(alternatives_patched);
#define MAX_PATCH_LEN (255-1)
#define DA_ALL (~0)
#define DA_ALT 0x01
#define DA_RET 0x02
#define DA_RETPOLINE 0x04
#define DA_ENDBR 0x08
#define DA_SMP 0x10
static unsigned int __initdata_or_module debug_alternative;
static int __init debug_alt(char *str)
{
if (str && *str == '=')
str++;
if (!str || kstrtouint(str, 0, &debug_alternative))
debug_alternative = DA_ALL;
return 1;
}
__setup("debug-alternative", debug_alt);
static int noreplace_smp;
static int __init setup_noreplace_smp(char *str)
{
noreplace_smp = 1;
return 1;
}
__setup("noreplace-smp", setup_noreplace_smp);
#define DPRINTK(type, fmt, args...) \
do { \
if (debug_alternative & DA_##type) \
printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
} while (0)
#define DUMP_BYTES(type, buf, len, fmt, args...) \
do { \
if (unlikely(debug_alternative & DA_##type)) { \
int j; \
\
if (!(len)) \
break; \
\
printk(KERN_DEBUG pr_fmt(fmt), ##args); \
for (j = 0; j < (len) - 1; j++) \
printk(KERN_CONT "%02hhx ", buf[j]); \
printk(KERN_CONT "%02hhx\n", buf[j]); \
} \
} while (0)
static const unsigned char x86nops[] =
{
BYTES_NOP1,
BYTES_NOP2,
BYTES_NOP3,
BYTES_NOP4,
BYTES_NOP5,
BYTES_NOP6,
BYTES_NOP7,
BYTES_NOP8,
};
const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
{
NULL,
x86nops,
x86nops + 1,
x86nops + 1 + 2,
x86nops + 1 + 2 + 3,
x86nops + 1 + 2 + 3 + 4,
x86nops + 1 + 2 + 3 + 4 + 5,
x86nops + 1 + 2 + 3 + 4 + 5 + 6,
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
};
/*
* Fill the buffer with a single effective instruction of size @len.
*
* In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
* for every single-byte NOP, try to generate the maximally available NOP of
* size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
* each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
* *jump* over instead of executing long and daft NOPs.
*/
static void __init_or_module add_nop(u8 *instr, unsigned int len)
{
u8 *target = instr + len;
if (!len)
return;
if (len <= ASM_NOP_MAX) {
memcpy(instr, x86_nops[len], len);
return;
}
if (len < 128) {
__text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE);
instr += JMP8_INSN_SIZE;
} else {
__text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE);
instr += JMP32_INSN_SIZE;
}
for (;instr < target; instr++)
*instr = INT3_INSN_OPCODE;
}
extern s32 __retpoline_sites[], __retpoline_sites_end[];
extern s32 __return_sites[], __return_sites_end[];
extern s32 __cfi_sites[], __cfi_sites_end[];
extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
extern s32 __smp_locks[], __smp_locks_end[];
void text_poke_early(void *addr, const void *opcode, size_t len);
/*
* Matches NOP and NOPL, not any of the other possible NOPs.
*/
static bool insn_is_nop(struct insn *insn)
{
if (insn->opcode.bytes[0] == 0x90)
return true;
if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
return true;
/* TODO: more nops */
return false;
}
/*
* Find the offset of the first non-NOP instruction starting at @offset
* but no further than @len.
*/
static int skip_nops(u8 *instr, int offset, int len)
{
struct insn insn;
for (; offset < len; offset += insn.length) {
if (insn_decode_kernel(&insn, &instr[offset]))
break;
if (!insn_is_nop(&insn))
break;
}
return offset;
}
/*
* Optimize a sequence of NOPs, possibly preceded by an unconditional jump
* to the end of the NOP sequence into a single NOP.
*/
static bool __init_or_module
__optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target)
{
int i = *next - insn->length;
switch (insn->opcode.bytes[0]) {
case JMP8_INSN_OPCODE:
case JMP32_INSN_OPCODE:
*prev = i;
*target = *next + insn->immediate.value;
return false;
}
if (insn_is_nop(insn)) {
int nop = i;
*next = skip_nops(instr, *next, len);
if (*target && *next == *target)
nop = *prev;
add_nop(instr + nop, *next - nop);
DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next);
return true;
}
*target = 0;
return false;
}
/*
* "noinline" to cause control flow change and thus invalidate I$ and
* cause refetch after modification.
*/
static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
{
int prev, target = 0;
for (int next, i = 0; i < len; i = next) {
struct insn insn;
if (insn_decode_kernel(&insn, &instr[i]))
return;
next = i + insn.length;
__optimize_nops(instr, len, &insn, &next, &prev, &target);
}
}
/*
* In this context, "source" is where the instructions are placed in the
* section .altinstr_replacement, for example during kernel build by the
* toolchain.
* "Destination" is where the instructions are being patched in by this
* machinery.
*
* The source offset is:
*
* src_imm = target - src_next_ip (1)
*
* and the target offset is:
*
* dst_imm = target - dst_next_ip (2)
*
* so rework (1) as an expression for target like:
*
* target = src_imm + src_next_ip (1a)
*
* and substitute in (2) to get:
*
* dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
*
* Now, since the instruction stream is 'identical' at src and dst (it
* is being copied after all) it can be stated that:
*
* src_next_ip = src + ip_offset
* dst_next_ip = dst + ip_offset (4)
*
* Substitute (4) in (3) and observe ip_offset being cancelled out to
* obtain:
*
* dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
* = src_imm + src - dst + ip_offset - ip_offset
* = src_imm + src - dst (5)
*
* IOW, only the relative displacement of the code block matters.
*/
#define apply_reloc_n(n_, p_, d_) \
do { \
s32 v = *(s##n_ *)(p_); \
v += (d_); \
BUG_ON((v >> 31) != (v >> (n_-1))); \
*(s##n_ *)(p_) = (s##n_)v; \
} while (0)
static __always_inline
void apply_reloc(int n, void *ptr, uintptr_t diff)
{
switch (n) {
case 1: apply_reloc_n(8, ptr, diff); break;
case 2: apply_reloc_n(16, ptr, diff); break;
case 4: apply_reloc_n(32, ptr, diff); break;
default: BUG();
}
}
static __always_inline
bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
{
u8 *target = src + offset;
/*
* If the target is inside the patched block, it's relative to the
* block itself and does not need relocation.
*/
return (target < src || target > src + src_len);
}
static void __init_or_module noinline
apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len)
{
int prev, target = 0;
for (int next, i = 0; i < len; i = next) {
struct insn insn;
if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
return;
next = i + insn.length;
if (__optimize_nops(buf, len, &insn, &next, &prev, &target))
continue;
switch (insn.opcode.bytes[0]) {
case 0x0f:
if (insn.opcode.bytes[1] < 0x80 ||
insn.opcode.bytes[1] > 0x8f)
break;
fallthrough; /* Jcc.d32 */
case 0x70 ... 0x7f: /* Jcc.d8 */
case JMP8_INSN_OPCODE:
case JMP32_INSN_OPCODE:
case CALL_INSN_OPCODE:
if (need_reloc(next + insn.immediate.value, src, src_len)) {
apply_reloc(insn.immediate.nbytes,
buf + i + insn_offset_immediate(&insn),
src - dest);
}
/*
* Where possible, convert JMP.d32 into JMP.d8.
*/
if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
s32 imm = insn.immediate.value;
imm += src - dest;
imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
if ((imm >> 31) == (imm >> 7)) {
buf[i+0] = JMP8_INSN_OPCODE;
buf[i+1] = (s8)imm;
memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
}
}
break;
}
if (insn_rip_relative(&insn)) {
if (need_reloc(next + insn.displacement.value, src, src_len)) {
apply_reloc(insn.displacement.nbytes,
buf + i + insn_offset_displacement(&insn),
src - dest);
}
}
}
}
/*
* Replace instructions with better alternatives for this CPU type. This runs
* before SMP is initialized to avoid SMP problems with self modifying code.
* This implies that asymmetric systems where APs have less capabilities than
* the boot processor are not handled. Tough. Make sure you disable such
* features by hand.
*
* Marked "noinline" to cause control flow change and thus insn cache
* to refetch changed I$ lines.
*/
void __init_or_module noinline apply_alternatives(struct alt_instr *start,
struct alt_instr *end)
{
struct alt_instr *a;
u8 *instr, *replacement;
u8 insn_buff[MAX_PATCH_LEN];
DPRINTK(ALT, "alt table %px, -> %px", start, end);
/*
* The scan order should be from start to end. A later scanned
* alternative code can overwrite previously scanned alternative code.
* Some kernel functions (e.g. memcpy, memset, etc) use this order to
* patch code.
*
* So be careful if you want to change the scan order to any other
* order.
*/
for (a = start; a < end; a++) {
int insn_buff_sz = 0;
instr = (u8 *)&a->instr_offset + a->instr_offset;
replacement = (u8 *)&a->repl_offset + a->repl_offset;
BUG_ON(a->instrlen > sizeof(insn_buff));
BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
/*
* Patch if either:
* - feature is present
* - feature not present but ALT_FLAG_NOT is set to mean,
* patch if feature is *NOT* present.
*/
if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
optimize_nops(instr, a->instrlen);
continue;
}
DPRINTK(ALT, "feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
(a->flags & ALT_FLAG_NOT) ? "!" : "",
a->cpuid >> 5,
a->cpuid & 0x1f,
instr, instr, a->instrlen,
replacement, a->replacementlen);
memcpy(insn_buff, replacement, a->replacementlen);
insn_buff_sz = a->replacementlen;
for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
insn_buff[insn_buff_sz] = 0x90;
apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen);
DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr);
DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
text_poke_early(instr, insn_buff, insn_buff_sz);
}
}
static inline bool is_jcc32(struct insn *insn)
{
/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
}
#if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
/*
* CALL/JMP *%\reg
*/
static int emit_indirect(int op, int reg, u8 *bytes)
{
int i = 0;
u8 modrm;
switch (op) {
case CALL_INSN_OPCODE:
modrm = 0x10; /* Reg = 2; CALL r/m */
break;
case JMP32_INSN_OPCODE:
modrm = 0x20; /* Reg = 4; JMP r/m */
break;
default:
WARN_ON_ONCE(1);
return -1;
}
if (reg >= 8) {
bytes[i++] = 0x41; /* REX.B prefix */
reg -= 8;
}
modrm |= 0xc0; /* Mod = 3 */
modrm += reg;
bytes[i++] = 0xff; /* opcode */
bytes[i++] = modrm;
return i;
}
static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
{
u8 op = insn->opcode.bytes[0];
int i = 0;
/*
* Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
* tail-calls. Deal with them.
*/
if (is_jcc32(insn)) {
bytes[i++] = op;
op = insn->opcode.bytes[1];
goto clang_jcc;
}
if (insn->length == 6)
bytes[i++] = 0x2e; /* CS-prefix */
switch (op) {
case CALL_INSN_OPCODE:
__text_gen_insn(bytes+i, op, addr+i,
__x86_indirect_call_thunk_array[reg],
CALL_INSN_SIZE);
i += CALL_INSN_SIZE;
break;
case JMP32_INSN_OPCODE:
clang_jcc:
__text_gen_insn(bytes+i, op, addr+i,
__x86_indirect_jump_thunk_array[reg],
JMP32_INSN_SIZE);
i += JMP32_INSN_SIZE;
break;
default:
WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
return -1;
}
WARN_ON_ONCE(i != insn->length);
return i;
}
/*
* Rewrite the compiler generated retpoline thunk calls.
*
* For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
* indirect instructions, avoiding the extra indirection.
*
* For example, convert:
*
* CALL __x86_indirect_thunk_\reg
*
* into:
*
* CALL *%\reg
*
* It also tries to inline spectre_v2=retpoline,lfence when size permits.
*/
static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
{
retpoline_thunk_t *target;
int reg, ret, i = 0;
u8 op, cc;
target = addr + insn->length + insn->immediate.value;
reg = target - __x86_indirect_thunk_array;
if (WARN_ON_ONCE(reg & ~0xf))
return -1;
/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
BUG_ON(reg == 4);
if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
!cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
return emit_call_track_retpoline(addr, insn, reg, bytes);
return -1;
}
op = insn->opcode.bytes[0];
/*
* Convert:
*
* Jcc.d32 __x86_indirect_thunk_\reg
*
* into:
*
* Jncc.d8 1f
* [ LFENCE ]
* JMP *%\reg
* [ NOP ]
* 1:
*/
if (is_jcc32(insn)) {
cc = insn->opcode.bytes[1] & 0xf;
cc ^= 1; /* invert condition */
bytes[i++] = 0x70 + cc; /* Jcc.d8 */
bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
op = JMP32_INSN_OPCODE;
}
/*
* For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
*/
if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
bytes[i++] = 0x0f;
bytes[i++] = 0xae;
bytes[i++] = 0xe8; /* LFENCE */
}
ret = emit_indirect(op, reg, bytes + i);
if (ret < 0)
return ret;
i += ret;
/*
* The compiler is supposed to EMIT an INT3 after every unconditional
* JMP instruction due to AMD BTC. However, if the compiler is too old
* or SLS isn't enabled, we still need an INT3 after indirect JMPs
* even on Intel.
*/
if (op == JMP32_INSN_OPCODE && i < insn->length)
bytes[i++] = INT3_INSN_OPCODE;
for (; i < insn->length;)
bytes[i++] = BYTES_NOP1;
return i;
}
/*
* Generated by 'objtool --retpoline'.
*/
void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
{
s32 *s;
for (s = start; s < end; s++) {
void *addr = (void *)s + *s;
struct insn insn;
int len, ret;
u8 bytes[16];
u8 op1, op2;
ret = insn_decode_kernel(&insn, addr);
if (WARN_ON_ONCE(ret < 0))
continue;
op1 = insn.opcode.bytes[0];
op2 = insn.opcode.bytes[1];
switch (op1) {
case CALL_INSN_OPCODE:
case JMP32_INSN_OPCODE:
break;
case 0x0f: /* escape */
if (op2 >= 0x80 && op2 <= 0x8f)
break;
fallthrough;
default:
WARN_ON_ONCE(1);
continue;
}
DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
addr, addr, insn.length,
addr + insn.length + insn.immediate.value);
len = patch_retpoline(addr, &insn, bytes);
if (len == insn.length) {
optimize_nops(bytes, len);
DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr);
DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
text_poke_early(addr, bytes, len);
}
}
}
#ifdef CONFIG_RETHUNK
#ifdef CONFIG_CALL_THUNKS
void (*x86_return_thunk)(void) __ro_after_init = &__x86_return_thunk;
#endif
/*
* Rewrite the compiler generated return thunk tail-calls.
*
* For example, convert:
*
* JMP __x86_return_thunk
*
* into:
*
* RET
*/
static int patch_return(void *addr, struct insn *insn, u8 *bytes)
{
int i = 0;
/* Patch the custom return thunks... */
if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
i = JMP32_INSN_SIZE;
__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
} else {
/* ... or patch them out if not needed. */
bytes[i++] = RET_INSN_OPCODE;
}
for (; i < insn->length;)
bytes[i++] = INT3_INSN_OPCODE;
return i;
}
void __init_or_module noinline apply_returns(s32 *start, s32 *end)
{
s32 *s;
/*
* Do not patch out the default return thunks if those needed are the
* ones generated by the compiler.
*/
if (cpu_feature_enabled(X86_FEATURE_RETHUNK) &&
(x86_return_thunk == __x86_return_thunk))
return;
for (s = start; s < end; s++) {
void *dest = NULL, *addr = (void *)s + *s;
struct insn insn;
int len, ret;
u8 bytes[16];
u8 op;
ret = insn_decode_kernel(&insn, addr);
if (WARN_ON_ONCE(ret < 0))
continue;
op = insn.opcode.bytes[0];
if (op == JMP32_INSN_OPCODE)
dest = addr + insn.length + insn.immediate.value;
if (__static_call_fixup(addr, op, dest) ||
WARN_ONCE(dest != &__x86_return_thunk,
"missing return thunk: %pS-%pS: %*ph",
addr, dest, 5, addr))
continue;
DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
addr, addr, insn.length,
addr + insn.length + insn.immediate.value);
len = patch_return(addr, &insn, bytes);
if (len == insn.length) {
DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr);
DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
text_poke_early(addr, bytes, len);
}
}
}
#else
void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
#endif /* CONFIG_RETHUNK */
#else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
#endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
#ifdef CONFIG_X86_KERNEL_IBT
static void __init_or_module poison_endbr(void *addr, bool warn)
{
u32 endbr, poison = gen_endbr_poison();
if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
return;
if (!is_endbr(endbr)) {
WARN_ON_ONCE(warn);
return;
}
DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
/*
* When we have IBT, the lack of ENDBR will trigger #CP
*/
DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
text_poke_early(addr, &poison, 4);
}
/*
* Generated by: objtool --ibt
*/
void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end)
{
s32 *s;
for (s = start; s < end; s++) {
void *addr = (void *)s + *s;
poison_endbr(addr, true);
if (IS_ENABLED(CONFIG_FINEIBT))
poison_endbr(addr - 16, false);
}
}
#else
void __init_or_module apply_ibt_endbr(s32 *start, s32 *end) { }
#endif /* CONFIG_X86_KERNEL_IBT */
#ifdef CONFIG_FINEIBT
enum cfi_mode {
CFI_DEFAULT,
CFI_OFF,
CFI_KCFI,
CFI_FINEIBT,
};
static enum cfi_mode cfi_mode __ro_after_init = CFI_DEFAULT;
static bool cfi_rand __ro_after_init = true;
static u32 cfi_seed __ro_after_init;
/*
* Re-hash the CFI hash with a boot-time seed while making sure the result is
* not a valid ENDBR instruction.
*/
static u32 cfi_rehash(u32 hash)
{
hash ^= cfi_seed;
while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
bool lsb = hash & 1;
hash >>= 1;
if (lsb)
hash ^= 0x80200003;
}
return hash;
}
static __init int cfi_parse_cmdline(char *str)
{
if (!str)
return -EINVAL;
while (str) {
char *next = strchr(str, ',');
if (next) {
*next = 0;
next++;
}
if (!strcmp(str, "auto")) {
cfi_mode = CFI_DEFAULT;
} else if (!strcmp(str, "off")) {
cfi_mode = CFI_OFF;
cfi_rand = false;
} else if (!strcmp(str, "kcfi")) {
cfi_mode = CFI_KCFI;
} else if (!strcmp(str, "fineibt")) {
cfi_mode = CFI_FINEIBT;
} else if (!strcmp(str, "norand")) {
cfi_rand = false;
} else {
pr_err("Ignoring unknown cfi option (%s).", str);
}
str = next;
}
return 0;
}
early_param("cfi", cfi_parse_cmdline);
/*
* kCFI FineIBT
*
* __cfi_\func: __cfi_\func:
* movl $0x12345678,%eax // 5 endbr64 // 4
* nop subl $0x12345678,%r10d // 7
* nop jz 1f // 2
* nop ud2 // 2
* nop 1: nop // 1
* nop
* nop
* nop
* nop
* nop
* nop
* nop
*
*
* caller: caller:
* movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6
* addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4
* je 1f // 2 nop4 // 4
* ud2 // 2
* 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5
*
*/
asm( ".pushsection .rodata \n"
"fineibt_preamble_start: \n"
" endbr64 \n"
" subl $0x12345678, %r10d \n"
" je fineibt_preamble_end \n"
" ud2 \n"
" nop \n"
"fineibt_preamble_end: \n"
".popsection\n"
);
extern u8 fineibt_preamble_start[];
extern u8 fineibt_preamble_end[];
#define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
#define fineibt_preamble_hash 7
asm( ".pushsection .rodata \n"
"fineibt_caller_start: \n"
" movl $0x12345678, %r10d \n"
" sub $16, %r11 \n"
ASM_NOP4
"fineibt_caller_end: \n"
".popsection \n"
);
extern u8 fineibt_caller_start[];
extern u8 fineibt_caller_end[];
#define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
#define fineibt_caller_hash 2
#define fineibt_caller_jmp (fineibt_caller_size - 2)
static u32 decode_preamble_hash(void *addr)
{
u8 *p = addr;
/* b8 78 56 34 12 mov $0x12345678,%eax */
if (p[0] == 0xb8)
return *(u32 *)(addr + 1);
return 0; /* invalid hash value */
}
static u32 decode_caller_hash(void *addr)
{
u8 *p = addr;
/* 41 ba 78 56 34 12 mov $0x12345678,%r10d */
if (p[0] == 0x41 && p[1] == 0xba)
return -*(u32 *)(addr + 2);
/* e8 0c 78 56 34 12 jmp.d8 +12 */
if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
return -*(u32 *)(addr + 2);
return 0; /* invalid hash value */
}
/* .retpoline_sites */
static int cfi_disable_callers(s32 *start, s32 *end)
{
/*
* Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
* in tact for later usage. Also see decode_caller_hash() and
* cfi_rewrite_callers().
*/
const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
s32 *s;
for (s = start; s < end; s++) {
void *addr = (void *)s + *s;
u32 hash;
addr -= fineibt_caller_size;
hash = decode_caller_hash(addr);
if (!hash) /* nocfi callers */
continue;
text_poke_early(addr, jmp, 2);
}
return 0;
}
static int cfi_enable_callers(s32 *start, s32 *end)
{
/*
* Re-enable kCFI, undo what cfi_disable_callers() did.
*/
const u8 mov[] = { 0x41, 0xba };
s32 *s;
for (s = start; s < end; s++) {
void *addr = (void *)s + *s;
u32 hash;
addr -= fineibt_caller_size;
hash = decode_caller_hash(addr);
if (!hash) /* nocfi callers */
continue;
text_poke_early(addr, mov, 2);
}
return 0;
}
/* .cfi_sites */
static int cfi_rand_preamble(s32 *start, s32 *end)
{
s32 *s;
for (s = start; s < end; s++) {
void *addr = (void *)s + *s;
u32 hash;
hash = decode_preamble_hash(addr);
if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
addr, addr, 5, addr))
return -EINVAL;
hash = cfi_rehash(hash);
text_poke_early(addr + 1, &hash, 4);
}
return 0;
}
static int cfi_rewrite_preamble(s32 *start, s32 *end)
{
s32 *s;
for (s = start; s < end; s++) {
void *addr = (void *)s + *s;
u32 hash;
hash = decode_preamble_hash(addr);
if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
addr, addr, 5, addr))
return -EINVAL;
text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
}
return 0;
}
/* .retpoline_sites */
static int cfi_rand_callers(s32 *start, s32 *end)
{
s32 *s;
for (s = start; s < end; s++) {
void *addr = (void *)s + *s;
u32 hash;
addr -= fineibt_caller_size;
hash = decode_caller_hash(addr);
if (hash) {
hash = -cfi_rehash(hash);
text_poke_early(addr + 2, &hash, 4);
}
}
return 0;
}
static int cfi_rewrite_callers(s32 *start, s32 *end)
{
s32 *s;
for (s = start; s < end; s++) {
void *addr = (void *)s + *s;
u32 hash;
addr -= fineibt_caller_size;
hash = decode_caller_hash(addr);
if (hash) {
text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
text_poke_early(addr + fineibt_caller_hash, &hash, 4);
}
/* rely on apply_retpolines() */
}
return 0;
}
static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
s32 *start_cfi, s32 *end_cfi, bool builtin)
{
int ret;
if (WARN_ONCE(fineibt_preamble_size != 16,
"FineIBT preamble wrong size: %ld", fineibt_preamble_size))
return;
if (cfi_mode == CFI_DEFAULT) {
cfi_mode = CFI_KCFI;
if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
cfi_mode = CFI_FINEIBT;
}
/*
* Rewrite the callers to not use the __cfi_ stubs, such that we might
* rewrite them. This disables all CFI. If this succeeds but any of the
* later stages fails, we're without CFI.
*/
ret = cfi_disable_callers(start_retpoline, end_retpoline);
if (ret)
goto err;
if (cfi_rand) {
if (builtin)
cfi_seed = get_random_u32();
ret = cfi_rand_preamble(start_cfi, end_cfi);
if (ret)
goto err;
ret = cfi_rand_callers(start_retpoline, end_retpoline);
if (ret)
goto err;
}
switch (cfi_mode) {
case CFI_OFF:
if (builtin)
pr_info("Disabling CFI\n");
return;
case CFI_KCFI:
ret = cfi_enable_callers(start_retpoline, end_retpoline);
if (ret)
goto err;
if (builtin)
pr_info("Using kCFI\n");
return;
case CFI_FINEIBT:
ret = cfi_rewrite_preamble(start_cfi, end_cfi);
if (ret)
goto err;
ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
if (ret)
goto err;
if (builtin)
pr_info("Using FineIBT CFI\n");
return;
default:
break;
}
err:
pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
}
#else
static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
s32 *start_cfi, s32 *end_cfi, bool builtin)
{
}
#endif
void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
s32 *start_cfi, s32 *end_cfi)
{
return __apply_fineibt(start_retpoline, end_retpoline,
start_cfi, end_cfi,
/* .builtin = */ false);
}
#ifdef CONFIG_SMP
static void alternatives_smp_lock(const s32 *start, const s32 *end,
u8 *text, u8 *text_end)
{
const s32 *poff;
for (poff = start; poff < end; poff++) {
u8 *ptr = (u8 *)poff + *poff;
if (!*poff || ptr < text || ptr >= text_end)
continue;
/* turn DS segment override prefix into lock prefix */
if (*ptr == 0x3e)
text_poke(ptr, ((unsigned char []){0xf0}), 1);
}
}
static void alternatives_smp_unlock(const s32 *start, const s32 *end,
u8 *text, u8 *text_end)
{
const s32 *poff;
for (poff = start; poff < end; poff++) {
u8 *ptr = (u8 *)poff + *poff;
if (!*poff || ptr < text || ptr >= text_end)
continue;
/* turn lock prefix into DS segment override prefix */
if (*ptr == 0xf0)
text_poke(ptr, ((unsigned char []){0x3E}), 1);
}
}
struct smp_alt_module {
/* what is this ??? */
struct module *mod;
char *name;
/* ptrs to lock prefixes */
const s32 *locks;
const s32 *locks_end;
/* .text segment, needed to avoid patching init code ;) */
u8 *text;
u8 *text_end;
struct list_head next;
};
static LIST_HEAD(smp_alt_modules);
static bool uniproc_patched = false; /* protected by text_mutex */
void __init_or_module alternatives_smp_module_add(struct module *mod,
char *name,
void *locks, void *locks_end,
void *text, void *text_end)
{
struct smp_alt_module *smp;
mutex_lock(&text_mutex);
if (!uniproc_patched)
goto unlock;
if (num_possible_cpus() == 1)
/* Don't bother remembering, we'll never have to undo it. */
goto smp_unlock;
smp = kzalloc(sizeof(*smp), GFP_KERNEL);
if (NULL == smp)
/* we'll run the (safe but slow) SMP code then ... */
goto unlock;
smp->mod = mod;
smp->name = name;
smp->locks = locks;
smp->locks_end = locks_end;
smp->text = text;
smp->text_end = text_end;
DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
smp->locks, smp->locks_end,
smp->text, smp->text_end, smp->name);
list_add_tail(&smp->next, &smp_alt_modules);
smp_unlock:
alternatives_smp_unlock(locks, locks_end, text, text_end);
unlock:
mutex_unlock(&text_mutex);
}
void __init_or_module alternatives_smp_module_del(struct module *mod)
{
struct smp_alt_module *item;
mutex_lock(&text_mutex);
list_for_each_entry(item, &smp_alt_modules, next) {
if (mod != item->mod)
continue;
list_del(&item->next);
kfree(item);
break;
}
mutex_unlock(&text_mutex);
}
void alternatives_enable_smp(void)
{
struct smp_alt_module *mod;
/* Why bother if there are no other CPUs? */
BUG_ON(num_possible_cpus() == 1);
mutex_lock(&text_mutex);
if (uniproc_patched) {
pr_info("switching to SMP code\n");
BUG_ON(num_online_cpus() != 1);
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
list_for_each_entry(mod, &smp_alt_modules, next)
alternatives_smp_lock(mod->locks, mod->locks_end,
mod->text, mod->text_end);
uniproc_patched = false;
}
mutex_unlock(&text_mutex);
}
/*
* Return 1 if the address range is reserved for SMP-alternatives.
* Must hold text_mutex.
*/
int alternatives_text_reserved(void *start, void *end)
{
struct smp_alt_module *mod;
const s32 *poff;
u8 *text_start = start;
u8 *text_end = end;
lockdep_assert_held(&text_mutex);
list_for_each_entry(mod, &smp_alt_modules, next) {
if (mod->text > text_end || mod->text_end < text_start)
continue;
for (poff = mod->locks; poff < mod->locks_end; poff++) {
const u8 *ptr = (const u8 *)poff + *poff;
if (text_start <= ptr && text_end > ptr)
return 1;
}
}
return 0;
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_PARAVIRT
/* Use this to add nops to a buffer, then text_poke the whole buffer. */
static void __init_or_module add_nops(void *insns, unsigned int len)
{
while (len > 0) {
unsigned int noplen = len;
if (noplen > ASM_NOP_MAX)
noplen = ASM_NOP_MAX;
memcpy(insns, x86_nops[noplen], noplen);
insns += noplen;
len -= noplen;
}
}
void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
struct paravirt_patch_site *end)
{
struct paravirt_patch_site *p;
char insn_buff[MAX_PATCH_LEN];
for (p = start; p < end; p++) {
unsigned int used;
BUG_ON(p->len > MAX_PATCH_LEN);
/* prep the buffer with the original instructions */
memcpy(insn_buff, p->instr, p->len);
used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
BUG_ON(used > p->len);
/* Pad the rest with nops */
add_nops(insn_buff + used, p->len - used);
text_poke_early(p->instr, insn_buff, p->len);
}
}
extern struct paravirt_patch_site __start_parainstructions[],
__stop_parainstructions[];
#endif /* CONFIG_PARAVIRT */
/*
* Self-test for the INT3 based CALL emulation code.
*
* This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
* properly and that there is a stack gap between the INT3 frame and the
* previous context. Without this gap doing a virtual PUSH on the interrupted
* stack would corrupt the INT3 IRET frame.
*
* See entry_{32,64}.S for more details.
*/
/*
* We define the int3_magic() function in assembly to control the calling
* convention such that we can 'call' it from assembly.
*/
extern void int3_magic(unsigned int *ptr); /* defined in asm */
asm (
" .pushsection .init.text, \"ax\", @progbits\n"
" .type int3_magic, @function\n"
"int3_magic:\n"
ANNOTATE_NOENDBR
" movl $1, (%" _ASM_ARG1 ")\n"
ASM_RET
" .size int3_magic, .-int3_magic\n"
" .popsection\n"
);
extern void int3_selftest_ip(void); /* defined in asm below */
static int __init
int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
{
unsigned long selftest = (unsigned long)&int3_selftest_ip;
struct die_args *args = data;
struct pt_regs *regs = args->regs;
OPTIMIZER_HIDE_VAR(selftest);
if (!regs || user_mode(regs))
return NOTIFY_DONE;
if (val != DIE_INT3)
return NOTIFY_DONE;
if (regs->ip - INT3_INSN_SIZE != selftest)
return NOTIFY_DONE;
int3_emulate_call(regs, (unsigned long)&int3_magic);
return NOTIFY_STOP;
}
/* Must be noinline to ensure uniqueness of int3_selftest_ip. */
static noinline void __init int3_selftest(void)
{
static __initdata struct notifier_block int3_exception_nb = {
.notifier_call = int3_exception_notify,
.priority = INT_MAX-1, /* last */
};
unsigned int val = 0;
BUG_ON(register_die_notifier(&int3_exception_nb));
/*
* Basically: int3_magic(&val); but really complicated :-)
*
* INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
* notifier above will emulate CALL for us.
*/
asm volatile ("int3_selftest_ip:\n\t"
ANNOTATE_NOENDBR
" int3; nop; nop; nop; nop\n\t"
: ASM_CALL_CONSTRAINT
: __ASM_SEL_RAW(a, D) (&val)
: "memory");
BUG_ON(val != 1);
unregister_die_notifier(&int3_exception_nb);
}
static __initdata int __alt_reloc_selftest_addr;
__visible noinline void __init __alt_reloc_selftest(void *arg)
{
WARN_ON(arg != &__alt_reloc_selftest_addr);
}
static noinline void __init alt_reloc_selftest(void)
{
/*
* Tests apply_relocation().
*
* This has a relative immediate (CALL) in a place other than the first
* instruction and additionally on x86_64 we get a RIP-relative LEA:
*
* lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c
* call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4
*
* Getting this wrong will either crash and burn or tickle the WARN
* above.
*/
asm_inline volatile (
ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
: /* output */
: [mem] "m" (__alt_reloc_selftest_addr)
: _ASM_ARG1
);
}
void __init alternative_instructions(void)
{
int3_selftest();
/*
* The patching is not fully atomic, so try to avoid local
* interruptions that might execute the to be patched code.
* Other CPUs are not running.
*/
stop_nmi();
/*
* Don't stop machine check exceptions while patching.
* MCEs only happen when something got corrupted and in this
* case we must do something about the corruption.
* Ignoring it is worse than an unlikely patching race.
* Also machine checks tend to be broadcast and if one CPU
* goes into machine check the others follow quickly, so we don't
* expect a machine check to cause undue problems during to code
* patching.
*/
/*
* Paravirt patching and alternative patching can be combined to
* replace a function call with a short direct code sequence (e.g.
* by setting a constant return value instead of doing that in an
* external function).
* In order to make this work the following sequence is required:
* 1. set (artificial) features depending on used paravirt
* functions which can later influence alternative patching
* 2. apply paravirt patching (generally replacing an indirect
* function call with a direct one)
* 3. apply alternative patching (e.g. replacing a direct function
* call with a custom code sequence)
* Doing paravirt patching after alternative patching would clobber
* the optimization of the custom code with a function call again.
*/
paravirt_set_cap();
/*
* First patch paravirt functions, such that we overwrite the indirect
* call with the direct call.
*/
apply_paravirt(__parainstructions, __parainstructions_end);
__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
__cfi_sites, __cfi_sites_end, true);
/*
* Rewrite the retpolines, must be done before alternatives since
* those can rewrite the retpoline thunks.
*/
apply_retpolines(__retpoline_sites, __retpoline_sites_end);
apply_returns(__return_sites, __return_sites_end);
/*
* Then patch alternatives, such that those paravirt calls that are in
* alternatives can be overwritten by their immediate fragments.
*/
apply_alternatives(__alt_instructions, __alt_instructions_end);
/*
* Now all calls are established. Apply the call thunks if
* required.
*/
callthunks_patch_builtin_calls();
apply_ibt_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
#ifdef CONFIG_SMP
/* Patch to UP if other cpus not imminent. */
if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
uniproc_patched = true;
alternatives_smp_module_add(NULL, "core kernel",
__smp_locks, __smp_locks_end,
_text, _etext);
}
if (!uniproc_patched || num_possible_cpus() == 1) {
free_init_pages("SMP alternatives",
(unsigned long)__smp_locks,
(unsigned long)__smp_locks_end);
}
#endif
restart_nmi();
alternatives_patched = 1;
alt_reloc_selftest();
}
/**
* text_poke_early - Update instructions on a live kernel at boot time
* @addr: address to modify
* @opcode: source of the copy
* @len: length to copy
*
* When you use this code to patch more than one byte of an instruction
* you need to make sure that other CPUs cannot execute this code in parallel.
* Also no thread must be currently preempted in the middle of these
* instructions. And on the local CPU you need to be protected against NMI or
* MCE handlers seeing an inconsistent instruction while you patch.
*/
void __init_or_module text_poke_early(void *addr, const void *opcode,
size_t len)
{
unsigned long flags;
if (boot_cpu_has(X86_FEATURE_NX) &&
is_module_text_address((unsigned long)addr)) {
/*
* Modules text is marked initially as non-executable, so the
* code cannot be running and speculative code-fetches are
* prevented. Just change the code.
*/
memcpy(addr, opcode, len);
} else {
local_irq_save(flags);
memcpy(addr, opcode, len);
local_irq_restore(flags);
sync_core();
/*
* Could also do a CLFLUSH here to speed up CPU recovery; but
* that causes hangs on some VIA CPUs.
*/
}
}
typedef struct {
struct mm_struct *mm;
} temp_mm_state_t;
/*
* Using a temporary mm allows to set temporary mappings that are not accessible
* by other CPUs. Such mappings are needed to perform sensitive memory writes
* that override the kernel memory protections (e.g., W^X), without exposing the
* temporary page-table mappings that are required for these write operations to
* other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
* mapping is torn down.
*
* Context: The temporary mm needs to be used exclusively by a single core. To
* harden security IRQs must be disabled while the temporary mm is
* loaded, thereby preventing interrupt handler bugs from overriding
* the kernel memory protection.
*/
static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
{
temp_mm_state_t temp_state;
lockdep_assert_irqs_disabled();
/*
* Make sure not to be in TLB lazy mode, as otherwise we'll end up
* with a stale address space WITHOUT being in lazy mode after
* restoring the previous mm.
*/
if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
leave_mm(smp_processor_id());
temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
switch_mm_irqs_off(NULL, mm, current);
/*
* If breakpoints are enabled, disable them while the temporary mm is
* used. Userspace might set up watchpoints on addresses that are used
* in the temporary mm, which would lead to wrong signals being sent or
* crashes.
*
* Note that breakpoints are not disabled selectively, which also causes
* kernel breakpoints (e.g., perf's) to be disabled. This might be
* undesirable, but still seems reasonable as the code that runs in the
* temporary mm should be short.
*/
if (hw_breakpoint_active())
hw_breakpoint_disable();
return temp_state;
}
static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
{
lockdep_assert_irqs_disabled();
switch_mm_irqs_off(NULL, prev_state.mm, current);
/*
* Restore the breakpoints if they were disabled before the temporary mm
* was loaded.
*/
if (hw_breakpoint_active())
hw_breakpoint_restore();
}
__ro_after_init struct mm_struct *poking_mm;
__ro_after_init unsigned long poking_addr;
static void text_poke_memcpy(void *dst, const void *src, size_t len)
{
memcpy(dst, src, len);
}
static void text_poke_memset(void *dst, const void *src, size_t len)
{
int c = *(const int *)src;
memset(dst, c, len);
}
typedef void text_poke_f(void *dst, const void *src, size_t len);
static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
{
bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
struct page *pages[2] = {NULL};
temp_mm_state_t prev;
unsigned long flags;
pte_t pte, *ptep;
spinlock_t *ptl;
pgprot_t pgprot;
/*
* While boot memory allocator is running we cannot use struct pages as
* they are not yet initialized. There is no way to recover.
*/
BUG_ON(!after_bootmem);
if (!core_kernel_text((unsigned long)addr)) {
pages[0] = vmalloc_to_page(addr);
if (cross_page_boundary)
pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
} else {
pages[0] = virt_to_page(addr);
WARN_ON(!PageReserved(pages[0]));
if (cross_page_boundary)
pages[1] = virt_to_page(addr + PAGE_SIZE);
}
/*
* If something went wrong, crash and burn since recovery paths are not
* implemented.
*/
BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
/*
* Map the page without the global bit, as TLB flushing is done with
* flush_tlb_mm_range(), which is intended for non-global PTEs.
*/
pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
/*
* The lock is not really needed, but this allows to avoid open-coding.
*/
ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
/*
* This must not fail; preallocated in poking_init().
*/
VM_BUG_ON(!ptep);
local_irq_save(flags);
pte = mk_pte(pages[0], pgprot);
set_pte_at(poking_mm, poking_addr, ptep, pte);
if (cross_page_boundary) {
pte = mk_pte(pages[1], pgprot);
set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
}
/*
* Loading the temporary mm behaves as a compiler barrier, which
* guarantees that the PTE will be set at the time memcpy() is done.
*/
prev = use_temporary_mm(poking_mm);
kasan_disable_current();
func((u8 *)poking_addr + offset_in_page(addr), src, len);
kasan_enable_current();
/*
* Ensure that the PTE is only cleared after the instructions of memcpy
* were issued by using a compiler barrier.
*/
barrier();
pte_clear(poking_mm, poking_addr, ptep);
if (cross_page_boundary)
pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
/*
* Loading the previous page-table hierarchy requires a serializing
* instruction that already allows the core to see the updated version.
* Xen-PV is assumed to serialize execution in a similar manner.
*/
unuse_temporary_mm(prev);
/*
* Flushing the TLB might involve IPIs, which would require enabled
* IRQs, but not if the mm is not used, as it is in this point.
*/
flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
(cross_page_boundary ? 2 : 1) * PAGE_SIZE,
PAGE_SHIFT, false);
if (func == text_poke_memcpy) {
/*
* If the text does not match what we just wrote then something is
* fundamentally screwy; there's nothing we can really do about that.
*/
BUG_ON(memcmp(addr, src, len));
}
local_irq_restore(flags);
pte_unmap_unlock(ptep, ptl);
return addr;
}
/**
* text_poke - Update instructions on a live kernel
* @addr: address to modify
* @opcode: source of the copy
* @len: length to copy
*
* Only atomic text poke/set should be allowed when not doing early patching.
* It means the size must be writable atomically and the address must be aligned
* in a way that permits an atomic write. It also makes sure we fit on a single
* page.
*
* Note that the caller must ensure that if the modified code is part of a
* module, the module would not be removed during poking. This can be achieved
* by registering a module notifier, and ordering module removal and patching
* trough a mutex.
*/
void *text_poke(void *addr, const void *opcode, size_t len)
{
lockdep_assert_held(&text_mutex);
return __text_poke(text_poke_memcpy, addr, opcode, len);
}
/**
* text_poke_kgdb - Update instructions on a live kernel by kgdb
* @addr: address to modify
* @opcode: source of the copy
* @len: length to copy
*
* Only atomic text poke/set should be allowed when not doing early patching.
* It means the size must be writable atomically and the address must be aligned
* in a way that permits an atomic write. It also makes sure we fit on a single
* page.
*
* Context: should only be used by kgdb, which ensures no other core is running,
* despite the fact it does not hold the text_mutex.
*/
void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
{
return __text_poke(text_poke_memcpy, addr, opcode, len);
}
void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
bool core_ok)
{
unsigned long start = (unsigned long)addr;
size_t patched = 0;
if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
return NULL;
while (patched < len) {
unsigned long ptr = start + patched;
size_t s;
s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
patched += s;
}
return addr;
}
/**
* text_poke_copy - Copy instructions into (an unused part of) RX memory
* @addr: address to modify
* @opcode: source of the copy
* @len: length to copy, could be more than 2x PAGE_SIZE
*
* Not safe against concurrent execution; useful for JITs to dump
* new code blocks into unused regions of RX memory. Can be used in
* conjunction with synchronize_rcu_tasks() to wait for existing
* execution to quiesce after having made sure no existing functions
* pointers are live.
*/
void *text_poke_copy(void *addr, const void *opcode, size_t len)
{
mutex_lock(&text_mutex);
addr = text_poke_copy_locked(addr, opcode, len, false);
mutex_unlock(&text_mutex);
return addr;
}
/**
* text_poke_set - memset into (an unused part of) RX memory
* @addr: address to modify
* @c: the byte to fill the area with
* @len: length to copy, could be more than 2x PAGE_SIZE
*
* This is useful to overwrite unused regions of RX memory with illegal
* instructions.
*/
void *text_poke_set(void *addr, int c, size_t len)
{
unsigned long start = (unsigned long)addr;
size_t patched = 0;
if (WARN_ON_ONCE(core_kernel_text(start)))
return NULL;
mutex_lock(&text_mutex);
while (patched < len) {
unsigned long ptr = start + patched;
size_t s;
s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
patched += s;
}
mutex_unlock(&text_mutex);
return addr;
}
static void do_sync_core(void *info)
{
sync_core();
}
void text_poke_sync(void)
{
on_each_cpu(do_sync_core, NULL, 1);
}
/*
* NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
* this thing. When len == 6 everything is prefixed with 0x0f and we map
* opcode to Jcc.d8, using len to distinguish.
*/
struct text_poke_loc {
/* addr := _stext + rel_addr */
s32 rel_addr;
s32 disp;
u8 len;
u8 opcode;
const u8 text[POKE_MAX_OPCODE_SIZE];
/* see text_poke_bp_batch() */
u8 old;
};
struct bp_patching_desc {
struct text_poke_loc *vec;
int nr_entries;
atomic_t refs;
};
static struct bp_patching_desc bp_desc;
static __always_inline
struct bp_patching_desc *try_get_desc(void)
{
struct bp_patching_desc *desc = &bp_desc;
if (!arch_atomic_inc_not_zero(&desc->refs))
return NULL;
return desc;
}
static __always_inline void put_desc(void)
{
struct bp_patching_desc *desc = &bp_desc;
smp_mb__before_atomic();
arch_atomic_dec(&desc->refs);
}
static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
{
return _stext + tp->rel_addr;
}
static __always_inline int patch_cmp(const void *key, const void *elt)
{
struct text_poke_loc *tp = (struct text_poke_loc *) elt;
if (key < text_poke_addr(tp))
return -1;
if (key > text_poke_addr(tp))
return 1;
return 0;
}
noinstr int poke_int3_handler(struct pt_regs *regs)
{
struct bp_patching_desc *desc;
struct text_poke_loc *tp;
int ret = 0;
void *ip;
if (user_mode(regs))
return 0;
/*
* Having observed our INT3 instruction, we now must observe
* bp_desc with non-zero refcount:
*
* bp_desc.refs = 1 INT3
* WMB RMB
* write INT3 if (bp_desc.refs != 0)
*/
smp_rmb();
desc = try_get_desc();
if (!desc)
return 0;
/*
* Discount the INT3. See text_poke_bp_batch().
*/
ip = (void *) regs->ip - INT3_INSN_SIZE;
/*
* Skip the binary search if there is a single member in the vector.
*/
if (unlikely(desc->nr_entries > 1)) {
tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
sizeof(struct text_poke_loc),
patch_cmp);
if (!tp)
goto out_put;
} else {
tp = desc->vec;
if (text_poke_addr(tp) != ip)
goto out_put;
}
ip += tp->len;
switch (tp->opcode) {
case INT3_INSN_OPCODE:
/*
* Someone poked an explicit INT3, they'll want to handle it,
* do not consume.
*/
goto out_put;
case RET_INSN_OPCODE:
int3_emulate_ret(regs);
break;
case CALL_INSN_OPCODE:
int3_emulate_call(regs, (long)ip + tp->disp);
break;
case JMP32_INSN_OPCODE:
case JMP8_INSN_OPCODE:
int3_emulate_jmp(regs, (long)ip + tp->disp);
break;
case 0x70 ... 0x7f: /* Jcc */
int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
break;
default:
BUG();
}
ret = 1;
out_put:
put_desc();
return ret;
}
#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
static struct text_poke_loc tp_vec[TP_VEC_MAX];
static int tp_vec_nr;
/**
* text_poke_bp_batch() -- update instructions on live kernel on SMP
* @tp: vector of instructions to patch
* @nr_entries: number of entries in the vector
*
* Modify multi-byte instruction by using int3 breakpoint on SMP.
* We completely avoid stop_machine() here, and achieve the
* synchronization using int3 breakpoint.
*
* The way it is done:
* - For each entry in the vector:
* - add a int3 trap to the address that will be patched
* - sync cores
* - For each entry in the vector:
* - update all but the first byte of the patched range
* - sync cores
* - For each entry in the vector:
* - replace the first byte (int3) by the first byte of
* replacing opcode
* - sync cores
*/
static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
{
unsigned char int3 = INT3_INSN_OPCODE;
unsigned int i;
int do_sync;
lockdep_assert_held(&text_mutex);
bp_desc.vec = tp;
bp_desc.nr_entries = nr_entries;
/*
* Corresponds to the implicit memory barrier in try_get_desc() to
* ensure reading a non-zero refcount provides up to date bp_desc data.
*/
atomic_set_release(&bp_desc.refs, 1);
/*
* Corresponding read barrier in int3 notifier for making sure the
* nr_entries and handler are correctly ordered wrt. patching.
*/
smp_wmb();
/*
* First step: add a int3 trap to the address that will be patched.
*/
for (i = 0; i < nr_entries; i++) {
tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
}
text_poke_sync();
/*
* Second step: update all but the first byte of the patched range.
*/
for (do_sync = 0, i = 0; i < nr_entries; i++) {
u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
u8 _new[POKE_MAX_OPCODE_SIZE+1];
const u8 *new = tp[i].text;
int len = tp[i].len;
if (len - INT3_INSN_SIZE > 0) {
memcpy(old + INT3_INSN_SIZE,
text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
len - INT3_INSN_SIZE);
if (len == 6) {
_new[0] = 0x0f;
memcpy(_new + 1, new, 5);
new = _new;
}
text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
new + INT3_INSN_SIZE,
len - INT3_INSN_SIZE);
do_sync++;
}
/*
* Emit a perf event to record the text poke, primarily to
* support Intel PT decoding which must walk the executable code
* to reconstruct the trace. The flow up to here is:
* - write INT3 byte
* - IPI-SYNC
* - write instruction tail
* At this point the actual control flow will be through the
* INT3 and handler and not hit the old or new instruction.
* Intel PT outputs FUP/TIP packets for the INT3, so the flow
* can still be decoded. Subsequently:
* - emit RECORD_TEXT_POKE with the new instruction
* - IPI-SYNC
* - write first byte
* - IPI-SYNC
* So before the text poke event timestamp, the decoder will see
* either the old instruction flow or FUP/TIP of INT3. After the
* text poke event timestamp, the decoder will see either the
* new instruction flow or FUP/TIP of INT3. Thus decoders can
* use the timestamp as the point at which to modify the
* executable code.
* The old instruction is recorded so that the event can be
* processed forwards or backwards.
*/
perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
}
if (do_sync) {
/*
* According to Intel, this core syncing is very likely
* not necessary and we'd be safe even without it. But
* better safe than sorry (plus there's not only Intel).
*/
text_poke_sync();
}
/*
* Third step: replace the first byte (int3) by the first byte of
* replacing opcode.
*/
for (do_sync = 0, i = 0; i < nr_entries; i++) {
u8 byte = tp[i].text[0];
if (tp[i].len == 6)
byte = 0x0f;
if (byte == INT3_INSN_OPCODE)
continue;
text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
do_sync++;
}
if (do_sync)
text_poke_sync();
/*
* Remove and wait for refs to be zero.
*/
if (!atomic_dec_and_test(&bp_desc.refs))
atomic_cond_read_acquire(&bp_desc.refs, !VAL);
}
static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
const void *opcode, size_t len, const void *emulate)
{
struct insn insn;
int ret, i = 0;
if (len == 6)
i = 1;
memcpy((void *)tp->text, opcode+i, len-i);
if (!emulate)
emulate = opcode;
ret = insn_decode_kernel(&insn, emulate);
BUG_ON(ret < 0);
tp->rel_addr = addr - (void *)_stext;
tp->len = len;
tp->opcode = insn.opcode.bytes[0];
if (is_jcc32(&insn)) {
/*
* Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
*/
tp->opcode = insn.opcode.bytes[1] - 0x10;
}
switch (tp->opcode) {
case RET_INSN_OPCODE:
case JMP32_INSN_OPCODE:
case JMP8_INSN_OPCODE:
/*
* Control flow instructions without implied execution of the
* next instruction can be padded with INT3.
*/
for (i = insn.length; i < len; i++)
BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
break;
default:
BUG_ON(len != insn.length);
}
switch (tp->opcode) {
case INT3_INSN_OPCODE:
case RET_INSN_OPCODE:
break;
case CALL_INSN_OPCODE:
case JMP32_INSN_OPCODE:
case JMP8_INSN_OPCODE:
case 0x70 ... 0x7f: /* Jcc */
tp->disp = insn.immediate.value;
break;
default: /* assume NOP */
switch (len) {
case 2: /* NOP2 -- emulate as JMP8+0 */
BUG_ON(memcmp(emulate, x86_nops[len], len));
tp->opcode = JMP8_INSN_OPCODE;
tp->disp = 0;
break;
case 5: /* NOP5 -- emulate as JMP32+0 */
BUG_ON(memcmp(emulate, x86_nops[len], len));
tp->opcode = JMP32_INSN_OPCODE;
tp->disp = 0;
break;
default: /* unknown instruction */
BUG();
}
break;
}
}
/*
* We hard rely on the tp_vec being ordered; ensure this is so by flushing
* early if needed.
*/
static bool tp_order_fail(void *addr)
{
struct text_poke_loc *tp;
if (!tp_vec_nr)
return false;
if (!addr) /* force */
return true;
tp = &tp_vec[tp_vec_nr - 1];
if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
return true;
return false;
}
static void text_poke_flush(void *addr)
{
if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
text_poke_bp_batch(tp_vec, tp_vec_nr);
tp_vec_nr = 0;
}
}
void text_poke_finish(void)
{
text_poke_flush(NULL);
}
void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
{
struct text_poke_loc *tp;
text_poke_flush(addr);
tp = &tp_vec[tp_vec_nr++];
text_poke_loc_init(tp, addr, opcode, len, emulate);
}
/**
* text_poke_bp() -- update instructions on live kernel on SMP
* @addr: address to patch
* @opcode: opcode of new instruction
* @len: length to copy
* @emulate: instruction to be emulated
*
* Update a single instruction with the vector in the stack, avoiding
* dynamically allocated memory. This function should be used when it is
* not possible to allocate memory.
*/
void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
{
struct text_poke_loc tp;
text_poke_loc_init(&tp, addr, opcode, len, emulate);
text_poke_bp_batch(&tp, 1);
}