summaryrefslogblamecommitdiff
path: root/arch/ppc64/kernel/lmb.c
blob: d6c6bd03d2a42cf49ec1f8ebeec5ee077a2f683f (plain) (tree)



















































































































































































































































































































































































                                                                                      
/*
 * Procedures for interfacing to Open Firmware.
 *
 * Peter Bergner, IBM Corp.	June 2001.
 * Copyright (C) 2001 Peter Bergner.
 * 
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/types.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/lmb.h>
#include <asm/abs_addr.h>

struct lmb lmb;

#undef DEBUG

void lmb_dump_all(void)
{
#ifdef DEBUG
	unsigned long i;
	struct lmb *_lmb  = &lmb;

	udbg_printf("lmb_dump_all:\n");
	udbg_printf("    memory.cnt		  = 0x%lx\n",
		    _lmb->memory.cnt);
	udbg_printf("    memory.size		  = 0x%lx\n",
		    _lmb->memory.size);
	for (i=0; i < _lmb->memory.cnt ;i++) {
		udbg_printf("    memory.region[0x%x].base       = 0x%lx\n",
			    i, _lmb->memory.region[i].base);
		udbg_printf("		      .physbase = 0x%lx\n",
			    _lmb->memory.region[i].physbase);
		udbg_printf("		      .size     = 0x%lx\n",
			    _lmb->memory.region[i].size);
	}

	udbg_printf("\n    reserved.cnt	  = 0x%lx\n",
		    _lmb->reserved.cnt);
	udbg_printf("    reserved.size	  = 0x%lx\n",
		    _lmb->reserved.size);
	for (i=0; i < _lmb->reserved.cnt ;i++) {
		udbg_printf("    reserved.region[0x%x].base       = 0x%lx\n",
			    i, _lmb->reserved.region[i].base);
		udbg_printf("		      .physbase = 0x%lx\n",
			    _lmb->reserved.region[i].physbase);
		udbg_printf("		      .size     = 0x%lx\n",
			    _lmb->reserved.region[i].size);
	}
#endif /* DEBUG */
}

static unsigned long __init
lmb_addrs_overlap(unsigned long base1, unsigned long size1,
                  unsigned long base2, unsigned long size2)
{
	return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
}

static long __init
lmb_addrs_adjacent(unsigned long base1, unsigned long size1,
		   unsigned long base2, unsigned long size2)
{
	if (base2 == base1 + size1)
		return 1;
	else if (base1 == base2 + size2)
		return -1;

	return 0;
}

static long __init
lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1, unsigned long r2)
{
	unsigned long base1 = rgn->region[r1].base;
	unsigned long size1 = rgn->region[r1].size;
	unsigned long base2 = rgn->region[r2].base;
	unsigned long size2 = rgn->region[r2].size;

	return lmb_addrs_adjacent(base1, size1, base2, size2);
}

/* Assumption: base addr of region 1 < base addr of region 2 */
static void __init
lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1, unsigned long r2)
{
	unsigned long i;

	rgn->region[r1].size += rgn->region[r2].size;
	for (i=r2; i < rgn->cnt-1; i++) {
		rgn->region[i].base = rgn->region[i+1].base;
		rgn->region[i].physbase = rgn->region[i+1].physbase;
		rgn->region[i].size = rgn->region[i+1].size;
	}
	rgn->cnt--;
}

/* This routine called with relocation disabled. */
void __init
lmb_init(void)
{
	struct lmb *_lmb = &lmb;

	/* Create a dummy zero size LMB which will get coalesced away later.
	 * This simplifies the lmb_add() code below...
	 */
	_lmb->memory.region[0].base = 0;
	_lmb->memory.region[0].size = 0;
	_lmb->memory.cnt = 1;

	/* Ditto. */
	_lmb->reserved.region[0].base = 0;
	_lmb->reserved.region[0].size = 0;
	_lmb->reserved.cnt = 1;
}

/* This routine called with relocation disabled. */
void __init
lmb_analyze(void)
{
	unsigned long i;
	unsigned long mem_size = 0;
	unsigned long size_mask = 0;
	struct lmb *_lmb = &lmb;
#ifdef CONFIG_MSCHUNKS
	unsigned long physbase = 0;
#endif

	for (i=0; i < _lmb->memory.cnt; i++) {
		unsigned long lmb_size;

		lmb_size = _lmb->memory.region[i].size;

#ifdef CONFIG_MSCHUNKS
		_lmb->memory.region[i].physbase = physbase;
		physbase += lmb_size;
#else
		_lmb->memory.region[i].physbase = _lmb->memory.region[i].base;
#endif
		mem_size += lmb_size;
		size_mask |= lmb_size;
	}

	_lmb->memory.size = mem_size;
}

/* This routine called with relocation disabled. */
static long __init
lmb_add_region(struct lmb_region *rgn, unsigned long base, unsigned long size)
{
	unsigned long i, coalesced = 0;
	long adjacent;

	/* First try and coalesce this LMB with another. */
	for (i=0; i < rgn->cnt; i++) {
		unsigned long rgnbase = rgn->region[i].base;
		unsigned long rgnsize = rgn->region[i].size;

		adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
		if ( adjacent > 0 ) {
			rgn->region[i].base -= size;
			rgn->region[i].physbase -= size;
			rgn->region[i].size += size;
			coalesced++;
			break;
		}
		else if ( adjacent < 0 ) {
			rgn->region[i].size += size;
			coalesced++;
			break;
		}
	}

	if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
		lmb_coalesce_regions(rgn, i, i+1);
		coalesced++;
	}

	if ( coalesced ) {
		return coalesced;
	} else if ( rgn->cnt >= MAX_LMB_REGIONS ) {
		return -1;
	}

	/* Couldn't coalesce the LMB, so add it to the sorted table. */
	for (i=rgn->cnt-1; i >= 0; i--) {
		if (base < rgn->region[i].base) {
			rgn->region[i+1].base = rgn->region[i].base;
			rgn->region[i+1].physbase = rgn->region[i].physbase;
			rgn->region[i+1].size = rgn->region[i].size;
		}  else {
			rgn->region[i+1].base = base;
			rgn->region[i+1].physbase = lmb_abs_to_phys(base);
			rgn->region[i+1].size = size;
			break;
		}
	}
	rgn->cnt++;

	return 0;
}

/* This routine called with relocation disabled. */
long __init
lmb_add(unsigned long base, unsigned long size)
{
	struct lmb *_lmb = &lmb;
	struct lmb_region *_rgn = &(_lmb->memory);

	/* On pSeries LPAR systems, the first LMB is our RMO region. */
	if ( base == 0 )
		_lmb->rmo_size = size;

	return lmb_add_region(_rgn, base, size);

}

long __init
lmb_reserve(unsigned long base, unsigned long size)
{
	struct lmb *_lmb = &lmb;
	struct lmb_region *_rgn = &(_lmb->reserved);

	return lmb_add_region(_rgn, base, size);
}

long __init
lmb_overlaps_region(struct lmb_region *rgn, unsigned long base, unsigned long size)
{
	unsigned long i;

	for (i=0; i < rgn->cnt; i++) {
		unsigned long rgnbase = rgn->region[i].base;
		unsigned long rgnsize = rgn->region[i].size;
		if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
			break;
		}
	}

	return (i < rgn->cnt) ? i : -1;
}

unsigned long __init
lmb_alloc(unsigned long size, unsigned long align)
{
	return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
}

unsigned long __init
lmb_alloc_base(unsigned long size, unsigned long align, unsigned long max_addr)
{
	long i, j;
	unsigned long base = 0;
	struct lmb *_lmb = &lmb;
	struct lmb_region *_mem = &(_lmb->memory);
	struct lmb_region *_rsv = &(_lmb->reserved);

	for (i=_mem->cnt-1; i >= 0; i--) {
		unsigned long lmbbase = _mem->region[i].base;
		unsigned long lmbsize = _mem->region[i].size;

		if ( max_addr == LMB_ALLOC_ANYWHERE )
			base = _ALIGN_DOWN(lmbbase+lmbsize-size, align);
		else if ( lmbbase < max_addr )
			base = _ALIGN_DOWN(min(lmbbase+lmbsize,max_addr)-size, align);
		else
			continue;

		while ( (lmbbase <= base) &&
			((j = lmb_overlaps_region(_rsv,base,size)) >= 0) ) {
			base = _ALIGN_DOWN(_rsv->region[j].base-size, align);
		}

		if ( (base != 0) && (lmbbase <= base) )
			break;
	}

	if ( i < 0 )
		return 0;

	lmb_add_region(_rsv, base, size);

	return base;
}

unsigned long __init
lmb_phys_mem_size(void)
{
	struct lmb *_lmb = &lmb;
#ifdef CONFIG_MSCHUNKS
	return _lmb->memory.size;
#else
	struct lmb_region *_mem = &(_lmb->memory);
	unsigned long total = 0;
	int i;

	/* add all physical memory to the bootmem map */
	for (i=0; i < _mem->cnt; i++)
		total += _mem->region[i].size;
	return total;
#endif /* CONFIG_MSCHUNKS */
}

unsigned long __init
lmb_end_of_DRAM(void)
{
	struct lmb *_lmb = &lmb;
	struct lmb_region *_mem = &(_lmb->memory);
	int idx = _mem->cnt - 1;

#ifdef CONFIG_MSCHUNKS
	return (_mem->region[idx].physbase + _mem->region[idx].size);
#else
	return (_mem->region[idx].base + _mem->region[idx].size);
#endif /* CONFIG_MSCHUNKS */

	return 0;
}

unsigned long __init
lmb_abs_to_phys(unsigned long aa)
{
	unsigned long i, pa = aa;
	struct lmb *_lmb = &lmb;
	struct lmb_region *_mem = &(_lmb->memory);

	for (i=0; i < _mem->cnt; i++) {
		unsigned long lmbbase = _mem->region[i].base;
		unsigned long lmbsize = _mem->region[i].size;
		if ( lmb_addrs_overlap(aa,1,lmbbase,lmbsize) ) {
			pa = _mem->region[i].physbase + (aa - lmbbase);
			break;
		}
	}

	return pa;
}

/*
 * Truncate the lmb list to memory_limit if it's set
 * You must call lmb_analyze() after this.
 */
void __init lmb_enforce_memory_limit(void)
{
	extern unsigned long memory_limit;
	unsigned long i, limit;
	struct lmb_region *mem = &(lmb.memory);

	if (! memory_limit)
		return;

	limit = memory_limit;
	for (i = 0; i < mem->cnt; i++) {
		if (limit > mem->region[i].size) {
			limit -= mem->region[i].size;
			continue;
		}

		mem->region[i].size = limit;
		mem->cnt = i + 1;
		break;
	}
}