std/sys/sync/condvar/pthread.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
use crate::cell::UnsafeCell;
use crate::ptr;
use crate::sync::atomic::AtomicPtr;
use crate::sync::atomic::Ordering::Relaxed;
use crate::sys::sync::{Mutex, OnceBox};
#[cfg(not(target_os = "nto"))]
use crate::sys::time::TIMESPEC_MAX;
#[cfg(target_os = "nto")]
use crate::sys::time::TIMESPEC_MAX_CAPPED;
use crate::time::Duration;
struct AllocatedCondvar(UnsafeCell<libc::pthread_cond_t>);
pub struct Condvar {
inner: OnceBox<AllocatedCondvar>,
mutex: AtomicPtr<libc::pthread_mutex_t>,
}
unsafe impl Send for AllocatedCondvar {}
unsafe impl Sync for AllocatedCondvar {}
impl AllocatedCondvar {
fn new() -> Box<Self> {
let condvar = Box::new(AllocatedCondvar(UnsafeCell::new(libc::PTHREAD_COND_INITIALIZER)));
cfg_if::cfg_if! {
if #[cfg(any(
target_os = "l4re",
target_os = "android",
target_os = "redox",
target_vendor = "apple",
))] {
// `pthread_condattr_setclock` is unfortunately not supported on these platforms.
} else if #[cfg(any(target_os = "espidf", target_os = "horizon", target_os = "teeos"))] {
// NOTE: ESP-IDF's PTHREAD_COND_INITIALIZER support is not released yet
// So on that platform, init() should always be called
// Moreover, that platform does not have pthread_condattr_setclock support,
// hence that initialization should be skipped as well
//
// Similar story for the 3DS (horizon).
let r = unsafe { libc::pthread_cond_init(condvar.0.get(), crate::ptr::null()) };
assert_eq!(r, 0);
} else {
use crate::mem::MaybeUninit;
let mut attr = MaybeUninit::<libc::pthread_condattr_t>::uninit();
let r = unsafe { libc::pthread_condattr_init(attr.as_mut_ptr()) };
assert_eq!(r, 0);
let r = unsafe { libc::pthread_condattr_setclock(attr.as_mut_ptr(), libc::CLOCK_MONOTONIC) };
assert_eq!(r, 0);
let r = unsafe { libc::pthread_cond_init(condvar.0.get(), attr.as_ptr()) };
assert_eq!(r, 0);
let r = unsafe { libc::pthread_condattr_destroy(attr.as_mut_ptr()) };
assert_eq!(r, 0);
}
}
condvar
}
}
impl Drop for AllocatedCondvar {
#[inline]
fn drop(&mut self) {
let r = unsafe { libc::pthread_cond_destroy(self.0.get()) };
if cfg!(target_os = "dragonfly") {
// On DragonFly pthread_cond_destroy() returns EINVAL if called on
// a condvar that was just initialized with
// libc::PTHREAD_COND_INITIALIZER. Once it is used or
// pthread_cond_init() is called, this behaviour no longer occurs.
debug_assert!(r == 0 || r == libc::EINVAL);
} else {
debug_assert_eq!(r, 0);
}
}
}
impl Condvar {
pub const fn new() -> Condvar {
Condvar { inner: OnceBox::new(), mutex: AtomicPtr::new(ptr::null_mut()) }
}
fn get(&self) -> *mut libc::pthread_cond_t {
self.inner.get_or_init(AllocatedCondvar::new).0.get()
}
#[inline]
fn verify(&self, mutex: *mut libc::pthread_mutex_t) {
// Relaxed is okay here because we never read through `self.addr`, and only use it to
// compare addresses.
match self.mutex.compare_exchange(ptr::null_mut(), mutex, Relaxed, Relaxed) {
Ok(_) => {} // Stored the address
Err(n) if n == mutex => {} // Lost a race to store the same address
_ => panic!("attempted to use a condition variable with two mutexes"),
}
}
#[inline]
pub fn notify_one(&self) {
let r = unsafe { libc::pthread_cond_signal(self.get()) };
debug_assert_eq!(r, 0);
}
#[inline]
pub fn notify_all(&self) {
let r = unsafe { libc::pthread_cond_broadcast(self.get()) };
debug_assert_eq!(r, 0);
}
#[inline]
pub unsafe fn wait(&self, mutex: &Mutex) {
let mutex = mutex.get_assert_locked();
self.verify(mutex);
let r = libc::pthread_cond_wait(self.get(), mutex);
debug_assert_eq!(r, 0);
}
// This implementation is used on systems that support pthread_condattr_setclock
// where we configure condition variable to use monotonic clock (instead of
// default system clock). This approach avoids all problems that result
// from changes made to the system time.
#[cfg(not(any(
target_os = "android",
target_os = "espidf",
target_os = "horizon",
target_vendor = "apple",
)))]
pub unsafe fn wait_timeout(&self, mutex: &Mutex, dur: Duration) -> bool {
use crate::sys::time::Timespec;
let mutex = mutex.get_assert_locked();
self.verify(mutex);
#[cfg(not(target_os = "nto"))]
let timeout = Timespec::now(libc::CLOCK_MONOTONIC)
.checked_add_duration(&dur)
.and_then(|t| t.to_timespec())
.unwrap_or(TIMESPEC_MAX);
#[cfg(target_os = "nto")]
let timeout = Timespec::now(libc::CLOCK_MONOTONIC)
.checked_add_duration(&dur)
.and_then(|t| t.to_timespec_capped())
.unwrap_or(TIMESPEC_MAX_CAPPED);
let r = libc::pthread_cond_timedwait(self.get(), mutex, &timeout);
assert!(r == libc::ETIMEDOUT || r == 0);
r == 0
}
// This implementation is modeled after libcxx's condition_variable
// https://github.com/llvm-mirror/libcxx/blob/release_35/src/condition_variable.cpp#L46
// https://github.com/llvm-mirror/libcxx/blob/release_35/include/__mutex_base#L367
#[cfg(any(
target_os = "android",
target_os = "espidf",
target_os = "horizon",
target_vendor = "apple",
))]
pub unsafe fn wait_timeout(&self, mutex: &Mutex, dur: Duration) -> bool {
use crate::sys::time::SystemTime;
use crate::time::Instant;
let mutex = mutex.get_assert_locked();
self.verify(mutex);
// OSX implementation of `pthread_cond_timedwait` is buggy
// with super long durations. When duration is greater than
// 0x100_0000_0000_0000 seconds, `pthread_cond_timedwait`
// in macOS Sierra returns error 316.
//
// This program demonstrates the issue:
// https://gist.github.com/stepancheg/198db4623a20aad2ad7cddb8fda4a63c
//
// To work around this issue, and possible bugs of other OSes, timeout
// is clamped to 1000 years, which is allowable per the API of `wait_timeout`
// because of spurious wakeups.
let dur = Duration::min(dur, Duration::from_secs(1000 * 365 * 86400));
// pthread_cond_timedwait uses system time, but we want to report timeout
// based on stable time.
let now = Instant::now();
let timeout = SystemTime::now()
.t
.checked_add_duration(&dur)
.and_then(|t| t.to_timespec())
.unwrap_or(TIMESPEC_MAX);
let r = libc::pthread_cond_timedwait(self.get(), mutex, &timeout);
debug_assert!(r == libc::ETIMEDOUT || r == 0);
// ETIMEDOUT is not a totally reliable method of determining timeout due
// to clock shifts, so do the check ourselves
now.elapsed() < dur
}
}