summaryrefslogtreecommitdiff
path: root/sound/soc/codecs/sta32x.c
blob: bb82408ab8e1bb93f187dac610e5a1141501bd72 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
/*
 * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
 *
 * Copyright: 2011 Raumfeld GmbH
 * Author: Johannes Stezenbach <js@sig21.net>
 *
 * based on code from:
 *	Wolfson Microelectronics PLC.
 *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
 *	Freescale Semiconductor, Inc.
 *	  Timur Tabi <timur@freescale.com>
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>

#include "sta32x.h"

#define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
		      SNDRV_PCM_RATE_44100 | \
		      SNDRV_PCM_RATE_48000 | \
		      SNDRV_PCM_RATE_88200 | \
		      SNDRV_PCM_RATE_96000 | \
		      SNDRV_PCM_RATE_176400 | \
		      SNDRV_PCM_RATE_192000)

#define STA32X_FORMATS \
	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)

/* Power-up register defaults */
static const u8 sta32x_regs[STA32X_REGISTER_COUNT] = {
	0x63, 0x80, 0xc2, 0x40, 0xc2, 0x5c, 0x10, 0xff, 0x60, 0x60,
	0x60, 0x80, 0x00, 0x00, 0x00, 0x40, 0x80, 0x77, 0x6a, 0x69,
	0x6a, 0x69, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2d,
	0xc0, 0xf3, 0x33, 0x00, 0x0c,
};

/* regulator power supply names */
static const char *sta32x_supply_names[] = {
	"Vdda",	/* analog supply, 3.3VV */
	"Vdd3",	/* digital supply, 3.3V */
	"Vcc"	/* power amp spply, 10V - 36V */
};

/* codec private data */
struct sta32x_priv {
	struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
	struct snd_soc_codec *codec;

	unsigned int mclk;
	unsigned int format;
};

static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);

static const char *sta32x_drc_ac[] = {
	"Anti-Clipping", "Dynamic Range Compression" };
static const char *sta32x_auto_eq_mode[] = {
	"User", "Preset", "Loudness" };
static const char *sta32x_auto_gc_mode[] = {
	"User", "AC no clipping", "AC limited clipping (10%)",
	"DRC nighttime listening mode" };
static const char *sta32x_auto_xo_mode[] = {
	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
	"220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
static const char *sta32x_preset_eq_mode[] = {
	"Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
	"Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
	"Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
	"Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
	"Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
	"Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
static const char *sta32x_limiter_select[] = {
	"Limiter Disabled", "Limiter #1", "Limiter #2" };
static const char *sta32x_limiter_attack_rate[] = {
	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
	"0.0645", "0.0564", "0.0501", "0.0451" };
static const char *sta32x_limiter_release_rate[] = {
	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
	"0.0134", "0.0117", "0.0110", "0.0104" };

static const unsigned int sta32x_limiter_ac_attack_tlv[] = {
	TLV_DB_RANGE_HEAD(2),
	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
};

static const unsigned int sta32x_limiter_ac_release_tlv[] = {
	TLV_DB_RANGE_HEAD(5),
	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
};

static const unsigned int sta32x_limiter_drc_attack_tlv[] = {
	TLV_DB_RANGE_HEAD(3),
	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
};

static const unsigned int sta32x_limiter_drc_release_tlv[] = {
	TLV_DB_RANGE_HEAD(5),
	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
};

static const struct soc_enum sta32x_drc_ac_enum =
	SOC_ENUM_SINGLE(STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
			2, sta32x_drc_ac);
static const struct soc_enum sta32x_auto_eq_enum =
	SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
			3, sta32x_auto_eq_mode);
static const struct soc_enum sta32x_auto_gc_enum =
	SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
			4, sta32x_auto_gc_mode);
static const struct soc_enum sta32x_auto_xo_enum =
	SOC_ENUM_SINGLE(STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
			16, sta32x_auto_xo_mode);
static const struct soc_enum sta32x_preset_eq_enum =
	SOC_ENUM_SINGLE(STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
			32, sta32x_preset_eq_mode);
static const struct soc_enum sta32x_limiter_ch1_enum =
	SOC_ENUM_SINGLE(STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
			3, sta32x_limiter_select);
static const struct soc_enum sta32x_limiter_ch2_enum =
	SOC_ENUM_SINGLE(STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
			3, sta32x_limiter_select);
static const struct soc_enum sta32x_limiter_ch3_enum =
	SOC_ENUM_SINGLE(STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
			3, sta32x_limiter_select);
static const struct soc_enum sta32x_limiter1_attack_rate_enum =
	SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxA_SHIFT,
			16, sta32x_limiter_attack_rate);
static const struct soc_enum sta32x_limiter2_attack_rate_enum =
	SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxA_SHIFT,
			16, sta32x_limiter_attack_rate);
static const struct soc_enum sta32x_limiter1_release_rate_enum =
	SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxR_SHIFT,
			16, sta32x_limiter_release_rate);
static const struct soc_enum sta32x_limiter2_release_rate_enum =
	SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxR_SHIFT,
			16, sta32x_limiter_release_rate);

/* byte array controls for setting biquad, mixer, scaling coefficients;
 * for biquads all five coefficients need to be set in one go,
 * mixer and pre/postscale coefs can be set individually;
 * each coef is 24bit, the bytes are ordered in the same way
 * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
 */

static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_info *uinfo)
{
	int numcoef = kcontrol->private_value >> 16;
	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
	uinfo->count = 3 * numcoef;
	return 0;
}

static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
	int numcoef = kcontrol->private_value >> 16;
	int index = kcontrol->private_value & 0xffff;
	unsigned int cfud;
	int i;

	/* preserve reserved bits in STA32X_CFUD */
	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
	/* chip documentation does not say if the bits are self clearing,
	 * so do it explicitly */
	snd_soc_write(codec, STA32X_CFUD, cfud);

	snd_soc_write(codec, STA32X_CFADDR2, index);
	if (numcoef == 1)
		snd_soc_write(codec, STA32X_CFUD, cfud | 0x04);
	else if (numcoef == 5)
		snd_soc_write(codec, STA32X_CFUD, cfud | 0x08);
	else
		return -EINVAL;
	for (i = 0; i < 3 * numcoef; i++)
		ucontrol->value.bytes.data[i] =
			snd_soc_read(codec, STA32X_B1CF1 + i);

	return 0;
}

static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
	int numcoef = kcontrol->private_value >> 16;
	int index = kcontrol->private_value & 0xffff;
	unsigned int cfud;
	int i;

	/* preserve reserved bits in STA32X_CFUD */
	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
	/* chip documentation does not say if the bits are self clearing,
	 * so do it explicitly */
	snd_soc_write(codec, STA32X_CFUD, cfud);

	snd_soc_write(codec, STA32X_CFADDR2, index);
	for (i = 0; i < 3 * numcoef; i++)
		snd_soc_write(codec, STA32X_B1CF1 + i,
			      ucontrol->value.bytes.data[i]);
	if (numcoef == 1)
		snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
	else if (numcoef == 5)
		snd_soc_write(codec, STA32X_CFUD, cfud | 0x02);
	else
		return -EINVAL;

	return 0;
}

#define SINGLE_COEF(xname, index) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
	.info = sta32x_coefficient_info, \
	.get = sta32x_coefficient_get,\
	.put = sta32x_coefficient_put, \
	.private_value = index | (1 << 16) }

#define BIQUAD_COEFS(xname, index) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
	.info = sta32x_coefficient_info, \
	.get = sta32x_coefficient_get,\
	.put = sta32x_coefficient_put, \
	.private_value = index | (5 << 16) }

static const struct snd_kcontrol_new sta32x_snd_controls[] = {
SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),

/* depending on mode, the attack/release thresholds have
 * two different enum definitions; provide both
 */
SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
	       16, 0, sta32x_limiter_ac_attack_tlv),
SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
	       16, 0, sta32x_limiter_ac_attack_tlv),
SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
	       16, 0, sta32x_limiter_ac_release_tlv),
SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
	       16, 0, sta32x_limiter_ac_release_tlv),
SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
	       16, 0, sta32x_limiter_drc_attack_tlv),
SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
	       16, 0, sta32x_limiter_drc_attack_tlv),
SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
	       16, 0, sta32x_limiter_drc_release_tlv),
SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
	       16, 0, sta32x_limiter_drc_release_tlv),

BIQUAD_COEFS("Ch1 - Biquad 1", 0),
BIQUAD_COEFS("Ch1 - Biquad 2", 5),
BIQUAD_COEFS("Ch1 - Biquad 3", 10),
BIQUAD_COEFS("Ch1 - Biquad 4", 15),
BIQUAD_COEFS("Ch2 - Biquad 1", 20),
BIQUAD_COEFS("Ch2 - Biquad 2", 25),
BIQUAD_COEFS("Ch2 - Biquad 3", 30),
BIQUAD_COEFS("Ch2 - Biquad 4", 35),
BIQUAD_COEFS("High-pass", 40),
BIQUAD_COEFS("Low-pass", 45),
SINGLE_COEF("Ch1 - Prescale", 50),
SINGLE_COEF("Ch2 - Prescale", 51),
SINGLE_COEF("Ch1 - Postscale", 52),
SINGLE_COEF("Ch2 - Postscale", 53),
SINGLE_COEF("Ch3 - Postscale", 54),
SINGLE_COEF("Thermal warning - Postscale", 55),
SINGLE_COEF("Ch1 - Mix 1", 56),
SINGLE_COEF("Ch1 - Mix 2", 57),
SINGLE_COEF("Ch2 - Mix 1", 58),
SINGLE_COEF("Ch2 - Mix 2", 59),
SINGLE_COEF("Ch3 - Mix 1", 60),
SINGLE_COEF("Ch3 - Mix 2", 61),
};

static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_OUTPUT("LEFT"),
SND_SOC_DAPM_OUTPUT("RIGHT"),
SND_SOC_DAPM_OUTPUT("SUB"),
};

static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
	{ "LEFT", NULL, "DAC" },
	{ "RIGHT", NULL, "DAC" },
	{ "SUB", NULL, "DAC" },
};

/* MCLK interpolation ratio per fs */
static struct {
	int fs;
	int ir;
} interpolation_ratios[] = {
	{ 32000, 0 },
	{ 44100, 0 },
	{ 48000, 0 },
	{ 88200, 1 },
	{ 96000, 1 },
	{ 176400, 2 },
	{ 192000, 2 },
};

/* MCLK to fs clock ratios */
static struct {
	int ratio;
	int mcs;
} mclk_ratios[3][7] = {
	{ { 768, 0 }, { 512, 1 }, { 384, 2 }, { 256, 3 },
	  { 128, 4 }, { 576, 5 }, { 0, 0 } },
	{ { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
	{ { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
};


/**
 * sta32x_set_dai_sysclk - configure MCLK
 * @codec_dai: the codec DAI
 * @clk_id: the clock ID (ignored)
 * @freq: the MCLK input frequency
 * @dir: the clock direction (ignored)
 *
 * The value of MCLK is used to determine which sample rates are supported
 * by the STA32X, based on the mclk_ratios table.
 *
 * This function must be called by the machine driver's 'startup' function,
 * otherwise the list of supported sample rates will not be available in
 * time for ALSA.
 *
 * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
 * theoretically possible sample rates to be enabled. Call it again with a
 * proper value set one the external clock is set (most probably you would do
 * that from a machine's driver 'hw_param' hook.
 */
static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
		int clk_id, unsigned int freq, int dir)
{
	struct snd_soc_codec *codec = codec_dai->codec;
	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
	int i, j, ir, fs;
	unsigned int rates = 0;
	unsigned int rate_min = -1;
	unsigned int rate_max = 0;

	pr_debug("mclk=%u\n", freq);
	sta32x->mclk = freq;

	if (sta32x->mclk) {
		for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
			ir = interpolation_ratios[i].ir;
			fs = interpolation_ratios[i].fs;
			for (j = 0; mclk_ratios[ir][j].ratio; j++) {
				if (mclk_ratios[ir][j].ratio * fs == freq) {
					rates |= snd_pcm_rate_to_rate_bit(fs);
					if (fs < rate_min)
						rate_min = fs;
					if (fs > rate_max)
						rate_max = fs;
				}
			}
		}
		/* FIXME: soc should support a rate list */
		rates &= ~SNDRV_PCM_RATE_KNOT;

		if (!rates) {
			dev_err(codec->dev, "could not find a valid sample rate\n");
			return -EINVAL;
		}
	} else {
		/* enable all possible rates */
		rates = STA32X_RATES;
		rate_min = 32000;
		rate_max = 192000;
	}

	codec_dai->driver->playback.rates = rates;
	codec_dai->driver->playback.rate_min = rate_min;
	codec_dai->driver->playback.rate_max = rate_max;
	return 0;
}

/**
 * sta32x_set_dai_fmt - configure the codec for the selected audio format
 * @codec_dai: the codec DAI
 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
 *
 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
 * codec accordingly.
 */
static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
			      unsigned int fmt)
{
	struct snd_soc_codec *codec = codec_dai->codec;
	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
	u8 confb = snd_soc_read(codec, STA32X_CONFB);

	pr_debug("\n");
	confb &= ~(STA32X_CONFB_C1IM | STA32X_CONFB_C2IM);

	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		break;
	default:
		return -EINVAL;
	}

	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
	case SND_SOC_DAIFMT_RIGHT_J:
	case SND_SOC_DAIFMT_LEFT_J:
		sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
		break;
	default:
		return -EINVAL;
	}

	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		confb |= STA32X_CONFB_C2IM;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		confb |= STA32X_CONFB_C1IM;
		break;
	default:
		return -EINVAL;
	}

	snd_soc_write(codec, STA32X_CONFB, confb);
	return 0;
}

/**
 * sta32x_hw_params - program the STA32X with the given hardware parameters.
 * @substream: the audio stream
 * @params: the hardware parameters to set
 * @dai: the SOC DAI (ignored)
 *
 * This function programs the hardware with the values provided.
 * Specifically, the sample rate and the data format.
 */
static int sta32x_hw_params(struct snd_pcm_substream *substream,
			    struct snd_pcm_hw_params *params,
			    struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct snd_soc_codec *codec = rtd->codec;
	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
	unsigned int rate;
	int i, mcs = -1, ir = -1;
	u8 confa, confb;

	rate = params_rate(params);
	pr_debug("rate: %u\n", rate);
	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++)
		if (interpolation_ratios[i].fs == rate) {
			ir = interpolation_ratios[i].ir;
			break;
		}
	if (ir < 0)
		return -EINVAL;
	for (i = 0; mclk_ratios[ir][i].ratio; i++)
		if (mclk_ratios[ir][i].ratio * rate == sta32x->mclk) {
			mcs = mclk_ratios[ir][i].mcs;
			break;
		}
	if (mcs < 0)
		return -EINVAL;

	confa = snd_soc_read(codec, STA32X_CONFA);
	confa &= ~(STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK);
	confa |= (ir << STA32X_CONFA_IR_SHIFT) | (mcs << STA32X_CONFA_MCS_SHIFT);

	confb = snd_soc_read(codec, STA32X_CONFB);
	confb &= ~(STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB);
	switch (params_format(params)) {
	case SNDRV_PCM_FORMAT_S24_LE:
	case SNDRV_PCM_FORMAT_S24_BE:
	case SNDRV_PCM_FORMAT_S24_3LE:
	case SNDRV_PCM_FORMAT_S24_3BE:
		pr_debug("24bit\n");
		/* fall through */
	case SNDRV_PCM_FORMAT_S32_LE:
	case SNDRV_PCM_FORMAT_S32_BE:
		pr_debug("24bit or 32bit\n");
		switch (sta32x->format) {
		case SND_SOC_DAIFMT_I2S:
			confb |= 0x0;
			break;
		case SND_SOC_DAIFMT_LEFT_J:
			confb |= 0x1;
			break;
		case SND_SOC_DAIFMT_RIGHT_J:
			confb |= 0x2;
			break;
		}

		break;
	case SNDRV_PCM_FORMAT_S20_3LE:
	case SNDRV_PCM_FORMAT_S20_3BE:
		pr_debug("20bit\n");
		switch (sta32x->format) {
		case SND_SOC_DAIFMT_I2S:
			confb |= 0x4;
			break;
		case SND_SOC_DAIFMT_LEFT_J:
			confb |= 0x5;
			break;
		case SND_SOC_DAIFMT_RIGHT_J:
			confb |= 0x6;
			break;
		}

		break;
	case SNDRV_PCM_FORMAT_S18_3LE:
	case SNDRV_PCM_FORMAT_S18_3BE:
		pr_debug("18bit\n");
		switch (sta32x->format) {
		case SND_SOC_DAIFMT_I2S:
			confb |= 0x8;
			break;
		case SND_SOC_DAIFMT_LEFT_J:
			confb |= 0x9;
			break;
		case SND_SOC_DAIFMT_RIGHT_J:
			confb |= 0xa;
			break;
		}

		break;
	case SNDRV_PCM_FORMAT_S16_LE:
	case SNDRV_PCM_FORMAT_S16_BE:
		pr_debug("16bit\n");
		switch (sta32x->format) {
		case SND_SOC_DAIFMT_I2S:
			confb |= 0x0;
			break;
		case SND_SOC_DAIFMT_LEFT_J:
			confb |= 0xd;
			break;
		case SND_SOC_DAIFMT_RIGHT_J:
			confb |= 0xe;
			break;
		}

		break;
	default:
		return -EINVAL;
	}

	snd_soc_write(codec, STA32X_CONFA, confa);
	snd_soc_write(codec, STA32X_CONFB, confb);
	return 0;
}

/**
 * sta32x_set_bias_level - DAPM callback
 * @codec: the codec device
 * @level: DAPM power level
 *
 * This is called by ALSA to put the codec into low power mode
 * or to wake it up.  If the codec is powered off completely
 * all registers must be restored after power on.
 */
static int sta32x_set_bias_level(struct snd_soc_codec *codec,
				 enum snd_soc_bias_level level)
{
	int ret;
	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);

	pr_debug("level = %d\n", level);
	switch (level) {
	case SND_SOC_BIAS_ON:
		break;

	case SND_SOC_BIAS_PREPARE:
		/* Full power on */
		snd_soc_update_bits(codec, STA32X_CONFF,
				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
		break;

	case SND_SOC_BIAS_STANDBY:
		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
			ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
						    sta32x->supplies);
			if (ret != 0) {
				dev_err(codec->dev,
					"Failed to enable supplies: %d\n", ret);
				return ret;
			}

			snd_soc_cache_sync(codec);
		}

		/* Power up to mute */
		/* FIXME */
		snd_soc_update_bits(codec, STA32X_CONFF,
				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);

		break;

	case SND_SOC_BIAS_OFF:
		/* The chip runs through the power down sequence for us. */
		snd_soc_update_bits(codec, STA32X_CONFF,
				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
				    STA32X_CONFF_PWDN);
		msleep(300);

		regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
				       sta32x->supplies);
		break;
	}
	codec->dapm.bias_level = level;
	return 0;
}

static struct snd_soc_dai_ops sta32x_dai_ops = {
	.hw_params	= sta32x_hw_params,
	.set_sysclk	= sta32x_set_dai_sysclk,
	.set_fmt	= sta32x_set_dai_fmt,
};

static struct snd_soc_dai_driver sta32x_dai = {
	.name = "STA32X",
	.playback = {
		.stream_name = "Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = STA32X_RATES,
		.formats = STA32X_FORMATS,
	},
	.ops = &sta32x_dai_ops,
};

#ifdef CONFIG_PM
static int sta32x_suspend(struct snd_soc_codec *codec, pm_message_t state)
{
	sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
	return 0;
}

static int sta32x_resume(struct snd_soc_codec *codec)
{
	sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
	return 0;
}
#else
#define sta32x_suspend NULL
#define sta32x_resume NULL
#endif

static int sta32x_probe(struct snd_soc_codec *codec)
{
	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
	int i, ret = 0;

	sta32x->codec = codec;

	/* regulators */
	for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
		sta32x->supplies[i].supply = sta32x_supply_names[i];

	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sta32x->supplies),
				 sta32x->supplies);
	if (ret != 0) {
		dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
		goto err;
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
				    sta32x->supplies);
	if (ret != 0) {
		dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
		goto err_get;
	}

	/* Tell ASoC what kind of I/O to use to read the registers.  ASoC will
	 * then do the I2C transactions itself.
	 */
	ret = snd_soc_codec_set_cache_io(codec, 8, 8, SND_SOC_I2C);
	if (ret < 0) {
		dev_err(codec->dev, "failed to set cache I/O (ret=%i)\n", ret);
		return ret;
	}

	/* Chip documentation explicitly requires that the reset values
	 * of reserved register bits are left untouched.
	 * Write the register default value to cache for reserved registers,
	 * so the write to the these registers are suppressed by the cache
	 * restore code when it skips writes of default registers.
	 */
	snd_soc_cache_write(codec, STA32X_CONFC, 0xc2);
	snd_soc_cache_write(codec, STA32X_CONFE, 0xc2);
	snd_soc_cache_write(codec, STA32X_CONFF, 0x5c);
	snd_soc_cache_write(codec, STA32X_MMUTE, 0x10);
	snd_soc_cache_write(codec, STA32X_AUTO1, 0x60);
	snd_soc_cache_write(codec, STA32X_AUTO3, 0x00);
	snd_soc_cache_write(codec, STA32X_C3CFG, 0x40);

	/* FIXME enable thermal warning adjustment and recovery  */
	snd_soc_update_bits(codec, STA32X_CONFA,
			    STA32X_CONFA_TWAB | STA32X_CONFA_TWRB, 0);

	/* FIXME select 2.1 mode  */
	snd_soc_update_bits(codec, STA32X_CONFF,
			    STA32X_CONFF_OCFG_MASK,
			    1 << STA32X_CONFF_OCFG_SHIFT);

	/* FIXME channel to output mapping */
	snd_soc_update_bits(codec, STA32X_C1CFG,
			    STA32X_CxCFG_OM_MASK,
			    0 << STA32X_CxCFG_OM_SHIFT);
	snd_soc_update_bits(codec, STA32X_C2CFG,
			    STA32X_CxCFG_OM_MASK,
			    1 << STA32X_CxCFG_OM_SHIFT);
	snd_soc_update_bits(codec, STA32X_C3CFG,
			    STA32X_CxCFG_OM_MASK,
			    2 << STA32X_CxCFG_OM_SHIFT);

	sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
	/* Bias level configuration will have done an extra enable */
	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);

	return 0;

err_get:
	regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
err:
	return ret;
}

static int sta32x_remove(struct snd_soc_codec *codec)
{
	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);

	sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
	regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);

	return 0;
}

static int sta32x_reg_is_volatile(struct snd_soc_codec *codec,
				  unsigned int reg)
{
	switch (reg) {
	case STA32X_CONFA ... STA32X_L2ATRT:
	case STA32X_MPCC1 ... STA32X_FDRC2:
		return 0;
	}
	return 1;
}

static const struct snd_soc_codec_driver sta32x_codec = {
	.probe =		sta32x_probe,
	.remove =		sta32x_remove,
	.suspend =		sta32x_suspend,
	.resume =		sta32x_resume,
	.reg_cache_size =	STA32X_REGISTER_COUNT,
	.reg_word_size =	sizeof(u8),
	.reg_cache_default =	sta32x_regs,
	.volatile_register =	sta32x_reg_is_volatile,
	.set_bias_level =	sta32x_set_bias_level,
	.controls =		sta32x_snd_controls,
	.num_controls =		ARRAY_SIZE(sta32x_snd_controls),
	.dapm_widgets =		sta32x_dapm_widgets,
	.num_dapm_widgets =	ARRAY_SIZE(sta32x_dapm_widgets),
	.dapm_routes =		sta32x_dapm_routes,
	.num_dapm_routes =	ARRAY_SIZE(sta32x_dapm_routes),
};

static __devinit int sta32x_i2c_probe(struct i2c_client *i2c,
				      const struct i2c_device_id *id)
{
	struct sta32x_priv *sta32x;
	int ret;

	sta32x = kzalloc(sizeof(struct sta32x_priv), GFP_KERNEL);
	if (!sta32x)
		return -ENOMEM;

	i2c_set_clientdata(i2c, sta32x);

	ret = snd_soc_register_codec(&i2c->dev, &sta32x_codec, &sta32x_dai, 1);
	if (ret != 0) {
		dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret);
		kfree(sta32x);
		return ret;
	}

	return 0;
}

static __devexit int sta32x_i2c_remove(struct i2c_client *client)
{
	struct sta32x_priv *sta32x = i2c_get_clientdata(client);

	snd_soc_unregister_codec(&client->dev);
	kfree(sta32x);
	return 0;
}

static const struct i2c_device_id sta32x_i2c_id[] = {
	{ "sta326", 0 },
	{ "sta328", 0 },
	{ "sta329", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);

static struct i2c_driver sta32x_i2c_driver = {
	.driver = {
		.name = "sta32x",
		.owner = THIS_MODULE,
	},
	.probe =    sta32x_i2c_probe,
	.remove =   __devexit_p(sta32x_i2c_remove),
	.id_table = sta32x_i2c_id,
};

static int __init sta32x_init(void)
{
	return i2c_add_driver(&sta32x_i2c_driver);
}
module_init(sta32x_init);

static void __exit sta32x_exit(void)
{
	i2c_del_driver(&sta32x_i2c_driver);
}
module_exit(sta32x_exit);

MODULE_DESCRIPTION("ASoC STA32X driver");
MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
MODULE_LICENSE("GPL");