summaryrefslogtreecommitdiff
path: root/security/selinux/ss/hashtab.c
blob: d9287bb4bfebbccbbbd4d628b39a23869ad99ab5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// SPDX-License-Identifier: GPL-2.0
/*
 * Implementation of the hash table type.
 *
 * Author : Stephen Smalley, <sds@tycho.nsa.gov>
 */
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include "hashtab.h"

static struct kmem_cache *hashtab_node_cachep;

/*
 * Here we simply round the number of elements up to the nearest power of two.
 * I tried also other options like rouding down or rounding to the closest
 * power of two (up or down based on which is closer), but I was unable to
 * find any significant difference in lookup/insert performance that would
 * justify switching to a different (less intuitive) formula. It could be that
 * a different formula is actually more optimal, but any future changes here
 * should be supported with performance/memory usage data.
 *
 * The total memory used by the htable arrays (only) with Fedora policy loaded
 * is approximately 163 KB at the time of writing.
 */
static u32 hashtab_compute_size(u32 nel)
{
	return nel == 0 ? 0 : roundup_pow_of_two(nel);
}

int hashtab_init(struct hashtab *h, u32 nel_hint)
{
	h->size = hashtab_compute_size(nel_hint);
	h->nel = 0;
	if (!h->size)
		return 0;

	h->htable = kcalloc(h->size, sizeof(*h->htable), GFP_KERNEL);
	return h->htable ? 0 : -ENOMEM;
}

int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst,
		     void *key, void *datum)
{
	struct hashtab_node *newnode;

	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
	if (!newnode)
		return -ENOMEM;
	newnode->key = key;
	newnode->datum = datum;
	newnode->next = *dst;
	*dst = newnode;

	h->nel++;
	return 0;
}

void hashtab_destroy(struct hashtab *h)
{
	u32 i;
	struct hashtab_node *cur, *temp;

	for (i = 0; i < h->size; i++) {
		cur = h->htable[i];
		while (cur) {
			temp = cur;
			cur = cur->next;
			kmem_cache_free(hashtab_node_cachep, temp);
		}
		h->htable[i] = NULL;
	}

	kfree(h->htable);
	h->htable = NULL;
}

int hashtab_map(struct hashtab *h,
		int (*apply)(void *k, void *d, void *args),
		void *args)
{
	u32 i;
	int ret;
	struct hashtab_node *cur;

	for (i = 0; i < h->size; i++) {
		cur = h->htable[i];
		while (cur) {
			ret = apply(cur->key, cur->datum, args);
			if (ret)
				return ret;
			cur = cur->next;
		}
	}
	return 0;
}


void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
{
	u32 i, chain_len, slots_used, max_chain_len;
	struct hashtab_node *cur;

	slots_used = 0;
	max_chain_len = 0;
	for (i = 0; i < h->size; i++) {
		cur = h->htable[i];
		if (cur) {
			slots_used++;
			chain_len = 0;
			while (cur) {
				chain_len++;
				cur = cur->next;
			}

			if (chain_len > max_chain_len)
				max_chain_len = chain_len;
		}
	}

	info->slots_used = slots_used;
	info->max_chain_len = max_chain_len;
}

void __init hashtab_cache_init(void)
{
		hashtab_node_cachep = kmem_cache_create("hashtab_node",
			sizeof(struct hashtab_node),
			0, SLAB_PANIC, NULL);
}