summaryrefslogtreecommitdiff
path: root/security/integrity/ima/ima_crypto.c
blob: 51ad29940f05ca4566c88a4980ab7530cb57644e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2005,2006,2007,2008 IBM Corporation
 *
 * Authors:
 * Mimi Zohar <zohar@us.ibm.com>
 * Kylene Hall <kjhall@us.ibm.com>
 *
 * File: ima_crypto.c
 *	Calculates md5/sha1 file hash, template hash, boot-aggreate hash
 */

#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/ratelimit.h>
#include <linux/file.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <crypto/hash.h>

#include "ima.h"

/* minimum file size for ahash use */
static unsigned long ima_ahash_minsize;
module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");

/* default is 0 - 1 page. */
static int ima_maxorder;
static unsigned int ima_bufsize = PAGE_SIZE;

static int param_set_bufsize(const char *val, const struct kernel_param *kp)
{
	unsigned long long size;
	int order;

	size = memparse(val, NULL);
	order = get_order(size);
	if (order > MAX_ORDER)
		return -EINVAL;
	ima_maxorder = order;
	ima_bufsize = PAGE_SIZE << order;
	return 0;
}

static const struct kernel_param_ops param_ops_bufsize = {
	.set = param_set_bufsize,
	.get = param_get_uint,
};
#define param_check_bufsize(name, p) __param_check(name, p, unsigned int)

module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");

static struct crypto_shash *ima_shash_tfm;
static struct crypto_ahash *ima_ahash_tfm;

struct ima_algo_desc {
	struct crypto_shash *tfm;
	enum hash_algo algo;
};

int ima_sha1_idx __ro_after_init;
int ima_hash_algo_idx __ro_after_init;
/*
 * Additional number of slots reserved, as needed, for SHA1
 * and IMA default algo.
 */
int ima_extra_slots __ro_after_init;

static struct ima_algo_desc *ima_algo_array;

static int __init ima_init_ima_crypto(void)
{
	long rc;

	ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
	if (IS_ERR(ima_shash_tfm)) {
		rc = PTR_ERR(ima_shash_tfm);
		pr_err("Can not allocate %s (reason: %ld)\n",
		       hash_algo_name[ima_hash_algo], rc);
		return rc;
	}
	pr_info("Allocated hash algorithm: %s\n",
		hash_algo_name[ima_hash_algo]);
	return 0;
}

static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
{
	struct crypto_shash *tfm = ima_shash_tfm;
	int rc, i;

	if (algo < 0 || algo >= HASH_ALGO__LAST)
		algo = ima_hash_algo;

	if (algo == ima_hash_algo)
		return tfm;

	for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
		if (ima_algo_array[i].tfm && ima_algo_array[i].algo == algo)
			return ima_algo_array[i].tfm;

	tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
	if (IS_ERR(tfm)) {
		rc = PTR_ERR(tfm);
		pr_err("Can not allocate %s (reason: %d)\n",
		       hash_algo_name[algo], rc);
	}
	return tfm;
}

int __init ima_init_crypto(void)
{
	enum hash_algo algo;
	long rc;
	int i;

	rc = ima_init_ima_crypto();
	if (rc)
		return rc;

	ima_sha1_idx = -1;
	ima_hash_algo_idx = -1;

	for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
		algo = ima_tpm_chip->allocated_banks[i].crypto_id;
		if (algo == HASH_ALGO_SHA1)
			ima_sha1_idx = i;

		if (algo == ima_hash_algo)
			ima_hash_algo_idx = i;
	}

	if (ima_sha1_idx < 0) {
		ima_sha1_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
		if (ima_hash_algo == HASH_ALGO_SHA1)
			ima_hash_algo_idx = ima_sha1_idx;
	}

	if (ima_hash_algo_idx < 0)
		ima_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;

	ima_algo_array = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots,
				 sizeof(*ima_algo_array), GFP_KERNEL);
	if (!ima_algo_array) {
		rc = -ENOMEM;
		goto out;
	}

	for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
		algo = ima_tpm_chip->allocated_banks[i].crypto_id;
		ima_algo_array[i].algo = algo;

		/* unknown TPM algorithm */
		if (algo == HASH_ALGO__LAST)
			continue;

		if (algo == ima_hash_algo) {
			ima_algo_array[i].tfm = ima_shash_tfm;
			continue;
		}

		ima_algo_array[i].tfm = ima_alloc_tfm(algo);
		if (IS_ERR(ima_algo_array[i].tfm)) {
			if (algo == HASH_ALGO_SHA1) {
				rc = PTR_ERR(ima_algo_array[i].tfm);
				ima_algo_array[i].tfm = NULL;
				goto out_array;
			}

			ima_algo_array[i].tfm = NULL;
		}
	}

	if (ima_sha1_idx >= NR_BANKS(ima_tpm_chip)) {
		if (ima_hash_algo == HASH_ALGO_SHA1) {
			ima_algo_array[ima_sha1_idx].tfm = ima_shash_tfm;
		} else {
			ima_algo_array[ima_sha1_idx].tfm =
						ima_alloc_tfm(HASH_ALGO_SHA1);
			if (IS_ERR(ima_algo_array[ima_sha1_idx].tfm)) {
				rc = PTR_ERR(ima_algo_array[ima_sha1_idx].tfm);
				goto out_array;
			}
		}

		ima_algo_array[ima_sha1_idx].algo = HASH_ALGO_SHA1;
	}

	if (ima_hash_algo_idx >= NR_BANKS(ima_tpm_chip) &&
	    ima_hash_algo_idx != ima_sha1_idx) {
		ima_algo_array[ima_hash_algo_idx].tfm = ima_shash_tfm;
		ima_algo_array[ima_hash_algo_idx].algo = ima_hash_algo;
	}

	return 0;
out_array:
	for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
		if (!ima_algo_array[i].tfm ||
		    ima_algo_array[i].tfm == ima_shash_tfm)
			continue;

		crypto_free_shash(ima_algo_array[i].tfm);
	}
	kfree(ima_algo_array);
out:
	crypto_free_shash(ima_shash_tfm);
	return rc;
}

static void ima_free_tfm(struct crypto_shash *tfm)
{
	int i;

	if (tfm == ima_shash_tfm)
		return;

	for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
		if (ima_algo_array[i].tfm == tfm)
			return;

	crypto_free_shash(tfm);
}

/**
 * ima_alloc_pages() - Allocate contiguous pages.
 * @max_size:       Maximum amount of memory to allocate.
 * @allocated_size: Returned size of actual allocation.
 * @last_warn:      Should the min_size allocation warn or not.
 *
 * Tries to do opportunistic allocation for memory first trying to allocate
 * max_size amount of memory and then splitting that until zero order is
 * reached. Allocation is tried without generating allocation warnings unless
 * last_warn is set. Last_warn set affects only last allocation of zero order.
 *
 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
 *
 * Return pointer to allocated memory, or NULL on failure.
 */
static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
			     int last_warn)
{
	void *ptr;
	int order = ima_maxorder;
	gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;

	if (order)
		order = min(get_order(max_size), order);

	for (; order; order--) {
		ptr = (void *)__get_free_pages(gfp_mask, order);
		if (ptr) {
			*allocated_size = PAGE_SIZE << order;
			return ptr;
		}
	}

	/* order is zero - one page */

	gfp_mask = GFP_KERNEL;

	if (!last_warn)
		gfp_mask |= __GFP_NOWARN;

	ptr = (void *)__get_free_pages(gfp_mask, 0);
	if (ptr) {
		*allocated_size = PAGE_SIZE;
		return ptr;
	}

	*allocated_size = 0;
	return NULL;
}

/**
 * ima_free_pages() - Free pages allocated by ima_alloc_pages().
 * @ptr:  Pointer to allocated pages.
 * @size: Size of allocated buffer.
 */
static void ima_free_pages(void *ptr, size_t size)
{
	if (!ptr)
		return;
	free_pages((unsigned long)ptr, get_order(size));
}

static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
{
	struct crypto_ahash *tfm = ima_ahash_tfm;
	int rc;

	if (algo < 0 || algo >= HASH_ALGO__LAST)
		algo = ima_hash_algo;

	if (algo != ima_hash_algo || !tfm) {
		tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
		if (!IS_ERR(tfm)) {
			if (algo == ima_hash_algo)
				ima_ahash_tfm = tfm;
		} else {
			rc = PTR_ERR(tfm);
			pr_err("Can not allocate %s (reason: %d)\n",
			       hash_algo_name[algo], rc);
		}
	}
	return tfm;
}

static void ima_free_atfm(struct crypto_ahash *tfm)
{
	if (tfm != ima_ahash_tfm)
		crypto_free_ahash(tfm);
}

static inline int ahash_wait(int err, struct crypto_wait *wait)
{

	err = crypto_wait_req(err, wait);

	if (err)
		pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);

	return err;
}

static int ima_calc_file_hash_atfm(struct file *file,
				   struct ima_digest_data *hash,
				   struct crypto_ahash *tfm)
{
	loff_t i_size, offset;
	char *rbuf[2] = { NULL, };
	int rc, rbuf_len, active = 0, ahash_rc = 0;
	struct ahash_request *req;
	struct scatterlist sg[1];
	struct crypto_wait wait;
	size_t rbuf_size[2];

	hash->length = crypto_ahash_digestsize(tfm);

	req = ahash_request_alloc(tfm, GFP_KERNEL);
	if (!req)
		return -ENOMEM;

	crypto_init_wait(&wait);
	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
				   CRYPTO_TFM_REQ_MAY_SLEEP,
				   crypto_req_done, &wait);

	rc = ahash_wait(crypto_ahash_init(req), &wait);
	if (rc)
		goto out1;

	i_size = i_size_read(file_inode(file));

	if (i_size == 0)
		goto out2;

	/*
	 * Try to allocate maximum size of memory.
	 * Fail if even a single page cannot be allocated.
	 */
	rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
	if (!rbuf[0]) {
		rc = -ENOMEM;
		goto out1;
	}

	/* Only allocate one buffer if that is enough. */
	if (i_size > rbuf_size[0]) {
		/*
		 * Try to allocate secondary buffer. If that fails fallback to
		 * using single buffering. Use previous memory allocation size
		 * as baseline for possible allocation size.
		 */
		rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
					  &rbuf_size[1], 0);
	}

	for (offset = 0; offset < i_size; offset += rbuf_len) {
		if (!rbuf[1] && offset) {
			/* Not using two buffers, and it is not the first
			 * read/request, wait for the completion of the
			 * previous ahash_update() request.
			 */
			rc = ahash_wait(ahash_rc, &wait);
			if (rc)
				goto out3;
		}
		/* read buffer */
		rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
		rc = integrity_kernel_read(file, offset, rbuf[active],
					   rbuf_len);
		if (rc != rbuf_len) {
			if (rc >= 0)
				rc = -EINVAL;
			/*
			 * Forward current rc, do not overwrite with return value
			 * from ahash_wait()
			 */
			ahash_wait(ahash_rc, &wait);
			goto out3;
		}

		if (rbuf[1] && offset) {
			/* Using two buffers, and it is not the first
			 * read/request, wait for the completion of the
			 * previous ahash_update() request.
			 */
			rc = ahash_wait(ahash_rc, &wait);
			if (rc)
				goto out3;
		}

		sg_init_one(&sg[0], rbuf[active], rbuf_len);
		ahash_request_set_crypt(req, sg, NULL, rbuf_len);

		ahash_rc = crypto_ahash_update(req);

		if (rbuf[1])
			active = !active; /* swap buffers, if we use two */
	}
	/* wait for the last update request to complete */
	rc = ahash_wait(ahash_rc, &wait);
out3:
	ima_free_pages(rbuf[0], rbuf_size[0]);
	ima_free_pages(rbuf[1], rbuf_size[1]);
out2:
	if (!rc) {
		ahash_request_set_crypt(req, NULL, hash->digest, 0);
		rc = ahash_wait(crypto_ahash_final(req), &wait);
	}
out1:
	ahash_request_free(req);
	return rc;
}

static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
{
	struct crypto_ahash *tfm;
	int rc;

	tfm = ima_alloc_atfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	rc = ima_calc_file_hash_atfm(file, hash, tfm);

	ima_free_atfm(tfm);

	return rc;
}

static int ima_calc_file_hash_tfm(struct file *file,
				  struct ima_digest_data *hash,
				  struct crypto_shash *tfm)
{
	loff_t i_size, offset = 0;
	char *rbuf;
	int rc;
	SHASH_DESC_ON_STACK(shash, tfm);

	shash->tfm = tfm;

	hash->length = crypto_shash_digestsize(tfm);

	rc = crypto_shash_init(shash);
	if (rc != 0)
		return rc;

	i_size = i_size_read(file_inode(file));

	if (i_size == 0)
		goto out;

	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!rbuf)
		return -ENOMEM;

	while (offset < i_size) {
		int rbuf_len;

		rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
		if (rbuf_len < 0) {
			rc = rbuf_len;
			break;
		}
		if (rbuf_len == 0) {	/* unexpected EOF */
			rc = -EINVAL;
			break;
		}
		offset += rbuf_len;

		rc = crypto_shash_update(shash, rbuf, rbuf_len);
		if (rc)
			break;
	}
	kfree(rbuf);
out:
	if (!rc)
		rc = crypto_shash_final(shash, hash->digest);
	return rc;
}

static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
{
	struct crypto_shash *tfm;
	int rc;

	tfm = ima_alloc_tfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	rc = ima_calc_file_hash_tfm(file, hash, tfm);

	ima_free_tfm(tfm);

	return rc;
}

/*
 * ima_calc_file_hash - calculate file hash
 *
 * Asynchronous hash (ahash) allows using HW acceleration for calculating
 * a hash. ahash performance varies for different data sizes on different
 * crypto accelerators. shash performance might be better for smaller files.
 * The 'ima.ahash_minsize' module parameter allows specifying the best
 * minimum file size for using ahash on the system.
 *
 * If the ima.ahash_minsize parameter is not specified, this function uses
 * shash for the hash calculation.  If ahash fails, it falls back to using
 * shash.
 */
int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
{
	loff_t i_size;
	int rc;
	struct file *f = file;
	bool new_file_instance = false;

	/*
	 * For consistency, fail file's opened with the O_DIRECT flag on
	 * filesystems mounted with/without DAX option.
	 */
	if (file->f_flags & O_DIRECT) {
		hash->length = hash_digest_size[ima_hash_algo];
		hash->algo = ima_hash_algo;
		return -EINVAL;
	}

	/* Open a new file instance in O_RDONLY if we cannot read */
	if (!(file->f_mode & FMODE_READ)) {
		int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
				O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
		flags |= O_RDONLY;
		f = dentry_open(&file->f_path, flags, file->f_cred);
		if (IS_ERR(f))
			return PTR_ERR(f);

		new_file_instance = true;
	}

	i_size = i_size_read(file_inode(f));

	if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
		rc = ima_calc_file_ahash(f, hash);
		if (!rc)
			goto out;
	}

	rc = ima_calc_file_shash(f, hash);
out:
	if (new_file_instance)
		fput(f);
	return rc;
}

/*
 * Calculate the hash of template data
 */
static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
					 struct ima_template_entry *entry,
					 int tfm_idx)
{
	SHASH_DESC_ON_STACK(shash, ima_algo_array[tfm_idx].tfm);
	struct ima_template_desc *td = entry->template_desc;
	int num_fields = entry->template_desc->num_fields;
	int rc, i;

	shash->tfm = ima_algo_array[tfm_idx].tfm;

	rc = crypto_shash_init(shash);
	if (rc != 0)
		return rc;

	for (i = 0; i < num_fields; i++) {
		u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
		u8 *data_to_hash = field_data[i].data;
		u32 datalen = field_data[i].len;
		u32 datalen_to_hash = !ima_canonical_fmt ?
				datalen : (__force u32)cpu_to_le32(datalen);

		if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
			rc = crypto_shash_update(shash,
						(const u8 *) &datalen_to_hash,
						sizeof(datalen_to_hash));
			if (rc)
				break;
		} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
			memcpy(buffer, data_to_hash, datalen);
			data_to_hash = buffer;
			datalen = IMA_EVENT_NAME_LEN_MAX + 1;
		}
		rc = crypto_shash_update(shash, data_to_hash, datalen);
		if (rc)
			break;
	}

	if (!rc)
		rc = crypto_shash_final(shash, entry->digests[tfm_idx].digest);

	return rc;
}

int ima_calc_field_array_hash(struct ima_field_data *field_data,
			      struct ima_template_entry *entry)
{
	u16 alg_id;
	int rc, i;

	rc = ima_calc_field_array_hash_tfm(field_data, entry, ima_sha1_idx);
	if (rc)
		return rc;

	entry->digests[ima_sha1_idx].alg_id = TPM_ALG_SHA1;

	for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
		if (i == ima_sha1_idx)
			continue;

		if (i < NR_BANKS(ima_tpm_chip)) {
			alg_id = ima_tpm_chip->allocated_banks[i].alg_id;
			entry->digests[i].alg_id = alg_id;
		}

		/* for unmapped TPM algorithms digest is still a padded SHA1 */
		if (!ima_algo_array[i].tfm) {
			memcpy(entry->digests[i].digest,
			       entry->digests[ima_sha1_idx].digest,
			       TPM_DIGEST_SIZE);
			continue;
		}

		rc = ima_calc_field_array_hash_tfm(field_data, entry, i);
		if (rc)
			return rc;
	}
	return rc;
}

static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
				  struct ima_digest_data *hash,
				  struct crypto_ahash *tfm)
{
	struct ahash_request *req;
	struct scatterlist sg;
	struct crypto_wait wait;
	int rc, ahash_rc = 0;

	hash->length = crypto_ahash_digestsize(tfm);

	req = ahash_request_alloc(tfm, GFP_KERNEL);
	if (!req)
		return -ENOMEM;

	crypto_init_wait(&wait);
	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
				   CRYPTO_TFM_REQ_MAY_SLEEP,
				   crypto_req_done, &wait);

	rc = ahash_wait(crypto_ahash_init(req), &wait);
	if (rc)
		goto out;

	sg_init_one(&sg, buf, len);
	ahash_request_set_crypt(req, &sg, NULL, len);

	ahash_rc = crypto_ahash_update(req);

	/* wait for the update request to complete */
	rc = ahash_wait(ahash_rc, &wait);
	if (!rc) {
		ahash_request_set_crypt(req, NULL, hash->digest, 0);
		rc = ahash_wait(crypto_ahash_final(req), &wait);
	}
out:
	ahash_request_free(req);
	return rc;
}

static int calc_buffer_ahash(const void *buf, loff_t len,
			     struct ima_digest_data *hash)
{
	struct crypto_ahash *tfm;
	int rc;

	tfm = ima_alloc_atfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);

	ima_free_atfm(tfm);

	return rc;
}

static int calc_buffer_shash_tfm(const void *buf, loff_t size,
				struct ima_digest_data *hash,
				struct crypto_shash *tfm)
{
	SHASH_DESC_ON_STACK(shash, tfm);
	unsigned int len;
	int rc;

	shash->tfm = tfm;

	hash->length = crypto_shash_digestsize(tfm);

	rc = crypto_shash_init(shash);
	if (rc != 0)
		return rc;

	while (size) {
		len = size < PAGE_SIZE ? size : PAGE_SIZE;
		rc = crypto_shash_update(shash, buf, len);
		if (rc)
			break;
		buf += len;
		size -= len;
	}

	if (!rc)
		rc = crypto_shash_final(shash, hash->digest);
	return rc;
}

static int calc_buffer_shash(const void *buf, loff_t len,
			     struct ima_digest_data *hash)
{
	struct crypto_shash *tfm;
	int rc;

	tfm = ima_alloc_tfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	rc = calc_buffer_shash_tfm(buf, len, hash, tfm);

	ima_free_tfm(tfm);
	return rc;
}

int ima_calc_buffer_hash(const void *buf, loff_t len,
			 struct ima_digest_data *hash)
{
	int rc;

	if (ima_ahash_minsize && len >= ima_ahash_minsize) {
		rc = calc_buffer_ahash(buf, len, hash);
		if (!rc)
			return 0;
	}

	return calc_buffer_shash(buf, len, hash);
}

static void ima_pcrread(u32 idx, struct tpm_digest *d)
{
	if (!ima_tpm_chip)
		return;

	if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
		pr_err("Error Communicating to TPM chip\n");
}

/*
 * The boot_aggregate is a cumulative hash over TPM registers 0 - 7.  With
 * TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with
 * TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks,
 * allowing firmware to configure and enable different banks.
 *
 * Knowing which TPM bank is read to calculate the boot_aggregate digest
 * needs to be conveyed to a verifier.  For this reason, use the same
 * hash algorithm for reading the TPM PCRs as for calculating the boot
 * aggregate digest as stored in the measurement list.
 */
static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id,
				       struct crypto_shash *tfm)
{
	struct tpm_digest d = { .alg_id = alg_id, .digest = {0} };
	int rc;
	u32 i;
	SHASH_DESC_ON_STACK(shash, tfm);

	shash->tfm = tfm;

	pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n",
		 d.alg_id);

	rc = crypto_shash_init(shash);
	if (rc != 0)
		return rc;

	/* cumulative digest over TPM registers 0-7 */
	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
		ima_pcrread(i, &d);
		/* now accumulate with current aggregate */
		rc = crypto_shash_update(shash, d.digest,
					 crypto_shash_digestsize(tfm));
		if (rc != 0)
			return rc;
	}
	/*
	 * Extend cumulative digest over TPM registers 8-9, which contain
	 * measurement for the kernel command line (reg. 8) and image (reg. 9)
	 * in a typical PCR allocation. Registers 8-9 are only included in
	 * non-SHA1 boot_aggregate digests to avoid ambiguity.
	 */
	if (alg_id != TPM_ALG_SHA1) {
		for (i = TPM_PCR8; i < TPM_PCR10; i++) {
			ima_pcrread(i, &d);
			rc = crypto_shash_update(shash, d.digest,
						crypto_shash_digestsize(tfm));
		}
	}
	if (!rc)
		crypto_shash_final(shash, digest);
	return rc;
}

int ima_calc_boot_aggregate(struct ima_digest_data *hash)
{
	struct crypto_shash *tfm;
	u16 crypto_id, alg_id;
	int rc, i, bank_idx = -1;

	for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) {
		crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id;
		if (crypto_id == hash->algo) {
			bank_idx = i;
			break;
		}

		if (crypto_id == HASH_ALGO_SHA256)
			bank_idx = i;

		if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1)
			bank_idx = i;
	}

	if (bank_idx == -1) {
		pr_err("No suitable TPM algorithm for boot aggregate\n");
		return 0;
	}

	hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id;

	tfm = ima_alloc_tfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	hash->length = crypto_shash_digestsize(tfm);
	alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id;
	rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm);

	ima_free_tfm(tfm);

	return rc;
}