summaryrefslogtreecommitdiff
path: root/rust/kernel/init.rs
blob: a17ac8762d8f9f01b8840450df338c1d9f9cb1b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
//!
//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
//! overflow.
//!
//! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
//! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
//!
//! # Overview
//!
//! To initialize a `struct` with an in-place constructor you will need two things:
//! - an in-place constructor,
//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
//!   [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
//!
//! To get an in-place constructor there are generally three options:
//! - directly creating an in-place constructor using the [`pin_init!`] macro,
//! - a custom function/macro returning an in-place constructor provided by someone else,
//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
//!
//! Aside from pinned initialization, this API also supports in-place construction without pinning,
//! the macros/types/functions are generally named like the pinned variants without the `pin`
//! prefix.
//!
//! # Examples
//!
//! ## Using the [`pin_init!`] macro
//!
//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
//!
//! ```rust
//! # #![allow(clippy::disallowed_names)]
//! use kernel::sync::{new_mutex, Mutex};
//! # use core::pin::Pin;
//! #[pin_data]
//! struct Foo {
//!     #[pin]
//!     a: Mutex<usize>,
//!     b: u32,
//! }
//!
//! let foo = pin_init!(Foo {
//!     a <- new_mutex!(42, "Foo::a"),
//!     b: 24,
//! });
//! ```
//!
//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
//! (or just the stack) to actually initialize a `Foo`:
//!
//! ```rust
//! # #![allow(clippy::disallowed_names)]
//! # use kernel::sync::{new_mutex, Mutex};
//! # use core::pin::Pin;
//! # #[pin_data]
//! # struct Foo {
//! #     #[pin]
//! #     a: Mutex<usize>,
//! #     b: u32,
//! # }
//! # let foo = pin_init!(Foo {
//! #     a <- new_mutex!(42, "Foo::a"),
//! #     b: 24,
//! # });
//! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo, GFP_KERNEL);
//! ```
//!
//! For more information see the [`pin_init!`] macro.
//!
//! ## Using a custom function/macro that returns an initializer
//!
//! Many types from the kernel supply a function/macro that returns an initializer, because the
//! above method only works for types where you can access the fields.
//!
//! ```rust
//! # use kernel::sync::{new_mutex, Arc, Mutex};
//! let mtx: Result<Arc<Mutex<usize>>> =
//!     Arc::pin_init(new_mutex!(42, "example::mtx"), GFP_KERNEL);
//! ```
//!
//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
//!
//! ```rust
//! # #![allow(clippy::disallowed_names)]
//! # use kernel::{sync::Mutex, new_mutex, init::PinInit, try_pin_init};
//! #[pin_data]
//! struct DriverData {
//!     #[pin]
//!     status: Mutex<i32>,
//!     buffer: Box<[u8; 1_000_000]>,
//! }
//!
//! impl DriverData {
//!     fn new() -> impl PinInit<Self, Error> {
//!         try_pin_init!(Self {
//!             status <- new_mutex!(0, "DriverData::status"),
//!             buffer: Box::init(kernel::init::zeroed(), GFP_KERNEL)?,
//!         })
//!     }
//! }
//! ```
//!
//! ## Manual creation of an initializer
//!
//! Often when working with primitives the previous approaches are not sufficient. That is where
//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
//! actually does the initialization in the correct way. Here are the things to look out for
//! (we are calling the parameter to the closure `slot`):
//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
//!   `slot` now contains a valid bit pattern for the type `T`,
//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
//!   you need to take care to clean up anything if your initialization fails mid-way,
//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
//!   `slot` gets called.
//!
//! ```rust
//! # #![allow(unreachable_pub, clippy::disallowed_names)]
//! use kernel::{init, types::Opaque};
//! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
//! # mod bindings {
//! #     #![allow(non_camel_case_types)]
//! #     pub struct foo;
//! #     pub unsafe fn init_foo(_ptr: *mut foo) {}
//! #     pub unsafe fn destroy_foo(_ptr: *mut foo) {}
//! #     pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
//! # }
//! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround.
//! # trait FromErrno {
//! #     fn from_errno(errno: core::ffi::c_int) -> Error {
//! #         // Dummy error that can be constructed outside the `kernel` crate.
//! #         Error::from(core::fmt::Error)
//! #     }
//! # }
//! # impl FromErrno for Error {}
//! /// # Invariants
//! ///
//! /// `foo` is always initialized
//! #[pin_data(PinnedDrop)]
//! pub struct RawFoo {
//!     #[pin]
//!     foo: Opaque<bindings::foo>,
//!     #[pin]
//!     _p: PhantomPinned,
//! }
//!
//! impl RawFoo {
//!     pub fn new(flags: u32) -> impl PinInit<Self, Error> {
//!         // SAFETY:
//!         // - when the closure returns `Ok(())`, then it has successfully initialized and
//!         //   enabled `foo`,
//!         // - when it returns `Err(e)`, then it has cleaned up before
//!         unsafe {
//!             init::pin_init_from_closure(move |slot: *mut Self| {
//!                 // `slot` contains uninit memory, avoid creating a reference.
//!                 let foo = addr_of_mut!((*slot).foo);
//!
//!                 // Initialize the `foo`
//!                 bindings::init_foo(Opaque::raw_get(foo));
//!
//!                 // Try to enable it.
//!                 let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
//!                 if err != 0 {
//!                     // Enabling has failed, first clean up the foo and then return the error.
//!                     bindings::destroy_foo(Opaque::raw_get(foo));
//!                     return Err(Error::from_errno(err));
//!                 }
//!
//!                 // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
//!                 Ok(())
//!             })
//!         }
//!     }
//! }
//!
//! #[pinned_drop]
//! impl PinnedDrop for RawFoo {
//!     fn drop(self: Pin<&mut Self>) {
//!         // SAFETY: Since `foo` is initialized, destroying is safe.
//!         unsafe { bindings::destroy_foo(self.foo.get()) };
//!     }
//! }
//! ```
//!
//! For the special case where initializing a field is a single FFI-function call that cannot fail,
//! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
//! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
//! with [`pin_init!`].
//!
//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
//! the `kernel` crate. The [`sync`] module is a good starting point.
//!
//! [`sync`]: kernel::sync
//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
//! [structurally pinned fields]:
//!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
//! [stack]: crate::stack_pin_init
//! [`Arc<T>`]: crate::sync::Arc
//! [`impl PinInit<Foo>`]: PinInit
//! [`impl PinInit<T, E>`]: PinInit
//! [`impl Init<T, E>`]: Init
//! [`Opaque`]: kernel::types::Opaque
//! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
//! [`pin_data`]: ::macros::pin_data
//! [`pin_init!`]: crate::pin_init!

use crate::{
    alloc::{box_ext::BoxExt, AllocError, Flags},
    error::{self, Error},
    sync::Arc,
    sync::UniqueArc,
    types::{Opaque, ScopeGuard},
};
use alloc::boxed::Box;
use core::{
    cell::UnsafeCell,
    convert::Infallible,
    marker::PhantomData,
    mem::MaybeUninit,
    num::*,
    pin::Pin,
    ptr::{self, NonNull},
};

#[doc(hidden)]
pub mod __internal;
#[doc(hidden)]
pub mod macros;

/// Initialize and pin a type directly on the stack.
///
/// # Examples
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
/// # use core::pin::Pin;
/// #[pin_data]
/// struct Foo {
///     #[pin]
///     a: Mutex<usize>,
///     b: Bar,
/// }
///
/// #[pin_data]
/// struct Bar {
///     x: u32,
/// }
///
/// stack_pin_init!(let foo = pin_init!(Foo {
///     a <- new_mutex!(42),
///     b: Bar {
///         x: 64,
///     },
/// }));
/// let foo: Pin<&mut Foo> = foo;
/// pr_info!("a: {}", &*foo.a.lock());
/// ```
///
/// # Syntax
///
/// A normal `let` binding with optional type annotation. The expression is expected to implement
/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
/// type, then use [`stack_try_pin_init!`].
///
/// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
#[macro_export]
macro_rules! stack_pin_init {
    (let $var:ident $(: $t:ty)? = $val:expr) => {
        let val = $val;
        let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
        let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
            Ok(res) => res,
            Err(x) => {
                let x: ::core::convert::Infallible = x;
                match x {}
            }
        };
    };
}

/// Initialize and pin a type directly on the stack.
///
/// # Examples
///
/// ```rust,ignore
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
/// # use macros::pin_data;
/// # use core::{alloc::AllocError, pin::Pin};
/// #[pin_data]
/// struct Foo {
///     #[pin]
///     a: Mutex<usize>,
///     b: Box<Bar>,
/// }
///
/// struct Bar {
///     x: u32,
/// }
///
/// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
///     a <- new_mutex!(42),
///     b: Box::new(Bar {
///         x: 64,
///     }, GFP_KERNEL)?,
/// }));
/// let foo = foo.unwrap();
/// pr_info!("a: {}", &*foo.a.lock());
/// ```
///
/// ```rust,ignore
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
/// # use macros::pin_data;
/// # use core::{alloc::AllocError, pin::Pin};
/// #[pin_data]
/// struct Foo {
///     #[pin]
///     a: Mutex<usize>,
///     b: Box<Bar>,
/// }
///
/// struct Bar {
///     x: u32,
/// }
///
/// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
///     a <- new_mutex!(42),
///     b: Box::new(Bar {
///         x: 64,
///     }, GFP_KERNEL)?,
/// }));
/// pr_info!("a: {}", &*foo.a.lock());
/// # Ok::<_, AllocError>(())
/// ```
///
/// # Syntax
///
/// A normal `let` binding with optional type annotation. The expression is expected to implement
/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
/// `=` will propagate this error.
#[macro_export]
macro_rules! stack_try_pin_init {
    (let $var:ident $(: $t:ty)? = $val:expr) => {
        let val = $val;
        let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
        let mut $var = $crate::init::__internal::StackInit::init($var, val);
    };
    (let $var:ident $(: $t:ty)? =? $val:expr) => {
        let val = $val;
        let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
        let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
    };
}

/// Construct an in-place, pinned initializer for `struct`s.
///
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
/// [`try_pin_init!`].
///
/// The syntax is almost identical to that of a normal `struct` initializer:
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
/// # use core::pin::Pin;
/// #[pin_data]
/// struct Foo {
///     a: usize,
///     b: Bar,
/// }
///
/// #[pin_data]
/// struct Bar {
///     x: u32,
/// }
///
/// # fn demo() -> impl PinInit<Foo> {
/// let a = 42;
///
/// let initializer = pin_init!(Foo {
///     a,
///     b: Bar {
///         x: 64,
///     },
/// });
/// # initializer }
/// # Box::pin_init(demo(), GFP_KERNEL).unwrap();
/// ```
///
/// Arbitrary Rust expressions can be used to set the value of a variable.
///
/// The fields are initialized in the order that they appear in the initializer. So it is possible
/// to read already initialized fields using raw pointers.
///
/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
/// initializer.
///
/// # Init-functions
///
/// When working with this API it is often desired to let others construct your types without
/// giving access to all fields. This is where you would normally write a plain function `new`
/// that would return a new instance of your type. With this API that is also possible.
/// However, there are a few extra things to keep in mind.
///
/// To create an initializer function, simply declare it like this:
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, init::*};
/// # use core::pin::Pin;
/// # #[pin_data]
/// # struct Foo {
/// #     a: usize,
/// #     b: Bar,
/// # }
/// # #[pin_data]
/// # struct Bar {
/// #     x: u32,
/// # }
/// impl Foo {
///     fn new() -> impl PinInit<Self> {
///         pin_init!(Self {
///             a: 42,
///             b: Bar {
///                 x: 64,
///             },
///         })
///     }
/// }
/// ```
///
/// Users of `Foo` can now create it like this:
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
/// # use core::pin::Pin;
/// # #[pin_data]
/// # struct Foo {
/// #     a: usize,
/// #     b: Bar,
/// # }
/// # #[pin_data]
/// # struct Bar {
/// #     x: u32,
/// # }
/// # impl Foo {
/// #     fn new() -> impl PinInit<Self> {
/// #         pin_init!(Self {
/// #             a: 42,
/// #             b: Bar {
/// #                 x: 64,
/// #             },
/// #         })
/// #     }
/// # }
/// let foo = Box::pin_init(Foo::new(), GFP_KERNEL);
/// ```
///
/// They can also easily embed it into their own `struct`s:
///
/// ```rust
/// # #![allow(clippy::disallowed_names)]
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
/// # use core::pin::Pin;
/// # #[pin_data]
/// # struct Foo {
/// #     a: usize,
/// #     b: Bar,
/// # }
/// # #[pin_data]
/// # struct Bar {
/// #     x: u32,
/// # }
/// # impl Foo {
/// #     fn new() -> impl PinInit<Self> {
/// #         pin_init!(Self {
/// #             a: 42,
/// #             b: Bar {
/// #                 x: 64,
/// #             },
/// #         })
/// #     }
/// # }
/// #[pin_data]
/// struct FooContainer {
///     #[pin]
///     foo1: Foo,
///     #[pin]
///     foo2: Foo,
///     other: u32,
/// }
///
/// impl FooContainer {
///     fn new(other: u32) -> impl PinInit<Self> {
///         pin_init!(Self {
///             foo1 <- Foo::new(),
///             foo2 <- Foo::new(),
///             other,
///         })
///     }
/// }
/// ```
///
/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
///
/// # Syntax
///
/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
/// the following modifications is expected:
/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
///   pointer named `this` inside of the initializer.
/// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
///   struct, this initializes every field with 0 and then runs all initializers specified in the
///   body. This can only be done if [`Zeroable`] is implemented for the struct.
///
/// For instance:
///
/// ```rust
/// # use kernel::{macros::{Zeroable, pin_data}, pin_init};
/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
/// #[pin_data]
/// #[derive(Zeroable)]
/// struct Buf {
///     // `ptr` points into `buf`.
///     ptr: *mut u8,
///     buf: [u8; 64],
///     #[pin]
///     pin: PhantomPinned,
/// }
/// pin_init!(&this in Buf {
///     buf: [0; 64],
///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
///     pin: PhantomPinned,
/// });
/// pin_init!(Buf {
///     buf: [1; 64],
///     ..Zeroable::zeroed()
/// });
/// ```
///
/// [`try_pin_init!`]: kernel::try_pin_init
/// [`NonNull<Self>`]: core::ptr::NonNull
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! pin_init {
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)?),
            @fields($($fields)*),
            @error(::core::convert::Infallible),
            @data(PinData, use_data),
            @has_data(HasPinData, __pin_data),
            @construct_closure(pin_init_from_closure),
            @munch_fields($($fields)*),
        )
    };
}

/// Construct an in-place, fallible pinned initializer for `struct`s.
///
/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
///
/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
/// initialization and return the error.
///
/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
/// initialization fails, the memory can be safely deallocated without any further modifications.
///
/// This macro defaults the error to [`Error`].
///
/// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
/// after the `struct` initializer to specify the error type you want to use.
///
/// # Examples
///
/// ```rust
/// # #![feature(new_uninit)]
/// use kernel::{init::{self, PinInit}, error::Error};
/// #[pin_data]
/// struct BigBuf {
///     big: Box<[u8; 1024 * 1024 * 1024]>,
///     small: [u8; 1024 * 1024],
///     ptr: *mut u8,
/// }
///
/// impl BigBuf {
///     fn new() -> impl PinInit<Self, Error> {
///         try_pin_init!(Self {
///             big: Box::init(init::zeroed(), GFP_KERNEL)?,
///             small: [0; 1024 * 1024],
///             ptr: core::ptr::null_mut(),
///         }? Error)
///     }
/// }
/// ```
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! try_pin_init {
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)? ),
            @fields($($fields)*),
            @error($crate::error::Error),
            @data(PinData, use_data),
            @has_data(HasPinData, __pin_data),
            @construct_closure(pin_init_from_closure),
            @munch_fields($($fields)*),
        )
    };
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }? $err:ty) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)? ),
            @fields($($fields)*),
            @error($err),
            @data(PinData, use_data),
            @has_data(HasPinData, __pin_data),
            @construct_closure(pin_init_from_closure),
            @munch_fields($($fields)*),
        )
    };
}

/// Construct an in-place initializer for `struct`s.
///
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
/// [`try_init!`].
///
/// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
/// - `unsafe` code must guarantee either full initialization or return an error and allow
///   deallocation of the memory.
/// - the fields are initialized in the order given in the initializer.
/// - no references to fields are allowed to be created inside of the initializer.
///
/// This initializer is for initializing data in-place that might later be moved. If you want to
/// pin-initialize, use [`pin_init!`].
///
/// [`try_init!`]: crate::try_init!
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! init {
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)?),
            @fields($($fields)*),
            @error(::core::convert::Infallible),
            @data(InitData, /*no use_data*/),
            @has_data(HasInitData, __init_data),
            @construct_closure(init_from_closure),
            @munch_fields($($fields)*),
        )
    }
}

/// Construct an in-place fallible initializer for `struct`s.
///
/// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
/// [`init!`].
///
/// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
/// append `? $type` after the `struct` initializer.
/// The safety caveats from [`try_pin_init!`] also apply:
/// - `unsafe` code must guarantee either full initialization or return an error and allow
///   deallocation of the memory.
/// - the fields are initialized in the order given in the initializer.
/// - no references to fields are allowed to be created inside of the initializer.
///
/// # Examples
///
/// ```rust
/// use kernel::{init::{PinInit, zeroed}, error::Error};
/// struct BigBuf {
///     big: Box<[u8; 1024 * 1024 * 1024]>,
///     small: [u8; 1024 * 1024],
/// }
///
/// impl BigBuf {
///     fn new() -> impl Init<Self, Error> {
///         try_init!(Self {
///             big: Box::init(zeroed(), GFP_KERNEL)?,
///             small: [0; 1024 * 1024],
///         }? Error)
///     }
/// }
/// ```
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! try_init {
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)?),
            @fields($($fields)*),
            @error($crate::error::Error),
            @data(InitData, /*no use_data*/),
            @has_data(HasInitData, __init_data),
            @construct_closure(init_from_closure),
            @munch_fields($($fields)*),
        )
    };
    ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
        $($fields:tt)*
    }? $err:ty) => {
        $crate::__init_internal!(
            @this($($this)?),
            @typ($t $(::<$($generics),*>)?),
            @fields($($fields)*),
            @error($err),
            @data(InitData, /*no use_data*/),
            @has_data(HasInitData, __init_data),
            @construct_closure(init_from_closure),
            @munch_fields($($fields)*),
        )
    };
}

/// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
/// structurally pinned.
///
/// # Example
///
/// This will succeed:
/// ```
/// use kernel::assert_pinned;
/// #[pin_data]
/// struct MyStruct {
///     #[pin]
///     some_field: u64,
/// }
///
/// assert_pinned!(MyStruct, some_field, u64);
/// ```
///
/// This will fail:
// TODO: replace with `compile_fail` when supported.
/// ```ignore
/// use kernel::assert_pinned;
/// #[pin_data]
/// struct MyStruct {
///     some_field: u64,
/// }
///
/// assert_pinned!(MyStruct, some_field, u64);
/// ```
///
/// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
/// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
/// only be used when the macro is invoked from a function body.
/// ```
/// use kernel::assert_pinned;
/// #[pin_data]
/// struct Foo<T> {
///     #[pin]
///     elem: T,
/// }
///
/// impl<T> Foo<T> {
///     fn project(self: Pin<&mut Self>) -> Pin<&mut T> {
///         assert_pinned!(Foo<T>, elem, T, inline);
///
///         // SAFETY: The field is structurally pinned.
///         unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
///     }
/// }
/// ```
#[macro_export]
macro_rules! assert_pinned {
    ($ty:ty, $field:ident, $field_ty:ty, inline) => {
        let _ = move |ptr: *mut $field_ty| {
            // SAFETY: This code is unreachable.
            let data = unsafe { <$ty as $crate::init::__internal::HasPinData>::__pin_data() };
            let init = $crate::init::__internal::AlwaysFail::<$field_ty>::new();
            // SAFETY: This code is unreachable.
            unsafe { data.$field(ptr, init) }.ok();
        };
    };

    ($ty:ty, $field:ident, $field_ty:ty) => {
        const _: () = {
            $crate::assert_pinned!($ty, $field, $field_ty, inline);
        };
    };
}

/// A pin-initializer for the type `T`.
///
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
/// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
///
/// Also see the [module description](self).
///
/// # Safety
///
/// When implementing this trait you will need to take great care. Also there are probably very few
/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
///
/// The [`PinInit::__pinned_init`] function:
/// - returns `Ok(())` if it initialized every field of `slot`,
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
///     - `slot` can be deallocated without UB occurring,
///     - `slot` does not need to be dropped,
///     - `slot` is not partially initialized.
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
///
/// [`Arc<T>`]: crate::sync::Arc
/// [`Arc::pin_init`]: crate::sync::Arc::pin_init
#[must_use = "An initializer must be used in order to create its value."]
pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
    /// Initializes `slot`.
    ///
    /// # Safety
    ///
    /// - `slot` is a valid pointer to uninitialized memory.
    /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
    ///   deallocate.
    /// - `slot` will not move until it is dropped, i.e. it will be pinned.
    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;

    /// First initializes the value using `self` then calls the function `f` with the initialized
    /// value.
    ///
    /// If `f` returns an error the value is dropped and the initializer will forward the error.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #![allow(clippy::disallowed_names)]
    /// use kernel::{types::Opaque, init::pin_init_from_closure};
    /// #[repr(C)]
    /// struct RawFoo([u8; 16]);
    /// extern {
    ///     fn init_foo(_: *mut RawFoo);
    /// }
    ///
    /// #[pin_data]
    /// struct Foo {
    ///     #[pin]
    ///     raw: Opaque<RawFoo>,
    /// }
    ///
    /// impl Foo {
    ///     fn setup(self: Pin<&mut Self>) {
    ///         pr_info!("Setting up foo");
    ///     }
    /// }
    ///
    /// let foo = pin_init!(Foo {
    ///     raw <- unsafe {
    ///         Opaque::ffi_init(|s| {
    ///             init_foo(s);
    ///         })
    ///     },
    /// }).pin_chain(|foo| {
    ///     foo.setup();
    ///     Ok(())
    /// });
    /// ```
    fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
    where
        F: FnOnce(Pin<&mut T>) -> Result<(), E>,
    {
        ChainPinInit(self, f, PhantomData)
    }
}

/// An initializer returned by [`PinInit::pin_chain`].
pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);

// SAFETY: The `__pinned_init` function is implemented such that it
// - returns `Ok(())` on successful initialization,
// - returns `Err(err)` on error and in this case `slot` will be dropped.
// - considers `slot` pinned.
unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
where
    I: PinInit<T, E>,
    F: FnOnce(Pin<&mut T>) -> Result<(), E>,
{
    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
        // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
        unsafe { self.0.__pinned_init(slot)? };
        // SAFETY: The above call initialized `slot` and we still have unique access.
        let val = unsafe { &mut *slot };
        // SAFETY: `slot` is considered pinned.
        let val = unsafe { Pin::new_unchecked(val) };
        // SAFETY: `slot` was initialized above.
        (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
    }
}

/// An initializer for `T`.
///
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
/// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
///
/// Also see the [module description](self).
///
/// # Safety
///
/// When implementing this trait you will need to take great care. Also there are probably very few
/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
///
/// The [`Init::__init`] function:
/// - returns `Ok(())` if it initialized every field of `slot`,
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
///     - `slot` can be deallocated without UB occurring,
///     - `slot` does not need to be dropped,
///     - `slot` is not partially initialized.
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
///
/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
/// code as `__init`.
///
/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
/// move the pointee after initialization.
///
/// [`Arc<T>`]: crate::sync::Arc
#[must_use = "An initializer must be used in order to create its value."]
pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
    /// Initializes `slot`.
    ///
    /// # Safety
    ///
    /// - `slot` is a valid pointer to uninitialized memory.
    /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
    ///   deallocate.
    unsafe fn __init(self, slot: *mut T) -> Result<(), E>;

    /// First initializes the value using `self` then calls the function `f` with the initialized
    /// value.
    ///
    /// If `f` returns an error the value is dropped and the initializer will forward the error.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #![allow(clippy::disallowed_names)]
    /// use kernel::{types::Opaque, init::{self, init_from_closure}};
    /// struct Foo {
    ///     buf: [u8; 1_000_000],
    /// }
    ///
    /// impl Foo {
    ///     fn setup(&mut self) {
    ///         pr_info!("Setting up foo");
    ///     }
    /// }
    ///
    /// let foo = init!(Foo {
    ///     buf <- init::zeroed()
    /// }).chain(|foo| {
    ///     foo.setup();
    ///     Ok(())
    /// });
    /// ```
    fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
    where
        F: FnOnce(&mut T) -> Result<(), E>,
    {
        ChainInit(self, f, PhantomData)
    }
}

/// An initializer returned by [`Init::chain`].
pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);

// SAFETY: The `__init` function is implemented such that it
// - returns `Ok(())` on successful initialization,
// - returns `Err(err)` on error and in this case `slot` will be dropped.
unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
where
    I: Init<T, E>,
    F: FnOnce(&mut T) -> Result<(), E>,
{
    unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
        // SAFETY: All requirements fulfilled since this function is `__init`.
        unsafe { self.0.__pinned_init(slot)? };
        // SAFETY: The above call initialized `slot` and we still have unique access.
        (self.1)(unsafe { &mut *slot }).inspect_err(|_|
            // SAFETY: `slot` was initialized above.
            unsafe { core::ptr::drop_in_place(slot) })
    }
}

// SAFETY: `__pinned_init` behaves exactly the same as `__init`.
unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
where
    I: Init<T, E>,
    F: FnOnce(&mut T) -> Result<(), E>,
{
    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
        // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
        unsafe { self.__init(slot) }
    }
}

/// Creates a new [`PinInit<T, E>`] from the given closure.
///
/// # Safety
///
/// The closure:
/// - returns `Ok(())` if it initialized every field of `slot`,
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
///     - `slot` can be deallocated without UB occurring,
///     - `slot` does not need to be dropped,
///     - `slot` is not partially initialized.
/// - may assume that the `slot` does not move if `T: !Unpin`,
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
#[inline]
pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
    f: impl FnOnce(*mut T) -> Result<(), E>,
) -> impl PinInit<T, E> {
    __internal::InitClosure(f, PhantomData)
}

/// Creates a new [`Init<T, E>`] from the given closure.
///
/// # Safety
///
/// The closure:
/// - returns `Ok(())` if it initialized every field of `slot`,
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
///     - `slot` can be deallocated without UB occurring,
///     - `slot` does not need to be dropped,
///     - `slot` is not partially initialized.
/// - the `slot` may move after initialization.
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
#[inline]
pub const unsafe fn init_from_closure<T: ?Sized, E>(
    f: impl FnOnce(*mut T) -> Result<(), E>,
) -> impl Init<T, E> {
    __internal::InitClosure(f, PhantomData)
}

/// An initializer that leaves the memory uninitialized.
///
/// The initializer is a no-op. The `slot` memory is not changed.
#[inline]
pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
    // SAFETY: The memory is allowed to be uninitialized.
    unsafe { init_from_closure(|_| Ok(())) }
}

/// Initializes an array by initializing each element via the provided initializer.
///
/// # Examples
///
/// ```rust
/// use kernel::{error::Error, init::init_array_from_fn};
/// let array: Box<[usize; 1_000]> = Box::init::<Error>(init_array_from_fn(|i| i), GFP_KERNEL).unwrap();
/// assert_eq!(array.len(), 1_000);
/// ```
pub fn init_array_from_fn<I, const N: usize, T, E>(
    mut make_init: impl FnMut(usize) -> I,
) -> impl Init<[T; N], E>
where
    I: Init<T, E>,
{
    let init = move |slot: *mut [T; N]| {
        let slot = slot.cast::<T>();
        // Counts the number of initialized elements and when dropped drops that many elements from
        // `slot`.
        let mut init_count = ScopeGuard::new_with_data(0, |i| {
            // We now free every element that has been initialized before.
            // SAFETY: The loop initialized exactly the values from 0..i and since we
            // return `Err` below, the caller will consider the memory at `slot` as
            // uninitialized.
            unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
        });
        for i in 0..N {
            let init = make_init(i);
            // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
            let ptr = unsafe { slot.add(i) };
            // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
            // requirements.
            unsafe { init.__init(ptr) }?;
            *init_count += 1;
        }
        init_count.dismiss();
        Ok(())
    };
    // SAFETY: The initializer above initializes every element of the array. On failure it drops
    // any initialized elements and returns `Err`.
    unsafe { init_from_closure(init) }
}

/// Initializes an array by initializing each element via the provided initializer.
///
/// # Examples
///
/// ```rust
/// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex};
/// let array: Arc<[Mutex<usize>; 1_000]> =
///     Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i)), GFP_KERNEL).unwrap();
/// assert_eq!(array.len(), 1_000);
/// ```
pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
    mut make_init: impl FnMut(usize) -> I,
) -> impl PinInit<[T; N], E>
where
    I: PinInit<T, E>,
{
    let init = move |slot: *mut [T; N]| {
        let slot = slot.cast::<T>();
        // Counts the number of initialized elements and when dropped drops that many elements from
        // `slot`.
        let mut init_count = ScopeGuard::new_with_data(0, |i| {
            // We now free every element that has been initialized before.
            // SAFETY: The loop initialized exactly the values from 0..i and since we
            // return `Err` below, the caller will consider the memory at `slot` as
            // uninitialized.
            unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
        });
        for i in 0..N {
            let init = make_init(i);
            // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
            let ptr = unsafe { slot.add(i) };
            // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
            // requirements.
            unsafe { init.__pinned_init(ptr) }?;
            *init_count += 1;
        }
        init_count.dismiss();
        Ok(())
    };
    // SAFETY: The initializer above initializes every element of the array. On failure it drops
    // any initialized elements and returns `Err`.
    unsafe { pin_init_from_closure(init) }
}

// SAFETY: Every type can be initialized by-value.
unsafe impl<T, E> Init<T, E> for T {
    unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
        unsafe { slot.write(self) };
        Ok(())
    }
}

// SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
unsafe impl<T, E> PinInit<T, E> for T {
    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
        unsafe { self.__init(slot) }
    }
}

/// Smart pointer that can initialize memory in-place.
pub trait InPlaceInit<T>: Sized {
    /// Pinned version of `Self`.
    ///
    /// If a type already implicitly pins its pointee, `Pin<Self>` is unnecessary. In this case use
    /// `Self`, otherwise just use `Pin<Self>`.
    type PinnedSelf;

    /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
    /// type.
    ///
    /// If `T: !Unpin` it will not be able to move afterwards.
    fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
    where
        E: From<AllocError>;

    /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
    /// type.
    ///
    /// If `T: !Unpin` it will not be able to move afterwards.
    fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self::PinnedSelf>
    where
        Error: From<E>,
    {
        // SAFETY: We delegate to `init` and only change the error type.
        let init = unsafe {
            pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
        };
        Self::try_pin_init(init, flags)
    }

    /// Use the given initializer to in-place initialize a `T`.
    fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
    where
        E: From<AllocError>;

    /// Use the given initializer to in-place initialize a `T`.
    fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
    where
        Error: From<E>,
    {
        // SAFETY: We delegate to `init` and only change the error type.
        let init = unsafe {
            init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
        };
        Self::try_init(init, flags)
    }
}

impl<T> InPlaceInit<T> for Arc<T> {
    type PinnedSelf = Self;

    #[inline]
    fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
    where
        E: From<AllocError>,
    {
        UniqueArc::try_pin_init(init, flags).map(|u| u.into())
    }

    #[inline]
    fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
    where
        E: From<AllocError>,
    {
        UniqueArc::try_init(init, flags).map(|u| u.into())
    }
}

impl<T> InPlaceInit<T> for Box<T> {
    type PinnedSelf = Pin<Self>;

    #[inline]
    fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
    where
        E: From<AllocError>,
    {
        <Box<_> as BoxExt<_>>::new_uninit(flags)?.write_pin_init(init)
    }

    #[inline]
    fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
    where
        E: From<AllocError>,
    {
        <Box<_> as BoxExt<_>>::new_uninit(flags)?.write_init(init)
    }
}

impl<T> InPlaceInit<T> for UniqueArc<T> {
    type PinnedSelf = Pin<Self>;

    #[inline]
    fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
    where
        E: From<AllocError>,
    {
        UniqueArc::new_uninit(flags)?.write_pin_init(init)
    }

    #[inline]
    fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
    where
        E: From<AllocError>,
    {
        UniqueArc::new_uninit(flags)?.write_init(init)
    }
}

/// Smart pointer containing uninitialized memory and that can write a value.
pub trait InPlaceWrite<T> {
    /// The type `Self` turns into when the contents are initialized.
    type Initialized;

    /// Use the given initializer to write a value into `self`.
    ///
    /// Does not drop the current value and considers it as uninitialized memory.
    fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;

    /// Use the given pin-initializer to write a value into `self`.
    ///
    /// Does not drop the current value and considers it as uninitialized memory.
    fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
}

impl<T> InPlaceWrite<T> for Box<MaybeUninit<T>> {
    type Initialized = Box<T>;

    fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
        let slot = self.as_mut_ptr();
        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
        // slot is valid.
        unsafe { init.__init(slot)? };
        // SAFETY: All fields have been initialized.
        Ok(unsafe { self.assume_init() })
    }

    fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
        let slot = self.as_mut_ptr();
        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
        // slot is valid and will not be moved, because we pin it later.
        unsafe { init.__pinned_init(slot)? };
        // SAFETY: All fields have been initialized.
        Ok(unsafe { self.assume_init() }.into())
    }
}

impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
    type Initialized = UniqueArc<T>;

    fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
        let slot = self.as_mut_ptr();
        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
        // slot is valid.
        unsafe { init.__init(slot)? };
        // SAFETY: All fields have been initialized.
        Ok(unsafe { self.assume_init() })
    }

    fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
        let slot = self.as_mut_ptr();
        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
        // slot is valid and will not be moved, because we pin it later.
        unsafe { init.__pinned_init(slot)? };
        // SAFETY: All fields have been initialized.
        Ok(unsafe { self.assume_init() }.into())
    }
}

/// Trait facilitating pinned destruction.
///
/// Use [`pinned_drop`] to implement this trait safely:
///
/// ```rust
/// # use kernel::sync::Mutex;
/// use kernel::macros::pinned_drop;
/// use core::pin::Pin;
/// #[pin_data(PinnedDrop)]
/// struct Foo {
///     #[pin]
///     mtx: Mutex<usize>,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for Foo {
///     fn drop(self: Pin<&mut Self>) {
///         pr_info!("Foo is being dropped!");
///     }
/// }
/// ```
///
/// # Safety
///
/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
///
/// [`pinned_drop`]: kernel::macros::pinned_drop
pub unsafe trait PinnedDrop: __internal::HasPinData {
    /// Executes the pinned destructor of this type.
    ///
    /// While this function is marked safe, it is actually unsafe to call it manually. For this
    /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
    /// and thus prevents this function from being called where it should not.
    ///
    /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
    /// automatically.
    fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
}

/// Marker trait for types that can be initialized by writing just zeroes.
///
/// # Safety
///
/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
/// this is not UB:
///
/// ```rust,ignore
/// let val: Self = unsafe { core::mem::zeroed() };
/// ```
pub unsafe trait Zeroable {}

/// Create a new zeroed T.
///
/// The returned initializer will write `0x00` to every byte of the given `slot`.
#[inline]
pub fn zeroed<T: Zeroable>() -> impl Init<T> {
    // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
    // and because we write all zeroes, the memory is initialized.
    unsafe {
        init_from_closure(|slot: *mut T| {
            slot.write_bytes(0, 1);
            Ok(())
        })
    }
}

macro_rules! impl_zeroable {
    ($($({$($generics:tt)*})? $t:ty, )*) => {
        $(unsafe impl$($($generics)*)? Zeroable for $t {})*
    };
}

impl_zeroable! {
    // SAFETY: All primitives that are allowed to be zero.
    bool,
    char,
    u8, u16, u32, u64, u128, usize,
    i8, i16, i32, i64, i128, isize,
    f32, f64,

    // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
    // creating an instance of an uninhabited type is immediate undefined behavior. For more on
    // uninhabited/empty types, consult The Rustonomicon:
    // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
    // also has information on undefined behavior:
    // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
    //
    // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
    {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),

    // SAFETY: Type is allowed to take any value, including all zeros.
    {<T>} MaybeUninit<T>,
    // SAFETY: Type is allowed to take any value, including all zeros.
    {<T>} Opaque<T>,

    // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
    {<T: ?Sized + Zeroable>} UnsafeCell<T>,

    // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
    Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
    Option<NonZeroU128>, Option<NonZeroUsize>,
    Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
    Option<NonZeroI128>, Option<NonZeroIsize>,

    // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
    //
    // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
    {<T: ?Sized>} Option<NonNull<T>>,
    {<T: ?Sized>} Option<Box<T>>,

    // SAFETY: `null` pointer is valid.
    //
    // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
    // null.
    //
    // When `Pointee` gets stabilized, we could use
    // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
    {<T>} *mut T, {<T>} *const T,

    // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
    // zero.
    {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,

    // SAFETY: `T` is `Zeroable`.
    {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
}

macro_rules! impl_tuple_zeroable {
    ($(,)?) => {};
    ($first:ident, $($t:ident),* $(,)?) => {
        // SAFETY: All elements are zeroable and padding can be zero.
        unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
        impl_tuple_zeroable!($($t),* ,);
    }
}

impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);